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Today

• Limits near a physical boundary

• Shifted and Bayesian approaches


• Example: Upper limit on the mean of a Poisson variable with background


• Unfolding

• Formulation of the problem


• Matrix inversion


• Method of correction factors


• Regularized unfolding

Higgs Challenge

Please mail Sally Stefkova if 
you plan to do it! We just 
want to gauge how many 
groups are working on this.

Evaluations: Lecture & Computerpraktikum.  
Please take a few minutes to fill them out. Your feedback is greatly 
appreciated. We will take your comments into consideration in trying to 
improve the course.  
Evaluation period: through 22 June (lecture) & 15 July (Computerpraktikum)

mailto:slavomira.stefkova@kit.edu
https://onlineumfrage.kit.edu/evasys/public/online/index/index?online_php=&p=G8U87&ONLINEID=685107110396747909582449651404219497159407
https://onlineumfrage.kit.edu/evasys/public/online/index/index?online_php=&p=GYNY6&ONLINEID=573917406799455864826073832153669516557517
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We’ve come a long way so far
# Lecture date Lecture Topic

1 21.4 Fundamental concepts I

2 28.4 Fundamental concepts II

3 5.5 Monte Carlo method & production of random distributions

4 12.5 Parameter estimation & maximum likelihood

5 19.5 Chi-square method

6 26.5 Hypothesis tests & Neyman Pearson

7 9.6 Confidence intervals

8 16.6 Limit setting & unfolding 

9 23.6 Event classification - Introduction and perceptron

10 30.6 Classification with the multilayer perceptron

11 7.7 Neural network training

12 14.7 Training algorithms & regularization methods

13 21.7 Training validation

14 28.7 Advanced neural networks

P.-D. Dr. Roger Wolf 

Dr. Jan Kieseler 



Confidence Intervals

Statistical errors, confidence intervals and limits

Up to now: when discussing ‘error analysis’ we focused on estimating the 
(co)variances of estimators. This is not always adequate and other ways of 

communicating the statistical uncertainty of measurements have to be found. 
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Review

• Suppose you have  observations of a random 
variable , which can be used to evaluate an 
estimator for an unknown true parameter :


• Furthermore, suppose we know the PDF of  
denoted by 


• From , can determine  and  such that 
there are fixed probabilities  and  to observe

 or 

n
X

θ

̂θ
g( ̂θ; θ)

g( ̂θ; θ) νβ uα
β α

̂θ < νβ
̂θ > uα

5
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

̂θ(x1, …, xn) = ̂θobs
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the inverse functions 

The ineqllalities 
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b(O) == v;! (0). 

(9.4) 

Alternative (& often =) method 
of reporting the statistical 

uncertainty of a measurement

Next: lets build the CI step by step…

value obtained

Real value of  unknown, BUT for a given  one 
knows what the PDF of  would be  

θ θ
̂θ

Shows the probability density for an estimator  
for a particular value of the true parameter 

̂θ
θ
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on n observations of x would be distributed according to a p.d.f. g(O) centered 
around some true value () and true standard deviation (J' 0' which are estimated 
to be Oobs and Cr o. 

For most practical estimators, the sampling p.d.f. g(O) becomes approxi-
mately Gaussian in the large sample limit. If more than one parameter is es-
timated, then the p.d.f. will become a multidimensional Gaussian characterized 
by a covariance matrix V. Thus by estimating the standard deviation, or for 
more than one parameter the covariance matrix, one effectively summarizes all 
of the information available about how repeated estimates would be distributed. 
By using the error propagation techniques of Section 1.6, the covariance matrix 
also gives the equivalent information, at least approximately, for functions of the 
estimators. 

Although the 'standard deviation' definition of statistical error bars could in 
principle be used regardless of the form of the estimator's p.d.f. g(O), it is not, 
in fact, the conventional definition if g(O) is not Gaussian. In such cases, one 
usually reports confidence intervals as described in the next section; this can in 
general lead to asymmetric error bars. In Section 9.3 it is shown that if g(O) is 
Gaussian, then the so-called 68.3% confidence interval is the same as the interval 
covered by Oobs ± Cro. 

9.2 Classical confidence intervals (exact method) 
An alternative (and often equivalent) method of reporting the statistical error of 
a measurement is with a confidence interval, which was first developed by Ney-
man [Ney37]. Suppose as above that one has n observations of a random variable 
x which can be used to evaluate_an estimator O(Xl' ... , xn) for a parameter (), 
and that the value obtained is Oobs. Furthermore, suppose that by means of, 
say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 
of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 
value of the true parameter (). From g(O; ()) one can determine the value U Q such 
that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 
v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 
depend on the true value of (), and are thus determined by 

and 

j V/J(8) 
(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). 
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where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). CDF … so  and  are the probabilities!α β

 and  depend on the true value  and are thus determined byuα uβ θ

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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on n observations of x would be distributed according to a p.d.f. g(O) centered 
around some true value () and true standard deviation (J' 0' which are estimated 
to be Oobs and Cr o. 

For most practical estimators, the sampling p.d.f. g(O) becomes approxi-
mately Gaussian in the large sample limit. If more than one parameter is es-
timated, then the p.d.f. will become a multidimensional Gaussian characterized 
by a covariance matrix V. Thus by estimating the standard deviation, or for 
more than one parameter the covariance matrix, one effectively summarizes all 
of the information available about how repeated estimates would be distributed. 
By using the error propagation techniques of Section 1.6, the covariance matrix 
also gives the equivalent information, at least approximately, for functions of the 
estimators. 

Although the 'standard deviation' definition of statistical error bars could in 
principle be used regardless of the form of the estimator's p.d.f. g(O), it is not, 
in fact, the conventional definition if g(O) is not Gaussian. In such cases, one 
usually reports confidence intervals as described in the next section; this can in 
general lead to asymmetric error bars. In Section 9.3 it is shown that if g(O) is 
Gaussian, then the so-called 68.3% confidence interval is the same as the interval 
covered by Oobs ± Cro. 

9.2 Classical confidence intervals (exact method) 
An alternative (and often equivalent) method of reporting the statistical error of 
a measurement is with a confidence interval, which was first developed by Ney-
man [Ney37]. Suppose as above that one has n observations of a random variable 
x which can be used to evaluate_an estimator O(Xl' ... , xn) for a parameter (), 
and that the value obtained is Oobs. Furthermore, suppose that by means of, 
say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 
of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 
value of the true parameter (). From g(O; ()) one can determine the value U Q such 
that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 
v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 
depend on the true value of (), and are thus determined by 

and 

j V/J(8) 
(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). 
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and that the value obtained is Oobs. Furthermore, suppose that by means of, 
say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 
of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 
value of the true parameter (). From g(O; ()) one can determine the value U Q such 
that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 
v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 
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and 

j V/J(8) 
(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). CDF … so  and  are the probabilities!α β

 and  depend on the true value  and are thus determined byuα uβ θ

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

Review

8

Confidence Belt  (i)120 Statistical errors, confidence intervals and limits 

0.5 

o 
o 2 

5 

4 

3 

2 

o 
o 2 

9 

3 4 

b 

3 4 

5 

5 

Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
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regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 
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monotonically increasing 
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Confidence Interval  (ii)then imply respectively 

Classical confidence intervals (exact method) 

iJ 2: Ua(O), 

iJ::;Vf3(O), 

a(iJ) 2: 0, 

b(iJ) ::; O. 

Equations (9.1) and (9.2) thus become 

or taken together, 

P(a(iJ) 2: 0) = a, 

P(b(iJ) ::; 0) = (3, 

P(a(iJ)::; 0::; b(iJ)) = 1- a-(3. 

121 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

If the functions a( iJ) and b( iJ) are evaluated with the value of the estimator 
actually obtained in the experiment, iJobs, then this determines two values, a 
and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 
at a confidence level or coverage probability of 1 - a - (3. The idea behind 
its construction is that the coverage probability expressed by equations (9.7), 
and hence also (9.8), holds regardless of the true value of 0, which of course is 
unknown. It should be emphasized that a and b are random values, since they 
depend on the estimator iJ, which is itself a function of the data. If the experiment 
were repeated many times, the interval [a, b] would include the true value of the 
parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -
a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 
indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 
segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 
1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 
iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in-
terval or limit. That is, the value a represents a lower limit on the parameter 0 
such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 
on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 
by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 
central confidence interval does not necessarily mean that a and b are equidistant 
from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
eter 0 for which a fraction a of repeated estimates iJ would be higher than the 
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from the estimated value iJ, but only that the probabilities a and (3 are equal. 
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or

This then implies:

If the functions  and  are evaluated with the 
value of the estimator obtained in the experiment 
( ), then this determines 2 values 

a( ̂θ) b( ̂θ)

̂θobs [a, b]
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

g( ̂θ; θ)

Confidence  
Interval

then imply respectively 

Classical confidence intervals (exact method) 

iJ 2: Ua(O), 

iJ::;Vf3(O), 

a(iJ) 2: 0, 

b(iJ) ::; O. 

Equations (9.1) and (9.2) thus become 

or taken together, 

P(a(iJ) 2: 0) = a, 

P(b(iJ) ::; 0) = (3, 

P(a(iJ)::; 0::; b(iJ)) = 1- a-(3. 

121 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

If the functions a( iJ) and b( iJ) are evaluated with the value of the estimator 
actually obtained in the experiment, iJobs, then this determines two values, a 
and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 
at a confidence level or coverage probability of 1 - a - (3. The idea behind 
its construction is that the coverage probability expressed by equations (9.7), 
and hence also (9.8), holds regardless of the true value of 0, which of course is 
unknown. It should be emphasized that a and b are random values, since they 
depend on the estimator iJ, which is itself a function of the data. If the experiment 
were repeated many times, the interval [a, b] would include the true value of the 
parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -
a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 
indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 
segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 
1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 
iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in-
terval or limit. That is, the value a represents a lower limit on the parameter 0 
such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 
on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 
by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 
central confidence interval does not necessarily mean that a and b are equidistant 
from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
eter 0 for which a fraction a of repeated estimates iJ would be higher than the 

Often chooses  


giving a so-called central CI 
with probability 

α = β =
γ
2

= 1 − γ

http://www.pp.rhul.ac.uk/~cowan/sda/

: Confidence Interval, 
at a confidence level (or 
coverage probability) of 

 

[a, b]

1 − α − β
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Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 
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actually obtained in the experiment, iJobs, then this determines two values, a 
and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 
at a confidence level or coverage probability of 1 - a - (3. The idea behind 
its construction is that the coverage probability expressed by equations (9.7), 
and hence also (9.8), holds regardless of the true value of 0, which of course is 
unknown. It should be emphasized that a and b are random values, since they 
depend on the estimator iJ, which is itself a function of the data. If the experiment 
were repeated many times, the interval [a, b] would include the true value of the 
parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -
a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 
indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 
segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 
1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 
iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in-
terval or limit. That is, the value a represents a lower limit on the parameter 0 
such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 
on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 
by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 
central confidence interval does not necessarily mean that a and b are equidistant 
from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
eter 0 for which a fraction a of repeated estimates iJ would be higher than the 
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mator e for a given value of the true 
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indicate the values of 8 :::; v{3, which 
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Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

Note where the s are 
in the 2 equations!

̂

http://www.pp.rhul.ac.uk/~cowan/sda/
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If the experiment 
were repeated 
many times, the 
interval  
would include the 
true value of the 
parameter  in a 
fraction  
of the experiments 

[a, b]

θ
1 − α − β
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

Confidence  
Interval

http://www.pp.rhul.ac.uk/~cowan/sda/

Take home message
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• Simple and very important application: 

•  is Gaussian with mean  and standard deviation 


• Cumulative distribution of  is then


• Suppose that the standard deviation is known and that the experiment 
resulted in an estimate . Then we can determine the confidence interval

 by solving

̂θ θ σ ̂θ

̂θ

̂θobs
[a, b]
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confidence that the interval () 2: a includes the true parameter. To avoid confusion 
we will use the term P-value or (observed) significance level for goodness-of-fit 
tests, and reserve the term confidence level to mean the coverage probability of 
a confidence interval. 

The confidence interval [a, b] is often expressed by reporting the result of 
a measurement as where 0 is the estimated value, and c = 0 - a and 
d = b - 0 are usually displayed as error bars. In many cases the p.d.f. g(O; ()) 
is approximately Gaussian, so that an interval of plus or minus one standard 
deviation around the measured value corresponds to a central confidence interval 
with 1 - I = 0.683 (see Section 9.3). The 68.3% central confidence interval is 
usually adopted as the conventional definition for error bars even when the p.d.f. 
of the estimator is not Gaussian. 

If, for example, the result of an experiment is reported as = it 
is meant that if one were to construct the interval [0 - c, 0 + d] according to the 
prescription described above in a large number of similar experiments with the 
same number of measurements per experiment, then the interval would include 
the true value () in 1 - Q' - {3 of the cases. It does not mean that the probability 
(in the sense of relative frequency) that the true value of () is in the fixed interval 
[5.54,6.11] is 1 - Q' - {3. In the frequency interpretation, the true parameter () 
is not a random variable and is assumed to not fluctuate from experiment to 
experiment. In this sense the probability that () is in [5.54,6.11] is either 0 or 1, 
but we do not know which. The interval itself, however, is subject to fluctuations 
since it is constructed from the data. 

A difficulty in constructing confidence intervals is that the p.d.f. of the estima-
tor g(O; ()), or equivalently the cumulative distribution G(O; ()), must be known. 
An example is given in 10.4, where the p.d.f. for the estimator of the 
mean of an exponential distribution is derived, and from this a confidence inter-
val for is determined. In many practical applications, estimators are Gaussian 
distributed (at least approximately). In this case the confidence interval can be 
determined easily; this is treated in detail in the next section. Even in the case 
of a non-Gaussian estimator, however, a simple approximate technique can be 
applied using the likelihood function; this is described in Section 9.6. 

9.3 Confidence interval for a Gaussian distributed estimator 
A simple and very important application of a confidence interval is when the 
distribution of 0 is Gaussian with mean () and standard deviation (Y 8. That is, 
the cumulative distribution of 0 is 

18 1 (_(Of _ ())2) 
G( (); () , (Yo) = Po exp 2 d() . 

-00 (Yo o 
(9.10) 

This is a commonly occurring situation since, according to the central limit 
theorem, any estimator that is a linear function of a sum of random variables 
becomes Gaussian in the large sample limit. We will see that for this case, the 
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Fig. 9.4 The standard Gaussian p.d.f. <p(x) showing the relationship between the quantiles 
and the confidence level for (a) a central confidence interval and (b) a one-sided confidence 

interval. 

somewhat complicated procedure explained in the previous section results in a 
simple prescription for determining the confidence interval. 

Suppose that the standard deviation (J'§ is known, and that the experiment 
has resulted in an estimate Bobs. According to equations (9.9), the confidence 
interval [a, b] is determined by solving the equations 

(9.11) 

(3 

for a and b, where G has been expressed using the cumulative distribution of the 
standard Gaussian 4> (2.26) (see also (2.27)). This gives 

a = Bobs - (J'§4>-1(1- a), 
A -1 b=()obs+(J'§4> (1-(3). 

(9.12) 

Here 4>-1 is the inverse function of 4>, i.e. the quantile of the standard Gaussian, 
and in order to make the two equations symmetric we have used 4>-1 ((3) = 
_4>-1(1 - (3). 

The quantiles 4>-1(1_ a) and 4>-1 (1- (3) represent how far away the interval 
limits a and b are located with respect to the estimate Bobs in units of the standard 
deviation (J'§. The relationship between the quantiles of the standard Gaussian 
distribution and the confidence level is illustrated in Fig. 9.4( a) for central and 
Fig. 9.4(b) for one-sided confidence intervals. 

standard normal CDF
Φ = G( ̂μ ; μ = 0, σ = 1)

Commonly occurring 
situation, since according 
to the CLT, any estimator 
that is a linear function of 
a sum of RVs becomes 
Gaussian in the large 
sample limit
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somewhat complicated procedure explained in the previous section results in a 
simple prescription for determining the confidence interval. 

Suppose that the standard deviation (J'§ is known, and that the experiment 
has resulted in an estimate Bobs. According to equations (9.9), the confidence 
interval [a, b] is determined by solving the equations 

(9.11) 

(3 

for a and b, where G has been expressed using the cumulative distribution of the 
standard Gaussian 4> (2.26) (see also (2.27)). This gives 

a = Bobs - (J'§4>-1(1- a), 
A -1 b=()obs+(J'§4> (1-(3). 

(9.12) 

Here 4>-1 is the inverse function of 4>, i.e. the quantile of the standard Gaussian, 
and in order to make the two equations symmetric we have used 4>-1 ((3) = 
_4>-1(1 - (3). 

The quantiles 4>-1(1_ a) and 4>-1 (1- (3) represent how far away the interval 
limits a and b are located with respect to the estimate Bobs in units of the standard 
deviation (J'§. The relationship between the quantiles of the standard Gaussian 
distribution and the confidence level is illustrated in Fig. 9.4( a) for central and 
Fig. 9.4(b) for one-sided confidence intervals. 

inverse of standard normal CDF
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somewhat complicated procedure explained in the previous section results in a 
simple prescription for determining the confidence interval. 

Suppose that the standard deviation (J'§ is known, and that the experiment 
has resulted in an estimate Bobs. According to equations (9.9), the confidence 
interval [a, b] is determined by solving the equations 

(9.11) 

(3 

for a and b, where G has been expressed using the cumulative distribution of the 
standard Gaussian 4> (2.26) (see also (2.27)). This gives 

a = Bobs - (J'§4>-1(1- a), 
A -1 b=()obs+(J'§4> (1-(3). 

(9.12) 

Here 4>-1 is the inverse function of 4>, i.e. the quantile of the standard Gaussian, 
and in order to make the two equations symmetric we have used 4>-1 ((3) = 
_4>-1(1 - (3). 

The quantiles 4>-1(1_ a) and 4>-1 (1- (3) represent how far away the interval 
limits a and b are located with respect to the estimate Bobs in units of the standard 
deviation (J'§. The relationship between the quantiles of the standard Gaussian 
distribution and the confidence level is illustrated in Fig. 9.4( a) for central and 
Fig. 9.4(b) for one-sided confidence intervals. 

i.e., the inverse function 
of  equals the quantile 

of the std. Gaussian
Φ

The relationship between the quantiles of the std. Gaussian distribution and the CI

Central CI One-sided CI
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• Consider a central confidence interval with 


• The confidence level ( ) is often chosen, such that 
 is a small integer (e.g., 1,2,3)


• Similarly, one-sided intervals are often small integer values


• Sometimes one also prefers to use a round value for  or 

α = β = γ/2
1 − γ

Φ−1(1 − γ/2)

1 − α 1 − γ
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Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

Confidence interval for a Gaussian distributed estimator 125 

Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

• For conventional 
68.3% CI one has
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Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

• All of this is valid, if  is known


• Often not the case, but in 
large  limit can use 

σ ̂θ

n
σ ̂θ → ̂σ ̂θ



Limits near a physical boundary
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• Often the purpose of an experiment is to search for a new effect 
• E.g. measure the mass of the neutrino, which in the Standard Model is 

massless 


• If the data yield a value of the parameter significantly different from zero, 
then the new effect has been discovered (Hooray!)


• We know how to quote such a result


• If, on the other hand, the data result in a fitted value of the parameter that 
is consistent with zero, then the result of the experiment is often reported 
by giving an upper or lower limit


• Difficulties arise though when an estimator can take a value in an 
unphysical region


• This can occur if the estimator  for a parameter  is of the form ̂θ θ

22

Limits near a physical boundary

e.g. measure energy and 
momentum independently

can result 
in negative 

masses

̂θ = x − y ̂m2 = E2 − p2

Both RVs
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• How to place a limit on  when the estimate is near an excluded or 
unphysical region? 


• Let’s make this more concrete with an example:


•  with ,  Gaussian RVs with mean and variances 


• The difference is also a Gaussian variable with  and  
(see proof in characteristic functions chapter 10 Cowan)


• Assume that  is known a priori to be non-negative (e.g. like the mass squared) 
and suppose the experiment resulted in a value  for the estimator  


• According to what we discussed (S17 Review), the upper limit  at CL  
is

m2

̂θ = x − y x y μx, μy, σ2
x , σ2

y

θ = μx − μy σ2
̂θ
= σ2

x + σ2
y

θ
̂θobs

̂θ

θup 1 − β
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Limits near a physical boundary

θup = ̂θobs + σ ̂θ Φ−1(1 − β)
inverse of standard normal CDF
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• For the commonly used 95% CL one obtains the quantile 


• The interval  is constructed to include the true value  with a 
probability of 95%, independent of the true value.


• Let’s now suppose the standard deviation  and the observed value 
from the experiment is 


• Using  we obtain 


• Not only is the observed value in the unphysical region (half of the 
estimates actually should be if  is zero), but the upper limit is below zero 
as well 

• Not particularly unusual; we expect 5% of all experiments to report this if  is 
zero.

(−∞, θup] θ

σ ̂θ = 1
̂θobs = − 2.0

θup = ̂θobs + σ ̂θ Φ−1(1 − β)

θ

θ
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Φ−1(0.95) = 1.645

θup = − 0.355 at 95% CL

Limits near a physical boundary
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Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

Table 9.2 (L07, S33)
http://www.pp.rhul.ac.uk/~cowan/sda/
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• As far as the definition of CL is concerned, nothing fundamental 
has gone wrong. 


• The interval was designed to cover the true value of  in a certain 
fraction of repeated experiments, and we have obviously encountered 
one of those experiments where  is not in the interval


• But many people don’t find this very satisfying, since we already know 
from physical reasons that  is greater than zero (and certainly greater 
than ) without having to perform an experiment. 


• Regardless of the upper limit, it is important to report the actual 
value of the estimate obtained and its standard deviation, i.e. 


• In this way, the average of many experiments will converge to the 
correct value as long as the estimator is unbiased. 

θ

θ

θ
θup = − 0.355
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Nothing went wrong!

̂θobs ± σ ̂θ or if Errors are non-Gaussian: the likelihood function ℒ(θ)
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• Nevertheless, most experimenters want to report some sort of upper 
limit, that takes into account the knowledge of the unphysical region.

• Many different solutions have been proposed, but there is no established 

convention on how this should be done. So it’s imperative to state what 
procedure you used. Otherwise people will not be able to combine or 
use your result.  

• To come back to our example: ,  


• One might feel tempted to just quote a limit at a higher CL, e.g. 99% 
would result in   ( )


• This would lead to an upper limit better than the intrinsic resolution of our 
experiment  ( ) at a very high confidence level of 99%


• This is a bit misleading… 

• But even worse would be to adjust the CL to give an arbitrary small limit, 
 at 97.725 CL%

̂θobs = − 2.0 σ ̂θ = 1

θup = 0.326 Φ−1(0.99) = 2.326

σ ̂θ = 1

θup = 10−5
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Upper Limit Bonanza
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Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 
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For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 

Table 9.2 (L07, S33)
http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• In order to avoid such difficulties, a commonly used technique is 
to simply shift a negative estimate to zero before determining the 
value, i.e. 


• This way the upper limit is always at least the same order of magnitude 
as the resolution of the experiment 


• If  is positive, nothing changes and the upper limit coincides with the 
classical procedure. (See Fig. on slide 30.) 


• This technique has a certain intuitive appeal and is often used, but the 
interpretation as an interval that will cover the true parameter with a 
probability  no longer applies.


• The coverage probability is clearly larger than                                       
(one speaks of over-coverage)

̂θobs

1 − β
1 − β
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Alternative approaches: Max method

θup = max( ̂θobs,0) + σ ̂θ Φ−1(1 − β)
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• Another alternative is to report an interval based on the Bayesian 
posterior PDF , obtained via 


• We now can use  to determine an interval  such that for given 
probabilities  and  one has

p(θ |x)

p(θ |x) [a, b]
α β

28

Alternative approaches: Bayesian limit

p(θ |x) =
ℒ(x |θ) π(θ)

∫ ℒ(x |θ′ ) π(θ′ ) dθ′ 

Observed data

Prior PDF of 𝜽Likelihood function
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where x represents the observed data, L(xIB) is the likelihood function and rr(B) 
is the prior p.d.f. for O. In Section 6.13, the mode of p(Blx) was used as an 
estimator for B, and it was shown that this coincides with the ML estimator 
if the prior density rr(B) is uniform. Here, we can use p(Blx) to determine an 
interval [a, b] such that for given probabilities Q and j3 one has 

Q p(Blx) dB 

100 

p(Blx) dB. 
(9.42) 

j3 

Choosing Q = j3 then gives a central interval, with e.g. 1 - Q - j3 = 68.3%. 
Another possibility is to choose Q and j3 such that all values of p(Blx) inside the 
interval [a, b] are higher than any values outside, which implies p(alx) = p(blx). 
One can show that this gives the shortest possible interval. 

One advantage of a Bayesian interval is that prior knowledge, e.g. B 2: 0, can 
easily be incorporated by setting the prior p.d J. rr( B) to zero in the excluded 
region. Bayes' theorem then gives a posterior probability p(Blx) with p(Blx) = 0 
for B < O. The upper limit is thus determined by 

_j/J u p _ L(xIB) rr(B) dB 
1 - j3 - -00 p(Blx)dB - L(xIB) rr(B) dB' (9.43) 

The difficulties here have already been mentioned in Section 6.13, namely 
that there is no unique way to specify the prior density rr( B). A common choice 
IS 

rr(B) = { (9.44) 

The prescription says in effect: normalize the likelihood function to unit area 
in the physical regi'on, and then integrate it out to Bup such that the fraction of 
area covered is 1 - j3. Although the method is simple, it has some conceptual 
drawbacks. For the case where one knows B 2: 0 (e.g. the neutrino mass) one 
does not really believe that 0 < B < 1 has the same prior probability as 1040 < 
B < 1040 + 1. Furthermore, the upper limit derived from rr(B) = constant is not 
invariant with respect to a nonlinear transformation of the parameter. 

It has been argued [Jef48] that in cases where B 2: 0 but with no other prior 
information, one should use 

rr(B) = B :::; 0 
B > O. (9.45) 

This has the advantage that upper limits are invariant with respect to a trans-
formation of the parameter by raising to an arbitrary power. This is equivalent 
to a uniform (improper) prior of the form (9.44) for log B. For this to be usable, 
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(Reflects the state of 
knowledge of  before 
consideration of the data)

θ
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• Choosing  gives a central interval with e.g. 

• Another possibility is to choose  and  s.t. all values of  inside 
the interval  are higher than any values outside, which implies 

. One can show that this gives the shortest possible 
interval.

• One advantage of the Bayesian interval, is that the prior knowledge, e.g. 
 can easily be incorporated by setting the prior PDF to zero in the 

excluded region. 

• Bayes’ Theorem then gives a posterior probability  with  for 
. The upper limit thus is given by 

α = β 1 − α − β = 68.3 %
α β p(θ |x)

[a, b]
p(a |x) = p(b |x)

θ ≥ 0

p(θ |x) p(θ |x) = 0
θ < 0
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where x represents the observed data, L(xIB) is the likelihood function and rr(B) 
is the prior p.d.f. for O. In Section 6.13, the mode of p(Blx) was used as an 
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B < 1040 + 1. Furthermore, the upper limit derived from rr(B) = constant is not 
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• The difficulties with this approach is that there is no unique way to 
specify the prior density . A common choice is: 


• I.e.: Normalize the likelihood function to unit area in the physical 
region, and then integrate it out to  s.t. the fraction of the area 
covered is .

• Although the method is simple, it has some conceptual drawbacks: 

• For the case where one knows  (e.g. Neutrino mass), one does not really 
believe that  has the same prior probability as 


• Furthermore the upper limit derived from  = const. is not invariant with 
respect to a nonlinear transformation of the parameter. 

π(θ)

θup
1 − β

θ ≥ 0
0 < θ < 1 1040 < θ < 1040 + 1

π(θ)
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where x represents the observed data, L(xIB) is the likelihood function and rr(B) 
is the prior p.d.f. for O. In Section 6.13, the mode of p(Blx) was used as an 
estimator for B, and it was shown that this coincides with the ML estimator 
if the prior density rr(B) is uniform. Here, we can use p(Blx) to determine an 
interval [a, b] such that for given probabilities Q and j3 one has 

Q p(Blx) dB 

100 

p(Blx) dB. 
(9.42) 

j3 

Choosing Q = j3 then gives a central interval, with e.g. 1 - Q - j3 = 68.3%. 
Another possibility is to choose Q and j3 such that all values of p(Blx) inside the 
interval [a, b] are higher than any values outside, which implies p(alx) = p(blx). 
One can show that this gives the shortest possible interval. 

One advantage of a Bayesian interval is that prior knowledge, e.g. B 2: 0, can 
easily be incorporated by setting the prior p.d J. rr( B) to zero in the excluded 
region. Bayes' theorem then gives a posterior probability p(Blx) with p(Blx) = 0 
for B < O. The upper limit is thus determined by 

_j/J u p _ L(xIB) rr(B) dB 
1 - j3 - -00 p(Blx)dB - L(xIB) rr(B) dB' (9.43) 

The difficulties here have already been mentioned in Section 6.13, namely 
that there is no unique way to specify the prior density rr( B). A common choice 
IS 

rr(B) = { (9.44) 

The prescription says in effect: normalize the likelihood function to unit area 
in the physical regi'on, and then integrate it out to Bup such that the fraction of 
area covered is 1 - j3. Although the method is simple, it has some conceptual 
drawbacks. For the case where one knows B 2: 0 (e.g. the neutrino mass) one 
does not really believe that 0 < B < 1 has the same prior probability as 1040 < 
B < 1040 + 1. Furthermore, the upper limit derived from rr(B) = constant is not 
invariant with respect to a nonlinear transformation of the parameter. 

It has been argued [Jef48] that in cases where B 2: 0 but with no other prior 
information, one should use 

rr(B) = B :::; 0 
B > O. (9.45) 

This has the advantage that upper limits are invariant with respect to a trans-
formation of the parameter by raising to an arbitrary power. This is equivalent 
to a uniform (improper) prior of the form (9.44) for log B. For this to be usable, 

Bayesian limit: constant prior
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• It has been argued that in cases where  but no further 
information, one should use 


• This has the advantage that upper limits are invariant with respect to a 
transformation of the parameter by raising to an arbitrary power. This is 
equivalent to a uniform (improper) prior of previous form for .


• For this to be usable, however, the likelihood function must go to zero for          
 and , or else the integrals diverge. Thus this description is 

often not applicable. 


• Therefore the uniform prior density (previous slide) is the most commonly 
used choice for setting limits on parameters.

θ ≥ 0

log θ

θ → 0 θ → ∞
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where x represents the observed data, L(xIB) is the likelihood function and rr(B) 
is the prior p.d.f. for O. In Section 6.13, the mode of p(Blx) was used as an 
estimator for B, and it was shown that this coincides with the ML estimator 
if the prior density rr(B) is uniform. Here, we can use p(Blx) to determine an 
interval [a, b] such that for given probabilities Q and j3 one has 

Q p(Blx) dB 

100 

p(Blx) dB. 
(9.42) 

j3 

Choosing Q = j3 then gives a central interval, with e.g. 1 - Q - j3 = 68.3%. 
Another possibility is to choose Q and j3 such that all values of p(Blx) inside the 
interval [a, b] are higher than any values outside, which implies p(alx) = p(blx). 
One can show that this gives the shortest possible interval. 

One advantage of a Bayesian interval is that prior knowledge, e.g. B 2: 0, can 
easily be incorporated by setting the prior p.d J. rr( B) to zero in the excluded 
region. Bayes' theorem then gives a posterior probability p(Blx) with p(Blx) = 0 
for B < O. The upper limit is thus determined by 

_j/J u p _ L(xIB) rr(B) dB 
1 - j3 - -00 p(Blx)dB - L(xIB) rr(B) dB' (9.43) 

The difficulties here have already been mentioned in Section 6.13, namely 
that there is no unique way to specify the prior density rr( B). A common choice 
IS 

rr(B) = { (9.44) 

The prescription says in effect: normalize the likelihood function to unit area 
in the physical regi'on, and then integrate it out to Bup such that the fraction of 
area covered is 1 - j3. Although the method is simple, it has some conceptual 
drawbacks. For the case where one knows B 2: 0 (e.g. the neutrino mass) one 
does not really believe that 0 < B < 1 has the same prior probability as 1040 < 
B < 1040 + 1. Furthermore, the upper limit derived from rr(B) = constant is not 
invariant with respect to a nonlinear transformation of the parameter. 

It has been argued [Jef48] that in cases where B 2: 0 but with no other prior 
information, one should use 

rr(B) = B :::; 0 
B > O. (9.45) 

This has the advantage that upper limits are invariant with respect to a trans-
formation of the parameter by raising to an arbitrary power. This is equivalent 
to a uniform (improper) prior of the form (9.44) for log B. For this to be usable, 

Bayesian limit: Jeffreys prior
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• Comparison of the 
three methods: 

• Classical and shifted 

are equal for ;


• The Bayesian limit 
(here a constant prior 
is used) is always 
positive, and is always 

 the classical limit;


• As the observed value 
grows, all limits 
approach each other.

̂θobs ≥ 0

>
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however, the likelihood function must go to zero for () 0 and () 00, or else 
the integrals in (9.43) diverge. It is thus not applicable in a number of cases of 
practical interest, including the example discussed in this section. Therefore, de-
spite its conceptual difficulties, the uniform prior density is the most commonly 
used choice for setting limits on parameters. 

Figure 9.8 shows the upper limits at 95% confidence level derived according 
to the classical, shifted and Bayesian techniques as a function of Bobs = x - y 
for (J'9 = 1. For the Bayesian limit, a prior density rr((}) = constant was used. 
The shifted and classical techniques are equal for Bobs O. The Bayesian limit is 
always positive, and is always greater than the classical limit. As Bobs becomes 
larger than the experimental resolution (J'9' the Bayesian and classical limits 
rapidly approach each other. 

5 

4 

3 

2 

o 

-1 

classical 
shifted 
Bayesian, 1t(9) = canst. 

- - - - - - - - - - .. .. .. .. :: .. ,..." .. :.. 
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Fig. 9.8 Upper limits at 95% con-
fidence level for the example of Sec-
tion 9.8 using the classical, shifted 
and Bayesian techniques. The shifted 
and classical techniques are equal for 
Bobs? o. 

9.9 Upper limit on the mean of Poisson variable with back-
ground 

As a final example, recall Section 9.4 where an upper limit was placed on the 
mean v of a Poisson variable n. Often one is faced with a somewhat more com-
plicated situation where the observed value of n is the sum of the desired signal 
events ns as well as background events nb, 

. (9.46) 

where both ns and nb can be regarded as Poisson variables with means Vs and 
Vb, respectively. Suppose for the moment that the mean for the background Vb is 
known without any uncertainty. For Vs one only knows a priori that Vs O. The 
goal is to construct an upper limit for the signal parameter Vs given a measured 
value of n. 

Since n is the sum of two Poisson variables. one can show that it is itself a 
Poisson variable, with the probability function 

http://www.pp.rhul.ac.uk/~cowan/sda/
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produces a muon with a monochromatic momentum of
pB
μ ¼ 2.64 GeV. The experimental resolution on the boost

vector reconstructed from ROE information broadens this
signal signature. The use of this frame, which enhances
the expected sensitivity of the search, is the main improve-
ment over the preceding analysis, published in Ref. [7].
Further, the modeling of the crucial b → ulνl semilep-
tonic and continuum backgrounds has been improved with
respect to the preceding analysis. In Ref. [7] a 90%
confidence interval of ½2.9; 10.7# × 10−7 for the Bþ →
μþνμ branching fraction was determined, while the most
stringent 90% upper limit for this quantity that has been
determined is 1 × 10−6 [8].
In the presence of new physics interactions or particles,

the CKM and helicity suppression of the Bþ → μþνμ decay
can be lifted: the presence of, for instance, a charged Higgs
boson, favored in many supersymmetric extensions of the
SM, could strongly enhance the observed Bþ → lþνl
branching fractions. Leptoquarks could have a similar
effect. Another interesting exotic particle whose existence
can be investigated with this decay are sterile neutrinos.
This hypothetical particle acts as a singlet under the
fundamental symmetry group of the SM, i.e., they carry
no color charge, no weak isospin, nor weak hypercharge
quantum numbers. Further, sterile neutrinos do not couple
to the gauge bosons of the SM, but their existence could
explain, for instance, the dark matter content of the
Universe [9] or the smallness of the neutrino mass terms
[10]. The only possibility for a sterile neutrinoN to occur in
a Bþ → μþN final state is due to the existence of a non-SM
mediator. Further, the mass of the sterile neutrino has to be
mN < 5.17 GeV ¼ mB −mμ and in the present analysis we
are able to probe a mass range of mN ∈ ½0; 1.5Þ GeV. In
Fig. 1 the SM and a selection of beyond the SM (BSM)
processes are shown.
The rest of this paper is organized as follows: Sec. II

summarizes the used dataset, simulated samples and
reconstruction steps. Section III outlines the inclusive
tag reconstruction and calibration of its direction. In

addition, the employed background suppression strategies
and the used categorization are summarized. In Sec. IV the
validation of the inclusive tag reconstruction and calibration
usingBþ → D̄0πþ decays is described. Section V introduces
the statistical methods used to determine the Bþ → μþνμ
signal yield. In Sec. VI systematic uncertainties of the
measurement are discussed and Sec. VII documents
sideband studies to validate the modeling of the crucial
b → ulνl semileptonic and continuum backgrounds.
Section VIII presents the main findings of the paper.
Finally, Sec. IX contains a summary and our conclusions.

II. DATA SET AND SIMULATED SAMPLES

We analyze the full Belle dataset of ð772' 10Þ × 106

B-meson pairs, produced at the KEKB accelerator complex
[11] with a center-of-mass energy (c.m.) of

ffiffiffi
s

p
¼

10.58 GeV at the ϒð4SÞ resonance. In addition, we use
79 fb−1 of collisions recorded 60 MeV below the ϒð4SÞ
resonance peak to derive corrections and carry out cross-
checks.
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector, a
50-layer central drift chamber (CDC), an array of aerogel
threshold Čerenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight (TOF) scintillation counters, and an
electromagnetic calorimeter comprised of CsI(Tl) crystals
(ECL) located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K0

L mesons
and to identify muons (KLM). A more detailed description
of the detector, its layout and performance can be found in
Ref. [12] and in references therein.
Charged tracks are identified as electron or muon candi-

dates by combining the information of multiple subdetectors
into a lepton identification likelihood ratio, LLID. For
electrons the identifying features are the ratio of the energy
deposition in the ECL with respect to the reconstructed
track momentum, the energy loss in the CDC, the shower
shape in the ECL, the quality of the geometrical matching of
the track to the shower position in the ECL, and the photon
yield in the ACC [13]. Muon candidates are identified from
charged track trajectories extrapolated to the outer detector.
The identifying features are the difference between expected
and measured penetration depth as well as the transverse
deviation of KLM hits from the extrapolated trajectory [14].
Charged tracks are identified as pions or kaons using a
likelihood classifier which combines information from the
CDC, ACC, and TOF subdetectors. In order to avoid the
difficulties understanding the efficiencies of reconstructing
K0

L mesons, they are not explicitly reconstructed in what
follows.
Photons are identified as energy depositions in the ECL

without an associated track. Only photons with an energy
deposition of Eγ > 100, 150, and 50 MeV in the forward

FIG. 1. The SM leptonic Bþ → μþνμ decay process and
possible BSM processes with and without a sterile neutrino N
in the final state are shown.
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VIII. RESULTS

In Fig. 7 the muon momentum spectrum in the B rest
frame pB

μ for the four signal categories is shown. The
selected data events were used to maximize the likelihood
Eq. (11): in total 4 × 22 bins with 4 × 132 NPs para-
metrizing systematic uncertainties are determined.
In Appendix A a full breakdown of the NP pulls is given.
The recorded collision data are shown as data points and
the fitted Bþ → μþνμ signal and background components
are displayed as colored histograms. The size of the
systematic uncertainties is shown on the histograms as
a hatched band. We observe for the Bþ → μþνμ branching
fraction a value of

BðBþ → μþνμÞ ¼ ð5.3% 2.0% 0.9Þ × 10−7; ð24Þ

with the first uncertainty denoting the statistical error and
the second is from systematics. Figure 8 shows the profile
likelihood ratio ΛðνsigÞ [cf. Eq. (14)]. Assuming that all
bins are described with approximately Gaussian uncer-
tainty and including systematics with their full covariance,
we calculate a χ2 value of 58.8 with 84 degrees of freedom
using the predicted and observed bin values. The observed
significance over the background-only hypothesis using
the one-sided test statistics Eq. (16) is 2.8 standard

deviations. This is in agreement with the median SM
expectation of 2.4þ0.8

−0.9 standard deviations, cf. Sec. V.
From the observed branching fraction we determine in

combination with theB-meson decay constant fB a value for
the CKM matrix element jVubj. Using fB ¼ 184% 4 MeV
[2] we find

FIG. 7. The fitted distribution of pB
μ for the four signal categories described in the text. The signal and background templates are shown

as histograms and the recorded collision events as data points with uncertainties. The systematic uncertainties on the signal and
background templates are shown as a hatched band.

FIG. 8. The likelihood ratio contour ΛðνsigÞ as a function of
the number of Bþ → μþνμ signal events is shown: the dotted
curve shows the contour incorporating only the statistical
uncertainty with all systematic nuisance parameters fixed at
their best-fit value. The solid curve shows full likelihood
contour including all systematic and statistical uncertainties.
The orange data point and errors shows the determined best-fit
value and the 1σ (statisticalþ systematic) uncertainty.

SEARCH FOR Bþ → μþνμ AND Bþ → μþN … PHYS. REV. D 101, 032007 (2020)
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FIG. 9. The observed Bayesian (yellow dash-dotted) and Frequentist (blue) upper limits at 90% CL are shown, along with
the SM expectation of the B+ ! µ+ ⌫µ branching fraction and the Bayesian and Frequentist PDFs.

FIG. 10. The observed local p0 values for the sterile neu-
trino search B+ ! µ+ N are shown with the SM process
B+ ! µ+ ⌫µ included. If the SM process is accounted for, no
significant excess is observed. The largest deviation from the
background only hypothesis is at mN = 1 GeV. No correction
for the look elsewhere e↵ect is included.
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• Recall from last lecture the UL we placed on the mean  of a 
Poisson variable .  (Last week we considered signal only though.) 

• Often one faces a somewhat more complicated situation, where the 

observed value of  is the sum of the desired signal , as well as the 
background events , 


•  where both  and  can be regarded as Poisson variables 
with means  and , respectively.


• Suppose for the moment, that the mean of the background  is known 
without any uncertainty. 


• For  one only knows a priori that .


• Our goal is to construct an UL for the signal parameter   given a measured 
value of .

ν
n

n ns
nb

n = ns + nb ns nb
νs νb

νb

νs νs ≥ 0

νs
n
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• Since  is the sum of two Poisson variables, one can show that it 
itself is a Poisson variable with the probability function


• The ML estimator for  is


• It has zero bias since ,  


• The equations determining the confidence interval become

n

νs

E[n] = νs + νb
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140 Statistical errors, confidence intervals and limits 

(9.47) 

fhe ML estimator for Vs is 

(9.48) 

which has zero bias since E[n] = Vs + Vb. Equations (9.15), which are used to 
determine the confidence interval, become 

P(v > vObs . v 1o) = '""""' s_ s , s L...J n! 
(9.49) 

j3 P(v < vobs . V UP ) - '""""' s_ s 'S - L...J n! 

These can be solved numerically for the lower and upper limits v!o and 
Comparing with the case Vb = 0, one sees that the limits from (9.49) are related 
to what would be obtained without background by 

v!O(no background) - Vb, 

background) - Vb. 
(9.50) 

The difficulties here are similar to those encountered in the previous example. 
The problem occurs when the total number of events observed nobs is not large 
compared to the expected number of background events Vb. Values of for 
1 - j3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number 
of background events Vb. For small enough nobs and a high enough background 
level Vb, a non-negative solution for does not exist. This situation can occur, 
of course, because of fluctuations in ns and nb. 

Because of these difficulties, the classical limit is not recommended in this 
case. As previously mentioned, one should always report vs and an estimate 
of its variance even if vs comes out negative. In this way the average of many 
experiments will converge to the correct value. If, in addition, one wishes to 
report an upper limit on V s , the Bayesian method can be used with, for example, a 
uniform prior density [HeI83]. The likelihood function is given by the probability 
(9.47), now regarded as a function of V s , 

(9.51 ) 

The posterior probability density for Vs is obtained as usual from Bayes' theorem, 

(9.52) 
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• Comparing to our previous expressions, we see that these limits 
are related to the ones without background by


• The difficulties that can arise here are similar to the example 
without background, i.e. when the total number of events 
observed is not large compared to the expected number of 
background events. 

• Because of these difficulties, the classical limit often causes problems


• As previously mentioned, one should always report  and an estimate for its 
variance to allow for meaningful combinations later

̂νs
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Comparison with no background result

140 Statistical errors, confidence intervals and limits 

(9.47) 

fhe ML estimator for Vs is 

(9.48) 

which has zero bias since E[n] = Vs + Vb. Equations (9.15), which are used to 
determine the confidence interval, become 

P(v > vObs . v 1o) = '""""' s_ s , s L...J n! 
(9.49) 

j3 P(v < vobs . V UP ) - '""""' s_ s 'S - L...J n! 

These can be solved numerically for the lower and upper limits v!o and 
Comparing with the case Vb = 0, one sees that the limits from (9.49) are related 
to what would be obtained without background by 

v!O(no background) - Vb, 

background) - Vb. 
(9.50) 

The difficulties here are similar to those encountered in the previous example. 
The problem occurs when the total number of events observed nobs is not large 
compared to the expected number of background events Vb. Values of for 
1 - j3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number 
of background events Vb. For small enough nobs and a high enough background 
level Vb, a non-negative solution for does not exist. This situation can occur, 
of course, because of fluctuations in ns and nb. 

Because of these difficulties, the classical limit is not recommended in this 
case. As previously mentioned, one should always report vs and an estimate 
of its variance even if vs comes out negative. In this way the average of many 
experiments will converge to the correct value. If, in addition, one wishes to 
report an upper limit on V s , the Bayesian method can be used with, for example, a 
uniform prior density [HeI83]. The likelihood function is given by the probability 
(9.47), now regarded as a function of V s , 

(9.51 ) 

The posterior probability density for Vs is obtained as usual from Bayes' theorem, 

(9.52) 



Modern Methods of Data Analysis

• The Bayesian method can be used here as well, with for 
example a uniform prior. The likelihood function and posterior 
probability are given by 


• Taking  = const. for  and zero otherwise, the upper 
limit  at CL  is

π(νs) νs > 0
νup

s 1 − β
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

Upper limit on the mean of Poisson variable with background 141 

iO 12 iO 12 
0) 0) 

0 0 
1\ 1\ 10 <7- 10 <7-
a. a. 
:J en 8 :J 8 > >en 
(ij c: 
u 6 <IS 6 "iii "iii 
en CD 
<IS >-

C3 <IS 
4 CD 4 

0 

2 2 

0 0 
0 2 4 6 8 10 12 0 2 4 6 8 10 12 

Vb Vb 

Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 
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at a confidence level of 1 - j3 is given by 
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(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

Integrals can be related to incomplete  
gamma functions and one obtains:
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• Upper limits at CL  for different number of observed 
events and as a function of the expected number of background 
events.

1 − β = 0.95

40
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Classical limit

Bayesian limit with uniform prior

http://www.pp.rhul.ac.uk/~cowan/sda/
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Modern Methods of Data Analysis

• Often the result of an experiment is not simply the number of  
observed events, but includes in addition measured values                    

 of some property of the events (e.g. mass). 


• Suppose the probability density for  is


• This information can be incorporated into the limit  by using the 
extended  likelihood function

n

x1, x2, . . . , xn

x

νs
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More realistic scenario

t42 Statistical errors, confidence intervals and limits 

The agreement for the case without background must be considered acci-
lental, however, since the Bayesian limit depends on the particular choice of a 
'onstant prior density 1r(vs). Nevertheless, the coincidence spares one the trou-
lIe of having to defend either the classical or Bayesian viewpoint, which may 
Lccount for the general acceptance of the uniform prior density in this case. 

Often the result of an experiment is not simply the number n of observed 
·vents, but includes in addition measured values Xl, ... , Xn of some property of 
he events. Suppose the probability density for X is 

(9.56) 

vhere the components fs(x) for signal and fb(X) for background events are both 
ssumed to be known. If these p.d.f.s have different shapes, then the values of 
. contain additional information on whether the observed events were signal or 
.ackground. This information can be incorporated into the limit Vs by using the 
xtended likelihood function, 

e-(VS+Vb) n 

n! II [vsfs(xd + Vbfb(xd], 
i=l 

(9.57) 

s defined in Section 6.9, or by using the corresponding formula for binned data 
s discussed in Section 6.10. 

In the classical case, one uses the likelihood function to find the estimator 
s- In order to find the classical upper limit, however, one requires the p.d.f. 
f vs. This is no longer as simple to find as before, where only the number of 
vents was counted, and must in general be determined numerically. For example, 
ne can perform Monte Carlo experiments using a given value of Vs (and the 
nown value Vb) to generate numbers ns and nb from a Poisson distribution, 
ad corresponding X values according to fs(x; vs) and fb(X; Vb). By adjusting Vs, 
rle can find that value for which there is a probability j3 to obtain vs 
ere one must still deal with the problem that the limit can turn out negative. 

In the Bayesian approach, L(vs ) is used directly in Bayes' theorem as before. 
'JIving equation (9.53) for must in general be done numerically. This has the 
ivantage of not requiring the sampling p.d.f. for the estimator vs , in addition 
I the previously mentioned advantage of automatically incorporating the prior 
lowledge Vs 0 into the limit. 

Further discussion of the issue of Bayesian versus classical limits can be found 
[Hig83, Jam91, Cou95]. A technique for incorporating systematic uncertainties 
the limit is given in [Cou92]. 
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limits in general 
must be determined  
numerically or via MC 
methods



2154 (i) The parton-level N3LO QCD and NLO EW pre-
2155 diction of Refs. [7,24,31–34]. This prediction is
2156 shown for the inclusive zero-jet cross section.
2157 (ii) The parton-level JVEþ N3LO prediction of
2158 Ref. [116], which includes NNLL resummation in
2159 QCD of the pT of the leading jet which is matched to

2160the N3LO total cross section. This prediction is
2161shown for the inclusive one-jet cross section.
2162(iii) The parton-level STWZ-BLPTW predictions of
2163Refs. [99,101], which include NNLL0 þ NNLO re-
2164summation for the pT of the leading jet in QCD,
2165combined with a NLL0 þ NLO resummation in QCD
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F23:1 FIG. 23. Diphoton invariant mass mγγ spectra observed in the 2015 and 2016 data at
ffiffiffi
s

p
¼ 13 TeV for events in the (a) VBF-

F23:2 enhanced, (b) Nlepton ≥ 1, (c) high Emiss
T , and (d) tt̄H-enhanced fiducial regions. The solid red curve shows the fitted signal-plus-

F23:3 background model when the Higgs boson mass is constrained to be 125.09# 0.24 GeV. The background component of the fit is shown
F23:4 with the dotted blue curve. The signal component of the fit is shown with the solid black curve. The bottom plot shows the residuals
F23:5 between the data and the background component of the fitted model.
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2010 0 and 20 GeV, is highly correlated with the zero-jet bin.
2011 The lowest pj1

T bin, reconstructing events with a jet pT
2012 between 30 and 55 GeV, is strongly correlated with the
2013 one-jet bin. And the lowest mjj bin, reconstructing events
2014 with at least two jets and a dijet mass between 0 and
2015 170 GeV, is strongly correlated with the two jet bin. The
2016 systematic correlations are obtained by fully correlating
2017 identical error sources described in Sec. VII across bins
2018 and observables to construct the corresponding systematic
2019 covariance matrix. Knowledge of these correlations
2020 allows to simultaneously analyze all fiducial regions,
2021 differential and double differential cross sections. This
2022 is illustrated later in Sec. IX E 8 with a simultaneous fit of
2023 the shown five variables of Fig. 20 to set limits on new
2024 physics contributions.

2025 C. Measurements of cross sections of fiducial
2026 integrated regions

2027 Cross sections in five fiducial integrated regions are
2028 measured that target either specific Higgs boson production
2029 mechanisms or are sensitive to the presence of physics
2030 beyond the standard model. The selection criteria defining
2031 these regions are summarized in Table XIV and a descrip-
2032 tion of each region follows:
2033 (1) Diphoton fiducial: This region unfolds all signal
2034 events after the selection presented in Section V.
2035 (2) VBF-enhanced: This region retains all events with at
2036 least two jets and with an invariant dijet mass mjj of
2037 at least 400 GeV, a large rapidity separation
2038 jΔyjjj > 2.8, and an azimuthal difference between
2039 the Higgs boson and the dijet pair of jΔϕγγ;jjj > 2.6.
2040 All variables are computed using the two highest-pT
2041 jets in the event with pT > 25 GeV with matching
2042 detector-level cuts.
2043 (3) Nlepton ≥ 1: This region retains events that contain at
2044 least one electron or onemuonwithpT>15GeV. For
2045 electrons the pseudo-rapidity needs to satisfy jηj <
2046 2.47 (excluding 1.37 < jηj < 1.52) and for muons
2047 jηj < 2.7 is required. Such events are enriched in
2048 Higgs bosons produced in association with a vec-
2049 tor boson.
2050 (4) High Emiss

T : This region retains events with missing
2051 transverse momentum Emiss

T > 80 GeV and pγγ
T >

2052 80 GeV is defined to study VH production and
2053 possible contributions of Higgs boson production
2054 with dark matter particles. The simultaneous require-
2055 ment that the Higgs boson system balances the
2056 missing transverse momentum reduces the fraction
2057 of selected events at detector level without particle-
2058 level Emiss

T > 80 GeV.
2059 (5) tt̄H-enhanced: This region retains events with either
2060 at least one lepton and three jets or no leptons and four
2061 jets to study Higgs boson production in association
2062 with top quarks. In addition, one of the jets needs to be
2063 identified as originating from a bottom quark.

2064The expected composition of Higgs boson events in the
2065standard model after reconstruction and at particle level is
2066summarized in Fig. 21. At particle level the VBF-enhanced
2067fiducial region contains about 65% VBF and 32% ggH
2068events. The particle-level Nlepton ≥ 1 region is dominated
2069by WH (47%), tt̄H (37%), and ZH (13%) production. The
2070particle-level high Emiss

T region is populated by about equal
2071amounts of WH, ZH, and tt̄H (32%, 30%, and 35%).
2072Finally, the particle-level tt̄H-enhanced region contains
2073about 80% tt̄H events.
2074The fitted invariant mass spectra for all regions are
2075shown in Figs. 22 and 23. The results of signal-plus-
2076background fits to these spectra is shown, displaying both
2077the total sum and the background-only component as well
2078as the residuals between the data and the background. In the
2079diphoton fiducial region, the Higgs boson signal is clearly
2080visible on the falling nonresonant background. In total,
20811491! 248ðstatÞ ! 64ðsystÞ. Higgs boson signal events
2082are extracted. Clear evidence for Higgs boson production is
2083observed in the VBF-enhanced region with 117!
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F21:1FIG. 21. The expected composition of Higgs boson events in
F21:2each fiducial region (a) after the reconstruction and (b) at particle-
F21:3level. Details about the reconstruction can be found in Sec. Vand
F21:4the definition of the particle-level fiducial volume is given in
F21:5Sec. IX A.
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2031 these regions are summarized in Table XIV and a descrip-
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2068events. The particle-level Nlepton ≥ 1 region is dominated
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2077the total sum and the background-only component as well
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2166 for the subleading jet.10 The numerical predictions for
2167

ffiffiffi
s

p
¼ 13 TeV are taken from Ref. [7]. This predic-

2168 tion is shown for the inclusive zero-, one- and two-jet
2169 cross sections as well as for the exclusive zero- and
2170 one-jet cross sections.
2171 (iv) The parton-level NNLOJET prediction of
2172 Refs. [117,118] is a fixed-order NNLO prediction
2173 in QCD for inclusive H þ one-jet production. This
2174 prediction is shown for the inclusive one-, two-jet,
2175 and three-jet cross sections aswell as for the exclusive
2176 one- and two-jet cross sections.
2177 (v) The parton-level GOSAM prediction of Refs. [119,
2178 120], which provides the fixed-order loop
2179 contributions accurate at NLO in QCD in the in-
2180 clusive H þ zero-jet, H þ one-jet, H þ two-jet, and
2181 H þ three-jet regions. The real-emission contribu-
2182 tions at fixed order in QCD are provided by SHERPA
2183 [64]. This prediction is shown for the inclusive one-,
2184 two-jet, and three-jet cross sections as well as for the
2185 exclusive one- and two-jet cross sections.
2186 (vi) The default MC prediction (POWHEG NNLOPS nor-
2187 malized with the N3LO in QCD and NLO EW cross

2188section) introduced in Sec. IX C. This prediction is
2189shown for all measured inclusive and exclusive jet
2190cross sections.
2191(vii) The POWHEG NNLOPS prediction which is already
2192described in Sec. IV. This prediction is shown for all
2193measured inclusive and exclusive jet cross sections.
2194(viii) TheSHERPA (MEPS@NLO) prediction ofRefs. [64,65,
2195120–129] is accurate to NLO in QCD in the inclusive
2196Hþzero-jet,Hþone-jet,Hþtwo-jet, andH þ three-
2197jet regions and includes top-quark mass effects. The
2198one-loop corrections are incorporated from GoSam
2199[119,120] and the different jet multiplicity regions are
2200merged using the MEPS@NLO multijet merging
2201technique. This prediction is shown for all measured
2202inclusive and exclusive jet cross sections.
2203(ix) TheMG5_AMC@NLOprediction of Refs. [46,105],
2204which includes up to two jets at NLO accuracy using
2205the FXFX merging scheme [106]. The central merg-
2206ing scale is taken to be 30 GeV. The generated events
2207are passed to PYTHIA8 [29] to provide parton
2208showering and hadronization to create the full final
2209state (without underlying event). This prediction is
2210shown for all measured inclusive and exclusive jet
2211cross sections.
2212All predictions but NNLOJETand SHERPA (MEPS@NLO)
2213use the NNLO PDF set following the PDF4LHC15 recom-
2214mendations. The NNLOJET prediction uses the CT14
2215NNLO PDF set [130] and SHERPA (MEPS@NLO) uses the
2216NNPDF3.0 PDF set [47]. GOSAM, SHERPA (MEPS@NLO),
2217and NNLOJETapply the kinematic selection on the final-state
2218photons. For all other predictions, the fiducial acceptance is
2219determined using POWHEG NNLOPS. The cross sections of all
2220parton-level predictions are multiplied with isolation cor-
2221rection factors to account for the efficiency of the fiducial
2222photon isolation criterion. The additional uncertainties in the
2223isolation correction are determined by studying multiple
2224event generators and/or event generator tunes, and are
2225included in the uncertainty bands of the parton-level
2226predictions. No correction factors nor additional uncertain-
2227ties to account for the impact of hadronization and the
2228underlying event activity are applied, so the theory uncer-
2229tainties in the parton-level predictions may be incomplete,
2230but example values for such corrections and their uncer-
2231tainties can be found in Table XXIV in Appendix D. All
2232other acceptance and correction factors along with their
2233associated uncertainties can also be found in Appendix D.
2234No K-factors are applied to the predictions and the
2235contributions from XH are also included in the comparison
2236using the corresponding generators and cross sections
2237described in Section IV.
2238Figure 25(a) shows exclusive and inclusive zero-, one-
2239and two-jet cross sections and the inclusive three-jet cross
2240section for jets defined with pT > 30 GeV. Figure 25(b)
2241shows the exclusive zero- and one- and the inclusive two-jet
2242cross section with pT > 50 GeV. The measured cross
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ATLAS
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 = 125.09 GeVHm

XHLO + 3N
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XHPowheg NNLOPS + 

bbH+ttH+VH = VBF+XH

F24:1 FIG. 24. The measured cross sections or cross-section upper
F24:2 limits of the diphoton, VBF-enhanced, Nlepton ≥ 1, high Emiss

T ,
F24:3 and tt̄H-enhanced fiducial regions are shown. The intervals on
F24:4 the vertical axis each represent one of these fiducial regions. The
F24:5 data are shown as filled (black) circles. The error bar on each
F24:6 measured cross section represents the total uncertainty in the
F24:7 measurement, with the systematic uncertainty shown as a dark
F24:8 gray rectangle. Each cross section limit is shown at the 95% con-
F24:9 fidence level. The measured cross sections are compared to a

F24:10 range of predictions and a detailed description of each prediction
F24:11 can be found in the text. All comparisons include the SM
F24:12 predictions arising from VBF, VH, tt̄H, and bb̄H, which are
F24:13 collectively labeled as XH.

10The prime indicates that the leading contributions from
N3LL (resp. NNLL) are included along with the full NNLL
(resp. NLL) corrections.
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θup = ̂θobs + σ ̂θ Φ−1(1 − β) Φ−1(0.95) = 1.645
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In a nutshell

:  true distributionY :  detector responseR :  measured distributionX
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The detector response is represented 
by a migration (response) matrix .


 indicates the probability to 
observe an event in bin  if it had 
generator-level value in bin .

R

R(i, j)
i

j
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Allegory of The Cave (Plato’s Republic)

By 4edges - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73850232
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The unfolding problem

• Up till now: 

• Have considered that RVs such as particle energies, decay times, etc., 

can be measured with absolute precision. 


• In reality:

• Every experimental apparatus has finite resolution.


• This distorts measurements.


• Correct for this = Unfolding
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Derivation   (i)

• PDF of true value ‘ ’


• To construct a usable estimator for , must represent it by means of 
some finite set of parameters. 


• If no functional form for  is known a priori, then it can still be 
represented as a normalized histogram with  bins.


• expectation value of total # of events. 


•   is the expected # of events in bin 


• The vector  is the ‘true histogram’


• Careful: not the actual number of events in each bin, but the expectation values

ftrue(y) = y
ftrue(y)

ftrue(y)
M

μtot =
μj = μtot pj j

μ = (μ1, μ2, . . . , μM)
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   is the probability to find  in bin pj = ∫bin j
ftrue(y)dy y j
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Derivation   (ii)

• Begin with a sample of measured values 


• Entered into a histogram of  bins: 


• The # of bins  can be to the # of bins in the true histogram 


• Regard  as independent Poisson variables with expectation value 


• From the law of total probability:

x
N n = (n1, n2, . . . , nN)

N > , < , = M

ni νi
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νi = μtot ⋅ p(event observed in bin i)

= μtot ⋅ ∫ dy p(obs . in bin i | true value y) ⋅ ftrue(y)

P(ni; νi) =
νni

i e−νi

ni!
νi = E[ni]

56 Unfolding 

The form of the probability distribution for the data n = (nl' ... , nN) (Pois-
on, multinomial, etc.) will be needed in order to construct the likelihood func-
ion, used in unfolding methods based on maximum likelihood. Alternatively, we 
nay be given the covariance matrix, 

(11.5) 

vhich is needed in methods based on least squares. We will assume that either 
,he form of the probability law or the covariance matrix is known. 

By using the law of total probability, (1. 27), the expectation values Vi = E[ nd 
:an be expressed as 

Vi J.ltot P{ event observed in bin i) 

'J d P (observed I true value y and) () f () 
J.ltot Y in bin i event detected C Y true Y 

= J.ltot f . . dx J dy s(xly) c(y) ftrue(Y)· (11.6) 

Here s(xly) is the conditional p.d.f. for the measured value x given that the 
true value was y, and given that the event was observed somewhere, i.e. it is 
normalized such that f s(xly)dx = 1. We will call s the resolution function or in 
imaging applications the point spread function. One can also define a response 
function, 

r(xIY) = s(xly) c(y), (11.7) 

which gives the probability to observe x, including the effect of limited efficiency, 
given that the true value was y. Note that this is not normalized as a conditional 
p.d.f. for x. One says that the true distribution is folded with -the response 
function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 
multiplying both numerator and denominator by J.lj, the expected number of 
entries to be observed in bin i becomes 

fbin i dx fbin j dy s(xly) c(y) ftrue (y) 
L.J J.lj 
j=l 

M 

LRiiJ.lj, 
j=l 

(J.lj/J.ltot) 

where the response matrix R is given by 

(11.8) 

Detection efficiency = 
the probability that an 
event leads to some 
measured value

Resolution function 
(point spread function in 
imaging applications)
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Derivation   (iii)

• The resolution function  is a conditional PDF:


• For the measured value , given the true value  


• Probability that an even leads to some measured value


• Sometimes also incorporates the detection efficiency 


• 


• One says that the true distribution is folded with the response function 


• i.e., expressing  as a function of folding


• Unfolding  the task of estimating  

s(x |y)
x y

ϵ(y)
r(x |y) = s(x |y) ϵ(y)

νi s(x |y) =

= ftrue

s( | )
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Response function: includes the effect of limited efficiency
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Derivation   (iv)

56 Unfolding 

The form of the probability distribution for the data n = (nl' ... , nN) (Pois-
on, multinomial, etc.) will be needed in order to construct the likelihood func-
ion, used in unfolding methods based on maximum likelihood. Alternatively, we 
nay be given the covariance matrix, 

(11.5) 

vhich is needed in methods based on least squares. We will assume that either 
,he form of the probability law or the covariance matrix is known. 

By using the law of total probability, (1. 27), the expectation values Vi = E[ nd 
:an be expressed as 

Vi J.ltot P{ event observed in bin i) 

'J d P (observed I true value y and) () f () 
J.ltot Y in bin i event detected C Y true Y 

= J.ltot f . . dx J dy s(xly) c(y) ftrue(Y)· (11.6) 

Here s(xly) is the conditional p.d.f. for the measured value x given that the 
true value was y, and given that the event was observed somewhere, i.e. it is 
normalized such that f s(xly)dx = 1. We will call s the resolution function or in 
imaging applications the point spread function. One can also define a response 
function, 

r(xIY) = s(xly) c(y), (11.7) 

which gives the probability to observe x, including the effect of limited efficiency, 
given that the true value was y. Note that this is not normalized as a conditional 
p.d.f. for x. One says that the true distribution is folded with -the response 
function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 
multiplying both numerator and denominator by J.lj, the expected number of 
entries to be observed in bin i becomes 

fbin i dx fbin j dy s(xly) c(y) ftrue (y) 
L.J J.lj 
j=l 

M 

LRiiJ.lj, 
j=l 

(J.lj/J.ltot) 

where the response matrix R is given by 

(11.8) 
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true value was y, and given that the event was observed somewhere, i.e. it is 
normalized such that f s(xly)dx = 1. We will call s the resolution function or in 
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which gives the probability to observe x, including the effect of limited efficiency, 
given that the true value was y. Note that this is not normalized as a conditional 
p.d.f. for x. One says that the true distribution is folded with -the response 
function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 
multiplying both numerator and denominator by J.lj, the expected number of 
entries to be observed in bin i becomes 
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j=l 

(J.lj/J.ltot) 

where the response matrix R is given by 

(11.8) 

• Take our integral for   (from slide 48)νi

True:             
Measured:  

j, y, μ, M
i, x, ν, N

Break up the integral over  into a sum over bins 

Multiply numerator and denominator by 

y j
μj

observed in bin  and true value in bin P( i j)

true value in bin P( j)

Response matrix =  
The conditional probability that an event will be found with 
measured value  in bin , given that the true value  was in bin x i y j
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Derivation   (iv)

56 Unfolding 

The form of the probability distribution for the data n = (nl' ... , nN) (Pois-
on, multinomial, etc.) will be needed in order to construct the likelihood func-
ion, used in unfolding methods based on maximum likelihood. Alternatively, we 
nay be given the covariance matrix, 

(11.5) 

vhich is needed in methods based on least squares. We will assume that either 
,he form of the probability law or the covariance matrix is known. 

By using the law of total probability, (1. 27), the expectation values Vi = E[ nd 
:an be expressed as 
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Here s(xly) is the conditional p.d.f. for the measured value x given that the 
true value was y, and given that the event was observed somewhere, i.e. it is 
normalized such that f s(xly)dx = 1. We will call s the resolution function or in 
imaging applications the point spread function. One can also define a response 
function, 

r(xIY) = s(xly) c(y), (11.7) 

which gives the probability to observe x, including the effect of limited efficiency, 
given that the true value was y. Note that this is not normalized as a conditional 
p.d.f. for x. One says that the true distribution is folded with -the response 
function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 
multiplying both numerator and denominator by J.lj, the expected number of 
entries to be observed in bin i becomes 
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where the response matrix R is given by 
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given that the true value was y. Note that this is not normalized as a conditional 
p.d.f. for x. One says that the true distribution is folded with -the response 
function, and thus the task of estimating ftrue is called unfolding. 

Breaking the integral over y in equation (11.6) into a sum over bins and 
multiplying both numerator and denominator by J.lj, the expected number of 
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where the response matrix R is given by 
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True:             
Measured:  

j, y, μ, M
i, x, ν, N

Break up the integral over  into a sum over bins 

Multiply numerator and denominator by 

y j
μj

Response matrix =  
The conditional probability that an event will be found with 
measured value  in bin , given that the true value  was in bin x i y j

observed in bin  and true value in bin P( i j)

true value in bin P( j)

observed in bin  | true value in bin P( i j)
=
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• Take our integral for   (from slide 48)νi
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Response matrix

• The effect of the off-diagonal elements in  is to smear out any fine structure

• A peak in the true histogram concentrated mainly in 1 bin will be observed over several bins


• 2 peaks separated by less than several bins will be merged into a single broad peak

R

 doesn’t need to 
be symmetric

R
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158 Unfolding 

square), with the first index i = 1, ... , N denoting the bin of the observed 
histogram and the second index j = 1, ... , M referring to a bin of the true 
histogram. Summing over the first index and using I s(xly)dx = 1 gives 

t Ibini dx Ibinj dYs(xIY) e(y) ftrue{Y) 
i:::l (J1-j / J1-tod 

Ibinj dyC(y)ftrue(Y) 
Ibinj ftrue(Y) dy 

(11.10) 

i.e. one obtains the average value of the efficiency over bin j. 
In addition to limited resolution and efficiency, one must also allow for the 

possibility that the measuring device produces a value when no true event of 
the type under study occurred, i.e. the measured 'value was caused by some 
background process. In the case of beta decay, this could be the result of spurious 
signals in the detector, the presence of radioactive nuclei in the sample other 
than the type under study, interactions due to particles coming from outside the 
apparatus such as cosmic rays, etc. Suppose that we have an expectation value 
f3i for the number of entries observed in bin i which originate from background 
processes. The relation (11.8) is then modified to be 

M 

Vi = L Rij J1-j + f3i. (11.11) 
j=l 

Note that the f3i include the effects of limited resolution and efficiency of the 
detector. They will usually be determined either from calibration experiments 
or from a Monte Carlo simulation of both the background processes and the 
detector response. In the following we will assume that the values f3i are known, 
although in practice this will only be true to a given accuracy. The uncertainty 
in the background is thus a source of systematic error in the unfolded result. 

To summarize, we have the following vector quantities (referred to also in a 
general sense as histograms or distri bu tions) : 

(1) the true histogram (expectation values of true numbers of entries in each 
bin), I-' = (J1-1, ... ,J1-M), 

(2) the normalized true histogram (probabilities), P = (PI, ... , PM) = 1-'/ J1-tot, 
(3) the expectation values of the observed numbers of entries, v = (VI, ... , VN), 
(4) the actual number of entries observed (the data), D = (nl' ... , nN), 
(5) efficiencies e = (£1, ... , eM), and 
(6) expected background values f3 = (f31, ... ,f3N). 
It is assumed either that we know the form of the probability distribution for 
the data D, which will allow us to construct the likelihood function, or that we 

• Sum over the ‘measured’ index  and usei

Efficiencies

∫ s(x |y)dx = 1

The average value of the efficiency over bin j

True:             
Measured:  

j, y, μ, M
i, x, ν, N
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• In addition to limited resolution and efficiency, must allow for the 
possibility of background processes

• Measuring device produces a value when no true event of the type 

under study occurred


• E.g., for -decay, background = spurious signals in the detector, the 
presence of other radioactive nuclei in the sample, interactions due to 
cosmic rays, etc.

β
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Include background

νi =
m

∑
j=1

Rijμj + βi

The # of entries in bin  which originate 
from background processes


The uncertainty from the background is 
a source of systematic error in the 
unfolded result

i
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 Expectation values of true # of entries in each bin→

 Probabilities→

 The data→

57

To summarize:
• The vector  is the ‘true histogram’


• The normalized true histogram 


• The expectation values of the observed # of entries 


• The actual # of entries observed 


• Efficiencies 


• Expected background values 


• Response matrix , 


•  represents the bin of the observed histogram


•  gives the bin of the true histogram

μ = (μ1, . . . , μM)
p = (p1, . . . , pM) = μ/μtot

ν = (ν1, . . . , νN)
n = (n1, . . . , nN)

ϵ = (ϵ1, . . . , ϵM)
β = (β1, . . . , βN)

Rij

i = 1,...,N
j = 1,...,M

Assume we either: 
  Know the form of the probability distribution for the data 

  Have the covariance matrix 

n
Vij = cov[ni, nj]

  Allow us to construct the  function 
  Used to construct a  function

⇒ ℒ
⇒ χ2

ν = Rμ + β
Related by

Goal
Construct estimators  for the true 
histogram, or estimators  for the 
probabilities 

̂μ
p̂

Assume known

True:             
Measured:  

j, y, μ, M
i, x, ν, N
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• Start with the matrix form (with )


• Invert it to obtain


• Set the estimators for  to be the data values 


• The estimators for the  are then 

M = N

ν n

μ
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Method 1:  Invert the response matrix True:             
Measured:  

j, y, μ, M
i, x, ν, N

ν = Rμ + β

μ = R−1(ν − β)

̂ν = n

̂μ = R−1(n − β)
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• Expectation value of inversion:

59

Properties
160 Unfolding 

Before showing how the estimators constructed in this way can fail, it is 
interesting to investigate their bias and variance. The expectation value of {lj is 
given by 

N N 
I)R- 1 

)ji E[ni - Pi] I)R- 1 
)jdVi - Pd 

i=1 i=l 

(1l.18) 

so the estimators {lj are unbiased, since by assumption, Vi = ni is unbiased. For 
the covariance matrix we find 

N L (R- 1 )ik (R- 1 )jl cov[nk, nd 
k,l=l 

N 
L(R-1)ik {R-1)jk Vk, (11.19) 
k=l 

where to obtain the last line we have used the covariance matrix for independent 
Poisson variables, cov[nk: nd = JkWk. 

In the following we wiII use the notation Vij = cov[ni, nj] for the covariance 
matrix of the data, and Uij = COV[{li, {lj] for that of the estimators of the true 
distribution. Equation (11.19) can then be written in matrix notation, 

(11.20) 

Consider now the example shown in Fig. ILL The original true distribution Il 
is shown in Fig. lLl(a), and the expectation values for the observed distribution 
v are shown in the histogram of Fig. 11.1 (b). 

The histogram v has been computed according to v = RIl, i.e. the back-
ground (3 is taken to be zero. The response matrix R is based on a Gaussian 
resolution function with a standard deviation equal to 1.5 times the bin width, 
and the efficiencies Ci are all taken to be unity. This results in a probability of 
approximately 26% for an event to remain in the bin where it was created, 21 % 
for the event to migrate one bin, and 16% to migrate two or more bins. 

Figure lLl(c) shows the data n = (nI, ... , nN). These have been generated 
by the Monte Carlo method using Poisson distributions with the mean values Vi 
from Fig. 11.1(b). Since the number of entries in each bin ranges from around 
102 to 103 , the relative statistical errors (ratio of standard deviation to mean 
value) for the ni are in the range from 3 to 10%. 

Figure 11.1(d) shows the estimates it obtained from matrix inversion, equa-
tion (11.15). The error bars indicate the standard deviations for each bin. Far 
from achieving the 3-10% precision that we had for the ni, the {lj oscillate 

160 Unfolding 

Before showing how the estimators constructed in this way can fail, it is 
interesting to investigate their bias and variance. The expectation value of {lj is 
given by 

N N 
I)R- 1 

)ji E[ni - Pi] I)R- 1 
)jdVi - Pd 

i=1 i=l 

(1l.18) 

so the estimators {lj are unbiased, since by assumption, Vi = ni is unbiased. For 
the covariance matrix we find 

N L (R- 1 )ik (R- 1 )jl cov[nk, nd 
k,l=l 

N 
L(R-1)ik {R-1)jk Vk, (11.19) 
k=l 

where to obtain the last line we have used the covariance matrix for independent 
Poisson variables, cov[nk: nd = JkWk. 

In the following we wiII use the notation Vij = cov[ni, nj] for the covariance 
matrix of the data, and Uij = COV[{li, {lj] for that of the estimators of the true 
distribution. Equation (11.19) can then be written in matrix notation, 

(11.20) 

Consider now the example shown in Fig. ILL The original true distribution Il 
is shown in Fig. lLl(a), and the expectation values for the observed distribution 
v are shown in the histogram of Fig. 11.1 (b). 

The histogram v has been computed according to v = RIl, i.e. the back-
ground (3 is taken to be zero. The response matrix R is based on a Gaussian 
resolution function with a standard deviation equal to 1.5 times the bin width, 
and the efficiencies Ci are all taken to be unity. This results in a probability of 
approximately 26% for an event to remain in the bin where it was created, 21 % 
for the event to migrate one bin, and 16% to migrate two or more bins. 

Figure lLl(c) shows the data n = (nI, ... , nN). These have been generated 
by the Monte Carlo method using Poisson distributions with the mean values Vi 
from Fig. 11.1(b). Since the number of entries in each bin ranges from around 
102 to 103 , the relative statistical errors (ratio of standard deviation to mean 
value) for the ni are in the range from 3 to 10%. 

Figure 11.1(d) shows the estimates it obtained from matrix inversion, equa-
tion (11.15). The error bars indicate the standard deviations for each bin. Far 
from achieving the 3-10% precision that we had for the ni, the {lj oscillate 

• Covariance of uncorrelated Poisson variables:

160 Unfolding 

Before showing how the estimators constructed in this way can fail, it is 
interesting to investigate their bias and variance. The expectation value of {lj is 
given by 

N N 
I)R- 1 

)ji E[ni - Pi] I)R- 1 
)jdVi - Pd 

i=1 i=l 

(1l.18) 

so the estimators {lj are unbiased, since by assumption, Vi = ni is unbiased. For 
the covariance matrix we find 

N L (R- 1 )ik (R- 1 )jl cov[nk, nd 
k,l=l 

N 
L(R-1)ik {R-1)jk Vk, (11.19) 
k=l 

where to obtain the last line we have used the covariance matrix for independent 
Poisson variables, cov[nk: nd = JkWk. 

In the following we wiII use the notation Vij = cov[ni, nj] for the covariance 
matrix of the data, and Uij = COV[{li, {lj] for that of the estimators of the true 
distribution. Equation (11.19) can then be written in matrix notation, 

(11.20) 

Consider now the example shown in Fig. ILL The original true distribution Il 
is shown in Fig. lLl(a), and the expectation values for the observed distribution 
v are shown in the histogram of Fig. 11.1 (b). 

The histogram v has been computed according to v = RIl, i.e. the back-
ground (3 is taken to be zero. The response matrix R is based on a Gaussian 
resolution function with a standard deviation equal to 1.5 times the bin width, 
and the efficiencies Ci are all taken to be unity. This results in a probability of 
approximately 26% for an event to remain in the bin where it was created, 21 % 
for the event to migrate one bin, and 16% to migrate two or more bins. 

Figure lLl(c) shows the data n = (nI, ... , nN). These have been generated 
by the Monte Carlo method using Poisson distributions with the mean values Vi 
from Fig. 11.1(b). Since the number of entries in each bin ranges from around 
102 to 103 , the relative statistical errors (ratio of standard deviation to mean 
value) for the ni are in the range from 3 to 10%. 

Figure 11.1(d) shows the estimates it obtained from matrix inversion, equa-
tion (11.15). The error bars indicate the standard deviations for each bin. Far 
from achieving the 3-10% precision that we had for the ni, the {lj oscillate 

• Covariance of correlated 
Gaussian variables:

Estimators  are unbiased 
(Since by assumption  is unbiased)

̂μj
̂νi = ni

True:             
Measured:  

j, y, μ, M
i, x, ν, N
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Ex. where matrix inversion goes “wrong”
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Fig. 11.1 (a) A hypothetical true histogram p., (b) the histogram of expectation values 
v = Rp., (c) the histogram of ob_served data n, and (d) the estimators jl obtained from 
inversion of the response matrix. -

wildly from bin to bin, and the error bars are as large as the estimated values 
themselves. (Notice the increased vertical scale on this plot.) The correlation 
coefficients for neighboring bins are close to -1. 

The reason for the catastrophic failure stems from the fact that we do not 
have the expectation values v; if we did, we could simply compute J1, = R-1v. 
Rather, we only have the data D, which are random variables and hence subject 
to statistical fluctuations. Recall that the effect of the response matrix is to smear 
out any fine structure. If there had been peaks close together in /1-, then although 
these would be merged together in v, there would still remain a certain residual 
fine structure. Upon applying R- 1 to v, this remnant of the original structure 
would be restored. The data D have indeed statistical fluctuations from bin to 
bin, and this leads to the same qualitative result as would a residual fine structure 
in v. Namely, the unfolded result is given a large amount of fine structure, as is 
evident in Fig. 11.1(d). 

It is interesting to compare the covariance matrix U (11.19) with that given 
by the ReF inequality (cf. Section 6.6); this gives the smallest possible variance 
for any choice of estimator. For this we will regard the ni as independent Poisson 

Very large anti-correlations!

Hypothetical true 
histogram μ

Histogram of the predicted 
expectation value ν = Rμ

Histogram of the observed 
data  n

̂μ = R−1n

Assume 0 background,  

Response matrix ( ) based on a 
Gaussian resolution function with 

bin width 

Assume 

β = 0

R

σ = 1.5 ×

ϵi = 1

(event to remain in the bin created) = 26%

(event to migrate 1 bin) = 21%


(event to migrate 2 bins) = 16%

P
P

P

• Applying the response matrix  
smears out fine structure 


• Applying  creates (often 
unwanted) structure

R

R−1
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http://www.pp.rhul.ac.uk/~cowan/sda/

Results in

Reason for failure:

• We do not have the expectation 
values 


• Only have the data , which are 
RVs and subject to statistical 
fluctuations

ν
n

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Nothing really 
• The resulting unfolded yields are unbiased, but heavily correlated 


• They can be used to test hypothesis, given one takes into account the 
full set of correlations


• Can reduce such oscillations considerably by making bin widths larger 
than the width of the resolution function  

• Alternatives: 
• Either incorporate prior knowledge or do not rely on neighboring bins 

to determine resolution correction


• Both come at a price: trading variance for bias

61

So what went “wrong”? 
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smallest possible variance for an estimator with zero bias. We would obtain the 
same result using the method of least squares; in that case, unbiased and efficient 
estimators are guaranteed by the Gauss-Markov theorem. 

Although the solution in Fig. l1.1(d) bears little resemblance to the true 
distribution, it has certain desirable properties. It is simple to construct, has 
zero bias, and the variance is equal to the RCF bound. In order to be of use, 
however, the correlations must be taken into account. For example, one can test 
the compatibility of the estimators fl with a hypothesis /1-0 by constructing a X2 

statistic, 

(11.27) 

which uses the full covariance matrix U of the estimators. This test would be 
meaningless if the X2 were to be computed with only the diagonal elements of 
U. We should also note that although the variances are extremely large in the 
example shown here, they would be significantly smaller if the bins are made 
large compared to the width of the resolution function. 

Regardless of its drawbacks, response-matrix inversion indicates some impor-
tant lessons and provides a starting point for other methods. Since the inverse-
matrix solution has zero bias and minimum variance as given by the RCF inequal-
ity, any reduction in variance can only be achieved by introducing a bias. The art 
of unfolding consists of constructing biased estimators jl such that the bias will 
be small if our prior beliefs, usually some assumptions concerning smoothness, 
are in fact correct. Roughly speaking, the goal is to find an optimal trade-off 
between bias and variance, although we will see in Section 11.7 that there is a 
certain arbitrariness in determining how this optimum is achieved. 

The need to incorporate prior knowledge suggests using the Bayesian ap-
proach, where the a priori probabilities are combined with the data to yield a 
posteriori probabilities for the true distribution (cf. Sections 1.2, 6.13). This is 
a common starting point in the literature on unfolding. It suffers from the dif-
ficulty, however, that prior knowledge is often of a complicated or qualitative 
nature and is thus difficult to express in terms of prior probabilities. The fact 
that prior beliefs are inherently subjective is not a real disadvantage here; in the 
classical approach as well there is a certain subjectivity as to how one chooses a 
biased estimator. In the following we will mainly follow classical statistics, using 
bias and variance as the criteria by which to judge the quality of a solution, while 
pointing out the connections with the Bayesian techniques wherever possible. 

As a final remark on matrix inversion, we can consider the case where the 
number of bins M in the unfolded histogram is not equal to the number of mea-
sured bins N. For M > N, the system of equations (11.12), v = R/1- + {3, is 
underdetermined, and the solution is not unique. The methods presented in Sec-
tion 11.4 can be used to select a solution as the estimator fl. For M < N, (11.12) 
is overdetermined, and an exact solution does not exist in general. An approxi-
mate solution can be constructed using, for example, the methods of maximum 

Use to test the compatibility of the 
estimators  with the hypothesis ̂μ μ0
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• Assume the bins of the true distribution ( ) are the same as 
the data ( ) 

• Determine the correction factor for each bin (e.g., from MC 

simulation)


• Works well if bin-to-bin sharing (smearing) is negligible 


• Expectation value for corrected data

μ
n

Rij = δijϵj
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Method 2:  Correction factors  (i)

̂μi = Ci(ni − βi) Ci =
μMC

i

νMC
i

Run MC program w/out 
detector simulation

Run MC program with 
detector simulation

νsig
i = νi − βi = ϵiμi

E[ ̂μi] = CiE[ni − βi] = Ci(νi − βi) =
μMC

i

νMC
i

νsig
i
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• Rearrange to make the bias explicit (identical to previous expression for ) 


• Covariance matrix for the estimators 


• Iterative bin-by-bin method:

• Begin with (plausible) guess of the true spectrum


• Apply correction to measurement


• Generate new  from corrected spectrum of previous iteration


• Repeat (for a few iterations)

E[ ̂μi]

Ci
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E[ ̂μi] =
μMC

i

νMC
i

νsig
i = ( μMC

i

νMC
i

−
μi

νsig
i ) νsig

i + μi

Bias

Bias = 0 if  
MC = nature

cov[ ̂μi, ̂μj] = C2
i cov[ni, nj] = C2

i δijνi Smearing fluctuations 
independent between bins 

Drawback: Highly 
model dependent

Method 2:  Correction factors  (ii)
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• Regularization = impose a measure of smoothness on the 
estimators of the true histogram 

• Matrix inversion IS the maximum likelihood solution (see page 162)


• Accept solutions that are close to the ML estimate


• Define a regularization (aka smoothness) function  that increases 
when the unfolded solution becomes smoother


• Task: choose the solution with the highest degree of smoothness out of the 
acceptable solutions determined by above inequality


• Must maximize

μ

S
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log ℒ(μ) =
N

∑
i=1

(ni log νi − νi)
̂ν = n
̂μ = R−1(n − β)

Independent 
Poisson 
fluctuations

ML estimator 
(same as s56)

log ℒ(μ) ≥ log ℒ(μmax) − Δ log ℒ(μ)

Φ(μ) = α log ℒ(μ) + S(μ)
Regularization parameter which depends on  


 gives ML solution 
Δ log ℒ(μ)

α → ∞

Method 3:  Regularized unfolding  

determines trade-off between bias and variance in 
unfolded histogram 



Modern Methods of Data Analysis

• There are several options (sections 11.5.1-11.5.4)


• Tikhonov regularization:

• Measure of smoothness is the mean value of the square of some 

derivative of the true distribution. Tikhonov regularization using the 
second derivative (so that  is related to the avg. curvature) is widely 
used in particle physics.


• Regularization functions based on entropy:

• Interpret the entropy as a measure of the smoothness of a histogram. 

Estimators are constructed according to the principle of maximum 
entropy. Often developed in the framework of Bayesian statistics. 


• Regularization function based on cross-entropy:

• Useful if we have prior knowledge that the true events approximately 

follow some distribution. 

S(μ)
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Regularization functions
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• The choice of  determines the trade off between the bias and 
variance of the estimators 


• If  is very large, solution is dominated by the likelihood function and 
one has  and very large variances


• If  is small, leads to a perfectly smooth distribution (since all of the 
weight is put on the regularization function )

α
̂μ

α
log ℒ(μ) = log ℒmax

α
S
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Choice of α Φ(μ) = α log ℒ(μ) + S(μ)
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Fig. 11.1 (a) A hypothetical true histogram p., (b) the histogram of expectation values 
v = Rp., (c) the histogram of ob_served data n, and (d) the estimators jl obtained from 
inversion of the response matrix. -

wildly from bin to bin, and the error bars are as large as the estimated values 
themselves. (Notice the increased vertical scale on this plot.) The correlation 
coefficients for neighboring bins are close to -1. 

The reason for the catastrophic failure stems from the fact that we do not 
have the expectation values v; if we did, we could simply compute J1, = R-1v. 
Rather, we only have the data D, which are random variables and hence subject 
to statistical fluctuations. Recall that the effect of the response matrix is to smear 
out any fine structure. If there had been peaks close together in /1-, then although 
these would be merged together in v, there would still remain a certain residual 
fine structure. Upon applying R- 1 to v, this remnant of the original structure 
would be restored. The data D have indeed statistical fluctuations from bin to 
bin, and this leads to the same qualitative result as would a residual fine structure 
in v. Namely, the unfolded result is given a large amount of fine structure, as is 
evident in Fig. 11.1(d). 

It is interesting to compare the covariance matrix U (11.19) with that given 
by the ReF inequality (cf. Section 6.6); this gives the smallest possible variance 
for any choice of estimator. For this we will regard the ni as independent Poisson 

Can lead to

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Recall the mean square error from L04, S11:


• Take the MSE averaged over all bins as the measure of the goodness of the 
final result. One can determine  so as to obtain a particular value of the MSE. 

• Can also use:


• 


• 


•

α

Δ log ℒ = log ℒmax − log ℒ = N/2

Δχ2
eff = 1

χ2
b = M

67

                             = V[ ̂θ] + b2 i.e., sum of 
variance and bias2

Interpret: sum of squares of statistical and systematic uncertainties

MSE = E [( ̂θ − θ)
2] = E [( ̂θ − E[ ̂θ])

2] + (E[ ̂θ − θ])
2

Choice of α
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Example with Maximum Entropy

Examples of unfolding 181 
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Fig. 11.3 MaxEnt unfolded distributions shown as points with the true distribution shown 
as a histogram (left) and the estimated biases (right) for different values of the regularization 
parameter Q. The examples correspond to (a) the Bayesian prescription Q = 1/ I-ltot, (b) mini-
mum mean squared error, (c) log L = N /2, (d) = 1, and (e) = M. In this example, 
the solution of minimum weighted MSE turns out similar to case (c) with logL = N/2. 

http://www.pp.rhul.ac.uk/~cowan/sda/

Arrows indicate solutions 
based on the criteria in 
the last slide

• Return to our original example 
(which was unfolded using 
matrix inversion in s58)


• Now try with Maximum Entropy 
regularization 

http://www.pp.rhul.ac.uk/~cowan/sda/
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Example with Tikhonov

http://www.pp.rhul.ac.uk/~cowan/sda/

• Return to our original example 
(which was unfolded using 
matrix inversion in s58)


• Now try with Tikhonov 
regularization                 

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Required reading

• Cowan textbook: chapters 9 (9.8-9.9), 10, and 11


• Extra reading for fun: /Reading material / L08 /


• Search for  and  at Belle B+ → μ+νμ B+ → μ+N

70

For next time



Quiz Time:  8th Round
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Lower and upper limit
Lecture 10: Confidence Intervals II and Limits

Lower and Upper Limit

1. Determine the lower and upper limit at 90% CL of the parameter �tg using the scan of
the likelihood function and the provided values for Q�. Note that the likelihood is already
normalised with respect to its maximal value.

Multidimensional confidence regions 135 

constructed according to (9.37) includes the true parameter by means of a Monte 
Carlo calculation. 

Quantiles of the X2 distribution Q/ = p-l (1 - ,; n) for several confidence 
levels 1 - , and n = 1,2,3,4,5 parameters are given in Table 9.4. Values of the 
confidence level are shown for various values of the quantile Q1 in Table 9.5. 

Table 9.4 The values of the confidence level 1 - r for different values of Q-y and for 
n = 1,2,3,4,5 fitted parameters. 

Q1 
1-, 

n=l n=2 n=3 n=4 n=5 
1.0 0.683 0.393 0.199 0.090 0.037 
2.0 0.843 0.632 0.428 0.264 0.151 
4.0 0.954 0.865 0.739 0.594 0.451 
9.0 0.997 0.989 0.971 0.939 0.891 

Table 9.5 The values of the quantile Q-y for different values of the confidence level 1 - r for 
n = 1,2,3,4,5 fitted parameters. 

1-, Q1 
n=l n=2 n=3 n=4 n=5 

0.683 1.00 2.30 3.53 4.72 5.89 
0.90 2.71 4.61 6.25 7.78 9.24 
0.95 3.84 5.99 7.82 9.49 11.1 
0.99 6.63 '9.21 11.3 13.3 15.1 

For n = 1 the expression (9.36) for Q1 can be shown to imply 

(9.38) 

where cI>-1 is the inverse function of the standard normal distribution. The pro-
cedure here thus reduces to that for a single parameter given in Section 9.6, 
where N = vr:r; is the half-width of the interval in standard deviations (see 
equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus 
related to those in Tables 9.1 and 9.2 by equation (9.38). 

For increasing n, the confidence level for a given Q1 decreases. For example, 
in the single-parameter case, Q/ = 1 corresponds to 1 - , = 0.683. For n = 2, 
Q/ = 1 gives a confidence level of only 0.393, and in order to obtain 1-, = 0.683 
one needs Q/ = 2.30. 

We should emphasize that, as in the single-parameter case, the confidence 
region Q(8, 6) Q1 is a random region in 8-space. The confidence region varies 
upon repetition of the experiment, since {j is a random variable. The true pa-
rameters, on the other hand, are unknown constants. 

Lecture 10: Confidence Intervals II and Limits

Lower and Upper Limit

1. Determine the lower and upper limit at 90% CL of the parameter �tg using the scan of
the likelihood function and the provided values for Q�. Note that the likelihood is already
normalised with respect to its maximal value.
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constructed according to (9.37) includes the true parameter by means of a Monte 
Carlo calculation. 

Quantiles of the X2 distribution Q/ = p-l (1 - ,; n) for several confidence 
levels 1 - , and n = 1,2,3,4,5 parameters are given in Table 9.4. Values of the 
confidence level are shown for various values of the quantile Q1 in Table 9.5. 

Table 9.4 The values of the confidence level 1 - r for different values of Q-y and for 
n = 1,2,3,4,5 fitted parameters. 

Q1 
1-, 

n=l n=2 n=3 n=4 n=5 
1.0 0.683 0.393 0.199 0.090 0.037 
2.0 0.843 0.632 0.428 0.264 0.151 
4.0 0.954 0.865 0.739 0.594 0.451 
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Table 9.5 The values of the quantile Q-y for different values of the confidence level 1 - r for 
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For n = 1 the expression (9.36) for Q1 can be shown to imply 

(9.38) 

where cI>-1 is the inverse function of the standard normal distribution. The pro-
cedure here thus reduces to that for a single parameter given in Section 9.6, 
where N = vr:r; is the half-width of the interval in standard deviations (see 
equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus 
related to those in Tables 9.1 and 9.2 by equation (9.38). 

For increasing n, the confidence level for a given Q1 decreases. For example, 
in the single-parameter case, Q/ = 1 corresponds to 1 - , = 0.683. For n = 2, 
Q/ = 1 gives a confidence level of only 0.393, and in order to obtain 1-, = 0.683 
one needs Q/ = 2.30. 

We should emphasize that, as in the single-parameter case, the confidence 
region Q(8, 6) Q1 is a random region in 8-space. The confidence region varies 
upon repetition of the experiment, since {j is a random variable. The true pa-
rameters, on the other hand, are unknown constants. 

72



Modern Methods of Data Analysis 73

The problem with priors 2

The problem with priors

2. Write down the posterior probability density function of a parameter ✓ as a function of the
Likelihood of some data x and prior probability density function ⇡(x). What is the problem
of using Bayesian priors when you quote a limit and which functional form for the prior
somehow remedies them?
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Comprehension about unfoldingLecture 11: Unfolding

Unfolding: 3 comprehension questions

1. What is the unfolding problem? Write down the relevant equations for measurement ⌫ = (⌫1, . . . , ⌫N)
with background � = (�1 . . . �N), which should be unfolded in yields µ = (µ1 . . . µN) using
a response matrix R.

2. Describe what the response matrix element Rij means in terms of a conditional probability.
Does the response matrix need to be a square or maybe even a symmetric matrix?

3. Describe two methods to solve the unfolding problem that do not involve regularization.
Sketch out in detail what steps need to be taken.
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Correction factors and regularized unfolding
2

Correction Factors and regularized Unfolding

4. What is the method of correction factors? What are the drawbacks of using this method?

5. What is the idea behind regularized unfolding?
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KCETA Colloquium
The muon g-2 window discrepancy 
and GeV-scale new physics
Thursday, June 22, 2023       
Kleiner Hörsaal A (CS) 15:45 - 17:00
Dr. Luc Darmé 
(Institut de Physique des 2 Infinis de Lyon (IP2I), CNRS/IN2P3)

KIT Center Elementary Particle and Astroparticle Physics (KCETA)

www.kceta.kit.edu

The decade-old discrepancy between the Standard 
Model prediction of the muon anomalous magnetic 
moment and the experimental results has seen 
striking developments in the past two years. In 
particular, recent lattice determinations of the 
hadronic vacuum polarization contribution deviate 
from the established data-driven ones at almost 
5σ. This new anomaly can be also seen as a 
tension between ab-initio lattice calculations and 
experimental measurements of e+e-→ hadrons 
processes at and below the GeV scale. 


We will review this puzzling situation and show how 
new processes beyond the standard model can 
affect indirectly the hadronic data around this 
scale, reconciling the lattice and data-driven results 
while complying with current phenomenological 
constraints. We will finally present a simple dark 
matter-motivated model as an explicit example.


Please note:  
The colloquium will also be live-streamed to B402 SR 224 (CN).
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• Part of the material presented in this lecture is taken from the following 

sources. See the active links (when available) for a complete reference   


• Statistical Data Analysis textbook by G. Cowan (U. London): all figures & equations with white 

background
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