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® Limits near a physical boundary

Shifted and Bayesian approaches

Example: Upper limit on the mean of a Poisson variable with background

¢ Unfolding
Formulation of the problem
Matrix inversion
Method of correction factors

Regularized unfolding

Higgs Challenge

Please mail Sally Stefkova if
you plan to do it! We just
want to gauge how many
groups are working on this.

= J

Evaluations: Lecture & Computerpraktikum.

Please take a few minutes to fill them out. Your feedback is greatly

appreciated. We will take your comments into consideration in trying to

improve the course.

Evaluation period: through 22 June (lecture) & 15 July (Computerpraktikum)
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We’ve come a long way so far

10

11

12

13

14

9.6

16.6

23.6

30.6

7.7

14.7

21.7

28.7

Modern Methods of Data Analysis

P.-D. Dr. Roger Wolf

Dr. Jan Kieseler




Review

Confidence Intervals

Up to now: when discussing ‘error analysis’ we focused on estimating the
(co)variances of estimators. This is not always adequate and other ways of
communicating the statistical uncertainty of measurements have to be found.

A




Classical confidence intervals (Cl)

Suppose you have n observations of a random
variable X, which can be used to evaluate an

estimator for an unknown true parameter &

@(xl ;

A

X)) =0

obs

¢value obtained

Furthermore, suppose we know the PDF of é
denoted by g(6; 0)

Real value of @ unknown, BUT for a given @ one
knows what the PDF of 6 would be

From g(é; @), can determine Vg and u, such that

there are fixed probabilities f and a to observe
0 <vzor0 > u,

Review

http://www.pp.rhul.ac.uk/~cowan/sda/

05 r

D

P(vg(0) <O <un(d)=1—a-p

Shows the probability density for an estimator é

for a particular value of the true parameter 0
U, and us depend on the true value @ and are thus determined by
. va(0) - Y PP ,
B=P(f < vp(h)) = / (0 0)dd = G(vs(6); ), a = P(6 > uq(9)) 9(0;0)d6 = 1 — G(uqa(6);6),
- — 00 4 ua(o)
| CDF

... So ¢ and [} are the probabilities!
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Next: lets build the CI step by step...
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Review

Confidence Belt

fa v}

vp(0) . A o0 A X
P(é < wg(d)) = /— g(0;8)do = G(vg(0);6), a= P8 >uy()) = /ua(o) g(8;0)d0 =1 — G(ux(6);0),

™®
I
|
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Review

Confidence Belt i

n 5 | 1 | 1

0
4
3
2
1

2(6;0)
for a given value 0 1 o 3 4 5
of (true) 0
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Confidence Belt ji

Review

O

2(0;0) .

for another given
value of (true) 0
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Confidence Belt (iv)

Review

Region between the curves:

Confidence Belt
(Neyman Belt)

P(vs(0) < 0 < ua(6) =1—a—f.

The probability for the estimator 0
to be inside the belt, regardless of

the value of 0

05

O

http://www.pp.rhul.ac.uk/~cowan/sda/
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Review

Confidence Interval i

http://www.pp.rhul.ac.uk/~cowan/sda/

If 1,(0) and v4(0) are 5 u T x 1
monotonically increasing 0
functions of @, then one
. . 4
can determine the inverse
functions
3
a(f) = uz'(0),
~ ~ 2
b(0) = v ()
1
(Should be the case if 0 is : :
a good estimator for 0) 0 0 ’ 5 3 4 5

Modern Methods of Data Analysis I 12
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Review

Confidence Interval i

This then implies:

0> ualh), g a(@) > 6, | Pla(d)>0)=a,
0 < vp(6), invert b(d) <0. | P®O) <) =5,
or
P(up(f) <O <ua(0)) =1-a—p Pa(0) <0 <b(l)=1-a-p

If the functions a(é) and b(é) are evaluated with the
value of the estimator obtained in the experiment

Vo N

(@,1,.), then this determines 2 values [a, b

Modern Methods of Data Analysis I 13



Review

Confidence Interval

http://www.pp.rhul.ac.uk/~cowan/sda/

5 J L | T

O

Often chooses a = ﬂ — %

giving a so-called central CI 3
with probability =1 — v 0

..........................................

: Confidence /':
: Intefval

[a, b]: Confidence Interval,
at a confidence level (or
coverage probability) of

l—a-p

Pa(§) <0 <b(f)=1-a-2. 0

Modern Methods of Data Analysis I 14
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Review

All together now

http://www.pp.rhul.ac.uk/~cowan/sda/

X 5 T T T T
0
) 4 .
P(og(0) <O <ua(®) =1-a—p. | .
3 -

..........................................

: Confidence /':
{ Intefval -~

Note where the “s are
in the 2 equations!

[a, b]: Confidence Interval,
at a confidence level (or

coverage probability) of b
l—a-p

2 3 4 5
Pa(f)<0<b)=1-a-p. 0

Modern Methods of Data Analysis I 15
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Review

Take home message

http://www.pp.rhul.ac.uk/~cowan/sda/

n 5 I 1 | 1

0
If the experiment 4 t -
were repeated
many times, the 3 F 4 _
i obs
interval [a, D] e 208 o Ty
would include the 2 F Inte ]
true value of the v
parameter @ in a 1 F _
fractionl —a — f b

; 0 | : =1 :t 1
of the experiments 0 3 5 3 4 .
0
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Review

Cl for Gaussian distributed estimators j

e Simple and very important application: Commonly occurring

situation, since according
to the CLT, any estimator

0 is Gaussian with mean @ and standard deviation 6;  <— atis alinear function of

a sum of RVs becomes

Cumulative distribution of @ is then S::ZT;al?r;?tthe large
8 "/ 2
A 1 —(6" — 0 .
G(6;0,0;) -_-/ exp( ( 5 ) )dﬂ’.
— oo Qﬂ.o.g 20(5

Suppose that the standard deviation is known and that the experiment
resulted in an estimate 0_; .. Then we can determine the confidence interval

la, b] by solving

o = 1-G(Ops;a,05)=1—-& : O=Ga; pn=0,0=1)

A é()bs .y ' standard normal CDF
04

)
1

) Oobs — b
G(gobs;b: Jé) = ( > ) )

T4

Modern Methods of Data Analysis I 18



Review

Cl for Gaussian distributed estimators i)

® This results In

a = Upbs — 0'9" Q—l (]. — C},’), i.e., the inverse function
of ® equals the quantile
N —1 of the std. Gaussian
inverse of standard normal CDF
S 0.6 T I 3 06 . : : .Pp- .ac.
S Central CI (a) S One-sided CI (b)
o '(y2) @ '(1-y/2) @ '(1-0)
04 | 0.4 q
0.2 t+ -
0
-4 4
X X

The relationship between the quantiles of the std. Gaussian distribution and the CI

Modern Methods of Data Analysis I 19
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Cl for Gaussian distributed estimators

Review

(i)

o Consider a central confidence interval with a = ff = y/2

The confidence level (1 — 7) is often chosen, such that
®~!(1 — y/2) is a small integer (e.g., 1,2,3)

Similarly, one-sided intervals are often small integer values

e Sometimes one also prefers to use a round value for | —aorl —y

e For conventional
68.3% CIl one has

[Cl, b] — [éobs — Oy, éobs + 0'9‘]

P 11—-~/2) 1—+v | & !11-0a) 1-a
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987
l1—y & '(1-9/2){1-a & '(1-a)
0.90 -1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

Modern Methods of Data Analysis

o All of this is valid, if 6 is known

Often not the case, but in
large n limit can use
0y — 0




Limits near a physical boundary




Limits near a physical boundary

* Often the purpose of an experiment is to search for a new effect

E.g. measure the mass of the neutrino, which in the Standard Model is
massless

¢ |f the data yield a value of the parameter significantly different from zero,
then the new effect has been discovered (Hooray!)

e We know how to quote such a result

® |f, on the other hand, the data result in a fitted value of the parameter that
Is consistent with zero, then the result of the experiment is often reported
by giving an upper or lower limit

Difficulties arise though when an estimator can take a value in an
unphysical region

e This can occur if the estimator @ for a parameter @ is of the form

A A\
- 2 ) 9) can result
0=x— y — m- = E — D — negative
T T €.J. measure energy and masses

momentum independently
Both RVs
Modern Methods of Data Analysis I 22



Limits near a physical boundary

* How to place a limit on m? when the estimate is near an excluded or
unphysical region?

® Let’'s make this more concrete with an example:

@ = x — y with X, y Gaussian RVs with mean and variances ,, Hys 0'3, yz

: : : : : . 2 2 o)
The difference is also a Gaussian variable with @ = . — py, and 0y = 0y T 0

(see proof in characteristic functions chapter 10 Cowan)

Assume that @ is known a priori to be non-negative (e.g. like the mass squared)
and suppose the experiment resulted in a value 0, for the estimator 6

According to what we discussed (S17 ), the upper limit 6’up atCL1—pf
IS A

Oup = Oops + 0 O~ I(1 - p)

? inverse of standard normal CDF

Modern Methods of Data Analysis I 23



Limits near a physical boundary

® For the commonly used 95% CL one obtains the quantile Table 9.2 (L07, S39)

hitp:7/www.pp.rhul.ac.u

1— ®-1(1-+/2) |1 o1 10
®1(0.95) = 1.645 T e Sl
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

: up] is constructed to include the true value 6 with a
probability of 95%, independent of the true value.

o The interval (— oo

o Let's now suppose the standard deviation 6, = = ] and the observed value
from the experiment is Qobs =—-2.0

Using 0, = éobs + 0, ®~!(1 — ) we obtain Hup — — ().355 at95% CL

®* Not only is the observed value in the unphysical region (half of the

estimates actually should be if ¢ is zero), but the upper limit is below zero
as well

Not particularly unusual; we expect 5% of all experiments to report this if 8 is
Zero.
Modern Methods of Data Analysis I 24


http://www.pp.rhul.ac.uk/~cowan/sda/

Nothing went wrong!

® As far as the definition of CL is concerned, nothing fundamental
has gone wrong.

The interval was designed to cover the true value of @ in a certain
fraction of repeated experiments, and we have obviously encountered

one of those experiments where @ is not in the interval

But many people don’t find this very satisfying, since we already know
from physical reasons that @ is greater than zero (and certainly greater
than Qup = — 0.355) without having to perform an experiment.

* Regardless of the upper limit, it is important to report the actual
value of the estimate obtained and its standard deviation, i.e.

VaN

0

5 + o o or if Errors are non-Gaussian: the likelihood function Z(0)

In this way, the average of many experiments will converge to the
correct value as long as the estimator is unbiased.

Modern Methods of Data Analysis I 25



Upper Limit Bonanza

0.90 1.282
0.95 1.645
0.99 2.576 0.99 2.326

® Nevertheless, most experimenters want to report some sort of upper
limit, that takes into account the knowledge of the unphysical region.

Many different solutions have been proposed, but there is no established
convention on how this should be done. So it’s imperative to state what

procedure you used. Otherwise people will not be able to combine or
use your result.

Va\

» To come back to our example: 0, = — 2.0, 65 =

One might feel tempted to just quote a limit at a higher CL, e.g. 99%
would result in 6, = 0.326 (®~'(0.99) = 2.326)

This would lead to an upper limit better than the intrinsic resolution of our
experiment (0, = 1) at a very high confidence level of 99%

e This is a bit misleading...

But even worse would be to adjust the CL to give an arbitrary small limit,
6, = 107> at 97.725 CL%

Modern Methods of Data Analysis I 26
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Alternative approaches: Max method

® In order to avoid such difficulties, a commonly used technique is

to simply shift a negative estimate to zero before determining the
value, I.e.

Oup = max(d,,,.,0) + 6, @~ (1 — p)

This way the upper limit is always at least the same order of magnitude
as the resolution of the experiment

o If éobs IS positive, nothing changes and the upper limit coincides with the
classical procedure. (See Fig. on slide 30.)

This technigue has a certain intuitive appeal and is often used, but the
Interpretation as an interval that will cover the true parameter with a

probability 1 — / no longer applies.

e The coverage probability is clearly larger than 1 — f
(one speaks of over-coverage)

Modern Methods of Data Analysis I 27



Alternative approaches: Bayesian limit

® Another alternative is to report an interval based on the Bayesian
posterior PDF p(f|x), obtained via

(Reflects the state of

Likelihood function Prior PDF of 8 knowledge of 0 before
l consideration of the data)

2 |0) 2(60)
[ L0 (0 A6’

p@|x) =

Observed data

We now can use p(0|x) to determine an interval [a, b] such that for given
probabilities a and f one has

a = /_aoop(ﬁlx)dH B = /boop((?lx)dﬁ.

Modern Methods of Data Analysis I 28



Alternative approaches: Bayesian limit

» Choosing a = f gives a central interval withe.g. 1 —a — f = 68.3 %

» Another possibility is to choose a and f s.t. all values of p(f|x) inside
the interval [a, b] are higher than any values outside, which implies

p(a|x) = p(b|x). One can show that this gives the shortest possible
interval.

¢ One advantage of the Bayesian interval, is that the prior knowledge, e.g.
6 > 0 can easily be incorporated by setting the prior PDF to zero in the
excluded region.

Bayes’ Theorem then gives a posterior probability p(@ | x) with p(8|x) = O for
6 < 0. The upper limit thus is given by

Modern Methods of Data Analysis I 29



Bayesian limit: constant prior

* The difficulties with this approach is that there is no unique way to
specify the prior density 7(6). A common choice is:

0 6<0
“(9):{1 6> 0.

e |.e.: Normalize the likelihood function to unit area in the physical
region, and then integrate it out to Hup s.t. the fraction of the area
coveredis 1 — f.

Although the method is simple, it has some conceptual drawbacks:

e For the case where one knows 6 > 0 (e.g. Neutrino mass), one does not really
believe that 0 < @ < 1 has the same prior probability as 10*° < 9 < 10*° + 1

e Furthermore the upper limit derived from 7(f) = const. is not invariant with
respect to a nonlinear transformation of the parameter.

Modern Methods of Data Analysis I 30



Bayesian limit: Jeffreys prior

* |t has been argued that in cases where 68 > O but no further
information, one should use

0 6<0
7!'(9):{ =
s 0>0.

This has the advantage that upper limits are invariant with respect to a
transformation of the parameter by raising to an arbitrary power. This is

equivalent to a uniform (improper) prior of previous form for log 6.

® For this to be usable, however, the likelihood function must go to zero for

6 — 0 and @ — oo, or else the integrals diverge. Thus this description is
often not applicable.

® Therefore the uniform prior density (previous slide) is the most commonly
used choice for setting limits on parameters.

Modern Methods of Data Analysis I 31



Different approaches compared
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>~ 5 r - T T ;
£
e Comparison of the ‘7;1 L ::::z‘ga' _
three methods: _'% S Bayesian, n(0) = const.
Classical and shifted (; 3T
are equal for 8, > 0; g , |
The Bayesian limit LT S
(here a constant prior L
s used) is always
positive, and is always o T
> the classical limit; 1 1
4 3 2 A 0 1 2

As the observed value )
grows, all limits Obs
approach each other.
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FIG. 1. The SM leptonic B™ — u*v, decay process and
possible BSM processes with and without a sterile neutrino N
in the final state are shown.
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From one of our papers

Bayesian PDF
Frequentist PDF
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Upper limit on the mean of
Poisson variable with background

Read at home




UL of mean of Poisson variable with bkg

* Recall from last lecture the UL we placed on the mean 1 of a
Poisson variable 7. (Last week we considered signal only though.)

Often one faces a somewhat more complicated situation, where the
observed value of 7 is the sum of the desired signal n,, as well as the

background events n,,

e n = n,+ n,where both n, and 7, can be regarded as Poisson variables
with means v, and v, respectively.

e Suppose for the moment, that the mean of the background v, is known
without any uncertainty.

e For v, one only knows a priori that v, > 0.

Our goal is to construct an UL for the signal parameter /. given a measured
value of 7.
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Upper Limit

e Since n is the sum of two Poisson variables, one can show that it
itself is a Poisson variable with the probability function

» The ML estimator for v is | Vs = N — Vb,

It has zero bias since E[n] = v, + v,

* The equations determining the confidence interval become

lo n —(v‘°+vb)
R R vV vV € s
a = P(VSZV;)bS;V;O): Z (S T b) ,
W n! Can solve
- numerically
. . VUP L )7 = (Vs P ) lo u
g o= Posimun= Y LAl | foryandyy”
n.
7""'Snobs
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Comparison with no background result

e Comparing to our previous expressions, we see that these limits
are related to the ones without background by

vi® = v°(no background) — w,
v,¥ = vgP(no background) — v,.

® The difficulties that can arise here are similar to the example
without background, i.e. when the total number of events

observed is not large compared to the expected number of
background events.

Because of these difficulties, the classical limit often causes problems

o As previously mentioned, one should always report U and an estimate for its
variance to allow for meaningful combinations later
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Bayesian Limit

* The Bayesian method can be used here as well, with for
example a uniform prior. The likelihood function and posterior
probability are given by

L(nobs|vs) m(vs)

L(nops|vi) m(vl) dvi

DET I T

Nobs-

L(nobsle) =

o Taking z(v,) = const. for v, > () and zero otherwise, the upper
limity, P atCL1 —fis

up
fOVs nobsle) dvs
1—-08 = Integrals can be related to incomplete
fo (nobs |VS dvs gamma functions and one obtains:
up
N e PO | D cicep o s
— 0 _ . =
[ (s + vo)oms = Com) e S
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Bayesian Limit

o Upper limits at CL 1 — # = 0.935 for different number of observed
events and as a function of the expected number of background

events.
http://www.pp.rhul.ac.uk/~cowan/sda/
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More realistic scenario

o Often the result of an experiment is not simply the number of n
observed events, but includes in addition measured values

X1, X5, ..., X, Of some property of the events (e.0. mass).

Suppose the probability density for x is

f(z;vs,p) =

vsfs(T) + b fo(x)

)

Vs T Vp

This information can be incorporated into the limit . by using the
extended likelihood function

n!

e~ (vstvn) D

n!

1=

L) = FXW) i) ﬁ vefs(2i) + vofo(i)
Vs + W —_—
1=1

H [Vefs (i) + vbfo(z:)],

Modern Methods of Data Analysis

limits in general
must be determined
numerically or via MC
methods
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(c) High ERUss

(4) High ET"™: This region retains events with missing

transverse momentum EX > 80 GeV and pY >
80 GeV 1is defined to study VH production and
possible contributions of Higgs boson production
with dark matter particles. The simultaneous require-
ment that the Higgs boson system balances the
missing transverse momentum reduces the fraction
of selected events at detector level without particle-
level EMss > 80 GeV.
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(d) rt H-enhanced

(5) ttH-enhanced: This region retains events with either

at least one lepton and three jets or no leptons and four
jets to study Higgs boson production in association
with top quarks. In addition, one of the jets needs to be
identified as originating from a bottom quark.
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In a nutshell

Y: true distribution R: detector response
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X: measured distribution

The detector response is represented
by a migration (response) matrix R.

R(i, j) indicates the probability to
observe an event in bin 1 if it had

generator-level value in bin j.



Allegory of The Cave (Plato’s Repubilic)

By 4edges - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73850232
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The unfolding problem

e Up till now:

Have considered that RVs such as particle energies, decay times, etc.,
can be measured with absolute precision.

* In reality:
Every experimental apparatus has finite resolution.

® This distorts measurements.

e Correct for this = Unfolding

Modern Methods of Data Analysis I 48



Derivation (i

* f...(y) = PDF of true value ‘y’ Ei

E—————

To construct a usable estimator for f,...(y), must represent it by means of
some finite set of parameters.

If no functional form for f....(y) is known a priori, then it can still be
represented as a normalized histogram with M bins.

p; = firue(¥)dy is the probability to find y in bin j
Jbin j

e .. = expectation value of total # of events.

o HUi = iy D; isthe expected # of events in bin j

e The vector g = (U, Uy, - - - , Hyy) is the ‘true histogram’

e (Careful: not the actual number of events in each bin, but the expectation values
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Derivation (ii

* Begin with a sample of measured values x

Entered into a histogram of NV bins: n = (1, n,, . ..

e The #of bins Ncanbe >, <,

—

9 nN)

= to the # of bins in the true histogram M

* Regard n; as independent Poisson variables with expectation value v,

nl —]/i

P(n;v) = v, = E[ny]

ni!

* From the law of total probabillity:

Vi

—
—

Uiot P(event observed in bin ¢)

) ] dy P ( observed
tot . . .

true value y and
event detected

Htot/ dz /dys ftrue( )
bin 3

T Resolution function
(point spread function in
imaging applications)

1n bin 2

Modern Methods of Data Analysis

) e(y) ferue(y)

|

Detection efficiency =
the probability that an
event leads to some
measured value



Derivation i

» The resolution function s(x | y) is a conditional PDF:

For the measured value x, given the true value y

®* Probability that an even leads to some measured value

e Sometimes also incorporates the detection efficiency €(y)

r(x|y) =s(x|y) e(y)

Response function: includes the effect of limited efficiency

* One says that the true distribution is folded with the response function

i.e., expressing v; as a function of s(x|y) = folding

» Unfolding = the task of estimating f .
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Derivation (i) True:  j,y. 4, M

Measured: i, x, v, N

o Take our integral for v; (irom slide 48)

s L s [ dus(z18) £(6) fire (0

Break up the integral over y into a sum over bins j

Multiply numerator and denominator by I

fbini dz fbinj dy S(Z'fy) 5(y) Jerue (¥) | P(observed in bin i and true value in bin j)
(15 / Btot) Hi P(true value in bin j)

[l
™Mz <

L
I
[

ME

Rij Hi,
1

‘N’n
1l

I Response matrix =
The conditional probability that an event will be found with
measured value x in bin i, given that the true value y was in bin j

g —— — e

Modern Methods of Data Analysis I 52



Derivation (i) True:  j,y. 4, M

Measured: i, x, v, N

o Take our integral for v; (irom slide 48)

s [) s [ dus(z18) £(6) fire (0

Break up the integral over y into a sum over bins j

Multiply numerator and denominator by I

fbm i az fbm dy 5(1"?/) ( ) Jtrue (y) : P(observed in bin 7 and true value in bin j)

j=1§ (1 / peot) E”J P(true value in bin j)

[l

[
ME
Fs
=

: P(observed in bin i | true value in bin j)

‘Qn

=1 I
Response matrix =
The conditional probability that an event will be found with
measured value x in bin i, given that the true value y was in bin j

/,

——
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Response matrix

» The effect of the off-diagonal elements in R is to smear out any fine structure

A peak in the true histogram concentrated mainly in 1 bin will be observed over several bins

2 peaks separated by less than several bins will be merged into a single broad peak

1 | | | 1 I | | 100
sss| 00 00 00 00 00 00 0.0 0.1
455| 00 00 00 00 00 0.0
g - 80
4.45| 0.0 00 00 00 0.1 0.3
%) 354 |00 0.0 0.0 0.0 1.0" 0.4
@) u - 00
— 33500 07 03 1.0 1.6 0.7 0.0
| L |
Q. . ,_
" 55304 11 1.6 16.9 1.3 0.8 0.4 0.3 ||
o L 11 4 40
5 2.2 5 2.3 18.4 1.9 06 0.2 02 0.0 -
m -
15.9 1.9 05 0.4 03 0.0 0.0 -
4] 4 20
115 04 04 02 0.1 0.1 0.0 -
0-1 00 02 0.1 0.0 00 0.3 -
1 | | | | O
v 5 A 9 o 2 & 9 2 2
8 B & G O G P B R doesn’t need to
True P_ [GeV be symmetric
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Efficiencies True: J> s s M

Measured: i, x, v, N

e Sum over the ‘measured’ index 1 and use Js(xly)dx =1

= Joini 92 fbinj dy s(z|y) €(y) ferue (¥)
Z (”j/ﬂtot)

N
3,

1=1 1=1

fbinj dy €(y) ferue (V)
fbinj ftrue(y) dy

6j,

|

The average value of the efficiency over bin j
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Include background

¢ In addition to limited resolution and efficiency, must allow for the
possibility of background processes

Measuring device produces a value when no true event of the type
under study occurred

e E.g., for f-decay, background = spurious signals in the detector, the

presence of other radioactive nuclei in the sample, interactions due to
cosmic rays, etc.

The # of entries in bin 7 which originate
from background processes

The uncertainty from the background is

a source of systematic error in the
unfolded result

Modern Methods of Data Analysis I 56



To summarize: True: J> s s M

Measured: i, x, v, N

o The vectoru = (yy, - - -, 4yy) is the ‘true histogram’ — Expectation values of true # of entries in each bin
o The normalized true histogramp = (py,...,Py) = B/l — Probabilities

» The expectation values of the observed # of entriesv = (v, ..., Uy)

o The actual # of entries observedn = (n,...,ny)  — Thedata

o Efficiencies € = (€, ..., €y)

» Expected background values 8 = (S, ..., fy) Related by

» Response matrix R;;, V = Rﬂ + ﬁ
1 f

i = 1,...,N represents the bin of the observed histogram
j =1,...,M gives the bin of the true histogram Goal B e

Construct estimators ji for the true

histogram, or estimators ﬁ for the
probabilities

Assume we either:

Know the form of the probability distribution for the datan = Allow us to construct the & function

Have the covariance matrix Vij = COV[ni, nj] — Used to construct a )(2 function
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Method 1: Invert the response matrix [T

Measured: i, x, v, N

o Start with the matrix form (with M = N)

v=Ru+p

Invert it to obtain
p=R"'w-p
e Set the estimators for v to be the data values n
UV=n

e The estimators for the p are then

fi=R"'(n-p
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Properties

True: 7y, u, M
Measured: i, x, v, N

* Expectation value of inversion:

E(j;]

——
A,

N N
Y (RN Blni— ] = > (R™Y)ji (vi — Bi)
i=1 1=1

Hjs

Estimators /i; are unbiased

(Since by assumption U; = n, is unbiased)

e Covariance of uncorrelated Poisson variables:

COV[ﬂi, ﬂ]]

[l

k

Z(R_l)fk (R™%)jk v,

k

N

!

)

=1

1

S (R ik (R™Y)j0cov[ne, ) | © Covariance of correlated

(Gaussian variables:

U=R'VRH.
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EX. where matrix inversion goes “wrong”

o rwwwpprhulacui-cowanisdr | ASSUMe 0 background, f = 0

| T T T T T
" Hypothetical true v Histogram of the predicted
histogram p (a) expectation valuev = Ru (b) Response matrix (R) based on a

5 2000 - | | Gaussian resolution function with
o = 1.5 X bin width

i i Assumee; = 1
1000 i \Its in

P(event to remain in the bin created) = 26%
P(event to migrate 1 bin) = 21%

2000

1000

0 o 1 1 1 1 . . .
0 02 04 06 08 . P(event to migrate 2 bins) = 16%
o x 10 2 X
T 1 T ! 10000 T T | T . . !
n Histogram of the observed ) A=Rln | Very large anti-correlations!
data n (c) H (d) ) . :
2000 | - <000 | | / - Applying the response matrix R
[ il y smears out fine structure
o Lt i l| |, - Applying R~ ! creates (often
I_IJ J Il LJ| LB unwanted) structure
-5000 [ e = + We do not have the expectation
values v
0 : . L ! -10000 ! ! ! 1 « Only have the data n, which are
0 02 04 06 08 1 0 02 04 06 08 1 RVs and subject to statistical
x x fluctuations
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So what went “wrong”?

® Nothing really

The resulting unfolded yields are unbiased, but heavily correlated

They can be used to test hypothesis, given one takes into account the
full set of correlations

2 __ (a T yr—1 ¢/ ~ Use to test the compatibility of the
X = (u I-l'O) U ("l' ﬂO) ) estimators /I with the hypothesis Hy

e (Can reduce such oscillations considerably by making bin widths larger
than the width of the resolution function

* Alternatives:

Either incorporate prior knowledge or do not rely on neighboring bins
to determine resolution correction

e Both come at a price: trading variance for bias
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Method 2: Correction factors (j)

e Assume the bins of the true distribution (i) are the same as
the data (n)

Determine the correction factor for each bin (e.g., from MC

simulation)
MC Run MC program w/out
A C ( ) C Iui — detector simulation
//tl o l nl 'Bl L~ MC Run MC program with
‘—
I/i detector simulation

e Works well if bin-to-bin sharing (smearing) is negligible Rl-j = 5l-j€j

Sig __ . .
Ve == P = ey

e Expectation value for corrected data
MC
Hi S

Elg] = GEln; — ;] = C(v; = p) = W” i ¢

Modern Methods of Data Analysis I 62



Method 2: Correction factors (i)

e Rearrange to make the bias explicit (identical to previous expression for E[ﬂi])

MC MC
n Hi ' Hi Hi ' - -

E[ﬂ — ySlg — ySlg +,l/t Bias = O if

l MC i MC si I l MC = nature

Bias
e Covariance matrix for the estimators
N\ /N 2 2 c 5

COVIU: = C covin..n.| = C 51/ Smearing fluctuations

['ul ’ 'MJ ] ! [ ] ] Lyl independent between bins

® |[terative bin-by-bin method:
e Begin with (plausible) guess of the true spectrum

e Apply correction to measurement

e Generate new C; from corrected spectrum of previous iteration Drawback: Highly
model dependent

e Repeat (for a few iterations)
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Method 3: Regularized unfolding

* Regularization = impose a measure of smoothness on the
estimators of the true histogram pu

Matrix inversion IS the maximum likelihood solution (see page 162)

N
Independent ML estimator p = p
Poisson lOg g(ﬂ) = Z (Vli log V; — Vl-) (same as s56)

fluctuations i I’j — R‘l(n —ﬂ)
1=
Accept solutions that are close to the ML estimate

log Z(p) > log L () — Alog L (p)

? determines trade-off between bias and variance in

Define a regularization (aka smoothness) function S that increases ~ /"'0“ec nistogram
when the unfolded solution becomes smoother

e Task: choose the solution with the highest degree of smoothness out of the
acceptable solutions determined by above inequality

e Must maximize (I)(ﬂ) = al()g fZ(ﬂ) + S(ﬂ)

Regularization parameter which depends on A log £ (u)
a — o0 gives ML solution
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Regularization functions

® There are several options (sections 11.5.1-11.5.4)

Tikhonov regularization:

® Measure of smoothness is the mean value of the square of some
derivative of the true distribution. Tikhonov regularization using the

second derivative (so that S(u) is related to the avg. curvature) is widely
used in particle physics.

Regularization functions based on entropy:

® |[nterpret the entropy as a measure of the smoothness of a histogram.

Estimators are constructed according to the principle of maximum
entropy. Often developed in the framework of Bayesian statistics.

Regularization function based on cross-entropy:

e Useful if we have prior knowledge that the true events approximately
follow some distribution.

Modern Methods of Data Analysis



Choice of ¢ O(u) = alog L(pu) + S(p)

e The choice of a determines the trade off between the bias and
variance of the estimators i

If ¢ Is very large, solution is dominated by the likelihood function and
one has log &£ (u) = log &£ ., and very large variances

http://w p.rhul.ac.uk/~cowan/sda/
10000 T T 1 T
A (d)
5000 |- L m L -

Can lead to 0 *Llj[hqr | FM l

-5000

-10000 ! ! ! 1
0 02 04 06 08 1

X

If ¢ is small, leads to a perfectly smooth distribution (since all of the
weight is put on the regularization function \$)
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Choice of ¢

* Recall the mean square error from L04, S11:

~

R 2
MSE = E (9—9)

E _<é _ E[é])2 + (E[é _ 9])2

V(O] b?

Interpret: sum of squares of statistical and systematic uncertainties

variance and bias

i.e., sum of
2

_J

Take the MSE averaged over all bins as the measure of the goodness of the
final result. One can determine a so as to obtain a particular value of the MSE.

e Can also use:

Alog L =log &£ .« — log L = N/2
A)(gff =1
% =M
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Example with Maximum Entropy

. ) ; ' ' ' b " ' ' ' (b)
® Return to our original example | | 2ol _
(which was unfolded using f n
v i : : | ol 4, AT Mol
matrix inversion in s58) oo | I - T o TFT
e Now try with Maximum Entropy I | o r maimmwse
regularization N e — b ——— ©
2000 i 200 4
1m \J 1 Al ) '_T_F*‘ +
: | 0 [ R =
(@ - - - mean variance 1000 - el 7 + _|_+ +'|'+
7500 | : mean squared bias - _|"r- "'L_ -200 F  Alog L=N/2 -
' —— mean squared error 0 : ‘ : ) 3 ‘ " }
\ Wi ' ' f' b ' ' " ' (d)
200 | .
so00 | - J ,
o+ o = Tt H A+
: 1000 J |+“|~ TT |+I +
! N |
2500 ‘*s_‘“_"*_: .......... s ; | -200 Axe:=1
....° .............................. T -- .- 0 1 4 1 1 _'-L: . 1 1 1 1
e | d ¢ b i — b — (e)
° 0 . % : 115_ 20 25 a fi' 17 4
5 1 |
T e ﬂ |++ L
A'OgL 1000 + 4 + TT ‘+ +
Al - __‘j: | 200 F yxE=M .
Arrows indicate solutions . A = .
- = = 4] 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
based on the criteria In x

http://www.pp.rhul.ac.uk/~cowan/sda/

the last slide .
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Example with Tikhonov

® Return to our original example
(which was unfolded using
matrix inversion in s58)

®* Now try with Tikhonov
regularization

10000

7500

5000

2500

(T

1000

T}

1000

(b)

L] T

- - = mean variance

—— mean squared error

mean squared bias _

. 1000 |

(G

1000

0

— . —

F‘Lr"ﬁk
- J
J_[*'JILLI

-

g

0 0.2 04 0.6 0.8
X

Modern Methods of Data Analysis

1

200 F

200

200 -

200 +

- Alog L=NJ2

ol ' - -

b 1 t 1

P

o

0 0.2 04 0.6 0.8 1

(b)

(©)

(d)

(e)

http://www.pp.rhul.ac.uk/~cowan/sda/
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For next time

* Required reading
Cowan textbook: chapters 9 (9.8-9.9), 10, and 11

e Extra reading for fun: /Reading material / LO8 /

Search for BY — u™v, and BT — u™N at Belle
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Quiz Time: 8t Round



Lower and upper limit

1. Determine the lower and upper limit at 90% CL of the parameter A using the scan of
the likelihood function and the provided values for (). Note that the likelihood is already
normalised with respect to its maximal value.

>
= ATLAS — Total — Theory — Stat
~J H — yy, m,=125.09 GeV
on 6
9 _
o NS
+ o5
o f
<—< -
S 40
o b
o r
a3
| -
21
1
:Illllilllllllllillllll 'lllllllllillll
-1.5 -1 -0.5 0 0.5 1 1.5 2
}»tg
1—~ Qy

n=1 n=2 n=3 n=4 n=35
0.683 | 1.00 2.30 3.53 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1

Modern Methods of Data Analysis I 72



The problem with priors

2. Write down the posterior probability density function of a parameter 6 as a function of the
Likelihood of some data x and prior probability density function 7(x). What is the problem
of using Bayesian priors when you quote a limit and which functional form for the prior
somehow remedies them?
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Comprehension about unfolding

1. What is the unfolding problem? Write down the relevant equations for measurement v = (v, ..., vy)
with background B = (6 ... Sn), which should be unfolded in yields pp = (p; ... pn) using
a response matrix R.

2. Describe what the response matrix element R;; means in terms of a conditional probability.
Does the response matrix need to be a square or maybe even a symmetric matrix?

3. Describe two methods to solve the unfolding problem that do not involve regularization.
Sketch out in detail what steps need to be taken.
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Correction factors and regularized unfolding

4. What is the method of correction factors? What are the drawbacks of using this method?

5. What is the idea behind regularized unfolding?
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The muon g-2 window discrepancy
and GeV-scale new physics
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Kleiner Horsaal A (CS) 15:45 - 17:00

Dr. Luc Darmeé
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The decade-old discrepancy between the Standard
Model prediction of the muon anomalous magnetic
moment and the experimental results has seen
striking developments in the past two years. In
particular, recent lattice determinations of the
hadronic vacuum polarization contribution deviate
from the established data-driven ones at almost
50. This new anomaly can be also seen as a
tension between ab-initio lattice calculations and
experimental measurements of e+e-— hadrons
processes at and below the GeV scale.

We will review this puzzling situation and show how
new processes beyond the standard model can
affect indirectly the hadronic data around this
scale, reconciling the lattice and data-driven results
while complying with current phenomenological
constraints. We will finally present a simple dark
matter-motivated model as an explicit example.

Please note:
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The colloquium will also be live-streamed to B402 SR 224 (CN).
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