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Moderne Methoden der Datenanalyse

Depth and activation?
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Content of this lecture 
● Recap: perceptron → multilayer perceptron (MLP).

● MLP as representation of arbitrary contours.

● MLP training: 

● Perceptron learning rule. 

● Not linearly separable tasks and activation functions – revisted. 

● MLP as representation of Boolean functions.
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Recap: perceptron
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● Last time we discussed the Boolean perceptron with a simple step function as activation 
function (here shown for real-valued input features):

Different variations to express the 
activation logic:
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Recap: activation function
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● We discussed that the activation function could be any function.

Sigmoid: tanh:

Rectified linear unit (ReLU):

Softplus:

● A few popular examples are given below:
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Recap: multilayer perceptron (MLP)
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● We have discussed that the ability to express Boolean relations increases when using more 
than one perceptron, organized in layers → multilayer perceptron (MLP):

Hidden layersInput layer Output layer
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The fully-connected feed-forward NN
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Hidden layersInput layer Output layer

Building blocks are single 
perceptrons (also called 
nodes):

● Fully-connected: All nodes of consecutive layers are connected with each other.

● Feed-forward: Inputs are propagated only in forward direction.
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Mathematical notation
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Hidden layersInput layer Output layer

Building blocks are single 
perceptrons (also called 
nodes):
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Depth
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Example 1:

Depth? – 2 Depth? – 3

Example 2:

● An NN with a depth of            (i.e. an NN with more than 2 hidden layers) we call deep. 

● A feed-forward NN can be understood as a directed graph of depth   .

● A directed graph has sources and drains. The depth of a graph is the longest path between 
a source and a drain.
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The MLP as representation of Boolean functions
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● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality?
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The MLP as representation of Boolean functions
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● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

The MLP as representation of Boolean functions
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● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.

● Proof: any Boolean function can be 
expressed in the form of a truth table.

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1
Arbitrary example
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The MLP as representation of Boolean functions
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● Proof: any Boolean function can be 
expressed in the form of a truth table.

Arbitrary example

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Disjunctive normal form (DNF):

● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as representation of Boolean functions
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● Proof: any Boolean function can be 
expressed in the form of a truth table.

Arbitrary example

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.
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Arbitrary example
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0 1 0 1 1 1
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● Proof: any Boolean function can be 
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● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

The MLP as representation of Boolean functions
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Arbitrary example

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

● Proof: any Boolean function can be 
expressed in the form of a truth table.

● Last time we have discussed that an MLP can represent any arbitrary Boolean function. 
How many hidden layers does the MLP minimally require to have this quality? – 1.

OR
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The MLP as representation of Boolean functions
14/40

[Without proof] For N inputs the number of required nodes can 
grow exponentially (exp(N)). Giving the NN more depth, it is 
possible to reduce the number of nodes down to log2(N)!

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1
Arbitrary example

OR

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

The MLP as classifier
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● We have discussed that an MLP can approximate any arbitrary boundary (like the one 
shown below) with abitrary precision.

● For this we have used two hidden layers.

● Question: Do you think that this can be done in general[1] with only one single hidden 
layer? If yes – how? If no –  why not?

AND AND

OR

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=4 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 4 nodes

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=4 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

● What prevents us from filling an 
arbitrary contour with small squares? — 
there is an unbound area with MLP 
output                  , i.e. when filling the 
boundary with squares a distinction 
between „in- and outside the contour“ is 
impossible!

MLP with 4 nodes
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The MLP as classifier
17/40

● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=4 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 4 nodes

● This issue can be mitigated by moving 
on to more bounds.

● What prevents us from filling an 
arbitrary contour with small squares? — 
there is an unbound area with MLP 
output                  , i.e. when filling the 
boundary with squares a distinction 
between „in- and outside the contour“ is 
impossible!

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=5 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 5 nodes
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=6 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 6 nodes
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=8 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 8 nodes

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● The root cause is the difficulty to represent an arbitrary convex boundary with an MLP: 

● A contour with N=8 bounds can be 
represented by an MLP with a single 
hidden layer as shown (for a single 
pentagon) e.g. on slide 15. 

MLP with 8 nodes

● For               bounds this procedure re-
sults in a cylinder, inside of which    can 
be normalized to a const., while outside it 
will drop to 0 exponentially. 

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
19/40

● In this way any arbitrary contour can be approximated with arbitrary precision, with an MLP 
with a single hidden layer by filling the contours with cylinders. The perceptrons of the 
hidden layer are added in the output layer as demonstrated, e.g., on slide 15:

● Answer: it is possible, but a general construction is more complicated as you might think.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● [-] An MLP with a single hidden layer may require an 
infinite number of nodes.

● In this way any arbitrary contour can be approximated with arbitrary precision, with an MLP 
with a single hidden layer by filling the contours with cylinders. The perceptrons of the 
hidden layer are added in the output layer as demonstrated, e.g., on slide 15:

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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The MLP as classifier
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● Answer: it is possible, but a general construction is more complicated as you might think.

● [-] An MLP with a single hidden layer may require an 
infinite number of nodes.

● [+] Also here depth can allow a significant reduction of 
the required nodes[2]. How many hidden nodes for the 
example on the left? 

● In this way any arbitrary contour can be approximated with arbitrary precision, with an MLP 
with a single hidden layer by filling the contours with cylinders. The perceptrons of the 
hidden layer are added in the output layer as demonstrated, e.g., on slide 15:
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The MLP as classifier
19/40

● Answer: it is possible, but a general construction is more complicated as you might think.

● [-] An MLP with a single hidden layer may require an 
infinite number of nodes.

● [+] Also here depth can allow a significant reduction of 
the required nodes[2]. How many hidden nodes for the 
example on the left? – 12: 10 in the first + 2 in the 
second hidden layer. 

● In this way any arbitrary contour can be approximated with arbitrary precision, with an MLP 
with a single hidden layer by filling the contours with cylinders. The perceptrons of the 
hidden layer are added in the output layer as demonstrated, e.g., on slide 15:
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Summary
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● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.
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Summary
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● CON: A solution with only one single hidden layer in general may require an infinite 
amount of nodes.

● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.
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Summary
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● PRO: The number of required nodes can be significantly reduced when exploiting depth for 
an MLP → depth matters.

● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.

● CON: A solution with only one single hidden layer in general may require an infinite 
amount of nodes.
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Summary
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● PRO: The number of required nodes can be significantly reduced when exploiting depth for 
an MLP → depth matters.

● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.

● CON: A solution with only one single hidden layer in general may require an infinite 
amount of nodes.
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Summary
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● PRO: The number of required nodes can be significantly reduced when exploiting depth for 
an MLP → depth matters.

● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.

Depth

● CON: A solution with only one single hidden layer in general may require an infinite 
amount of nodes.
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● Deep NNs are more expressive 
than shallow NNs.

Summary
20/40

● PRO: The number of required nodes can be significantly reduced when exploiting depth for 
an MLP → depth matters.

● PRO: It is possible to approximate any arbitrary Boolean function (slides 9–14), boundary 
(slides 15–19), or real-valued function (equivalent to slides 15–19) to arbitrary precision 
with an MLP with only one single hidden layer.

Depth

● CON: A solution with only one single hidden layer in general may require an infinite 
amount of nodes.
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Deep vs. shallow NNs – Exercise – 
21/40

● Check out the following example:

● How many hidden nodes do we need to represent this contour with an NN with a single 
hidden layer? –  infinitely many!

Value 1

Value 0

NB: Ignore the bounding box and 
assume the chess-board structure to 
extend to infinity beyond the box.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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● Check out the following example:

● How many hidden nodes do we need to represent this contour with an NN with a single 
hidden layer? –  infinitely many!

Value 1

Value 0

NB: Ignore the bounding box and 
assume the chess-board structure to 
extend to infinity beyond the box.
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Deep vs. shallow NNs – Exercise – 
22/40

● Check out the following example:

● How many hidden nodes do we need to represent this contour with an NN with a single 
hidden layer? –  infinitely many!

Value 1

Value 0

● How many hidden nodes do we need to represent this contour with an NN with two hidden 
layers?

NB: Ignore the bounding box and 
assume the chess-board structure to 
extend to infinity beyond the box.
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Deep vs. shallow NNs – Exercise – 
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● Check out the following example:

● How many hidden nodes do we need to represent this contour with an NN with a single 
hidden layer? –  infinitely many!

Value 1

Value 0

● How many hidden nodes do we need to represent this contour with an NN with two hidden 
layers? –  61! How do we get to this number?

NB: Ignore the bounding box and 
assume the chess-board structure to 
extend to infinity beyond the box.
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● Check out the following example:

Value 1

Value 0

● The contour consists of      lines, which 
can be represented by      nodes in the 
first hidden layer.

Deep vs. shallow NNs – Exercise – 
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Value 1

Value 0

● The contour consists of      lines, which 
can be represented by      nodes in the 
first hidden layer.

● Check out the following example:

Deep vs. shallow NNs – Exercise – 
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Value 1

Value 0 ● In the second hidden layer                  
boxes are combined from the output of 
the first layer. 
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Value 1

Value 0

● The contour consists of      lines, which 
can be represented by      nodes in the 
first hidden layer.

● Check out the following example:

● In the second hidden layer                  
boxes are combined from the output of 
the first layer.
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Value 1

Value 0

NB: Removing only one single node from 
one of the layers means that again an 
infinite number of nodes is required and/or 
the contour can only be approximated.

● The contour consists of      lines, which 
can be represented by      nodes in the 
first hidden layer.

● Check out the following example:

● In the second hidden layer                  
boxes are combined from the output of 
the first layer.

Deep vs. shallow NNs – Exercise – 
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● Also this arrangement requires an infinite 
number of nodes. Why? – After passing 
the first layer you do not know any more 
where your sample is located inside the 
orange/white box.

Value 1

Value 0

MLP

Whish meets reality

1 2 3

4

5

6

● Check out the following example: ● Imagine you don‘t have      but only   
nodes at hand in the first layer, which you 
arrange as shown on the left.
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● Check out the following example:

● Root cause is the use of a step function as 
activation function in our example.

● Imagine you don‘t have      but only   
nodes at hand in the first layer, which you 
arrange as shown on the left.

Whish meets reality

● Also this arrangement requires an infinite 
number of nodes. Why? – After passing 
the first layer you don’t know any more 
where, e.g. inside an orange box, a 
sample is located.
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Value 1

Value 0

MLP

The role of the activation function

1 2 3
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● Check out the following example:

● Root cause is the use of a step function as 
activation function in our example.

Choosing an activation function for the nodes that preserves the information where, relative 
to the hyperplane boundary, a sample is located (slide 4) allows processing of information 
in proceeding layers. This works the better, the better the activation function supports the 
transmission of this information through consecutive layers.

● Imagine you don‘t have      but only   
nodes at hand in the first layer, which you 
arrange as shown on the left.

● Also this arrangement requires an infinite 
number of nodes. Why? – After passing 
the first layer you don’t know any more 
where, e.g. inside an orange box, a 
sample is located.
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Take a break? 
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Machine learning 

● Up to now we did not touch the actual ML part: the question how to determine the weights 
and thresholds of the MLPs to fulfill their tasks. 
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Truth vs. prediction
● Assume the MLP should represent the blue function 

shown on the right (→ truth).
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● Random choice of the weights          might result 
in the red curve, shown on the right 
(→ prediction). 
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Truth vs. prediction

● Random choice of the weights          might result 
in the red curve, shown on the right 
(→ prediction). 

● Task: Adapt the weights such that the red curve 
approaches the blue one as closely as possible.

● To solve this task mathematically we will quantify 
the difference between the two curves with the so-
called loss or cost function.

● Assume the MLP should represent the blue function 
shown on the right (→ truth).
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Sample and training 
● In general we don‘t know the truth. We have to infer it from a sample hoping that the 

sample is representative of the ground truth (→ learning by example).

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

31/40

Sample and training 
● In general we don‘t know the truth. We have to infer it from a sample hoping that the 

sample is representative of the ground truth (→ learning by example).

● Learning by example we call training.
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Sample and training 
● In general we don‘t know the truth. We have to infer it from a sample hoping that the 

sample is representative of the ground truth (→ learning by example).

● Learning by example we call training.

● To be representative the sample should catch all relevant characteristics of the truth. 
Individual properties of the sample (a.k.a. fluctuations) should not influence the training      
(→ generalization property). 
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Sample and training 
● In general we don‘t know the truth. We have to infer it from a sample hoping that the 

sample is representative of the ground truth (→ learning by example).

● Learning by example we call training.

● If an MLP has so many trainable parameters that it can pick up on fluctuations of the 
sample it runs into the issue of overfitting (→ overtraining). If the MLP has too few 
parameters it might not be expressive enough to do the job (→ underfitting).

● To be representative the sample should catch all relevant characteristics of the truth. 
Individual properties of the sample (a.k.a. fluctuations) should not influence the training      
(→ generalization property). 
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The perceptron learning rule
● Historic example: Training of a single Boolean perceptron to separate two classes with the 

help of labeled examples (here represented by points with different color)  (1):

(1) This is the historic example by Frank Rosenblatt, from the 1960ies.

● Task: Determine the weights of the 
perceptron such that the red points (with 
values 1) and the blue points (with values 0) 
are separated.
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The perceptron learning rule
● Historic example: Training of a single Boolean perceptron to separate two classes with the 

help of labeled examples (here represented by points with different color)  (1):

(1) This is the historic example by Frank Rosenblatt, from the 1960ies.

● Task: Determine the weights of the 
perceptron such that the red points (with 
values 1) and the blue points (with values 0) 
are separated.

● NB: The solution is ambiguous. The root 
cause of this is that the sample does not 
cover the complete space over     and     .

Solution 1
Solution 2
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The perceptron learning rule  
● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 

(=on the boundary).

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:
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The perceptron learning rule  

Step 0

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.
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(=on the boundary).
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The perceptron learning rule  

Done

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).
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The perceptron learning rule  

● NB: Rosenblatt could show that a single logic perceptron for linearly separable tasks always 
converges to the correct solution after a finite number of steps.

Done

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

NB: In the backup you can find the same 
algorithm played through w/ the blue points.
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The perceptron learning rule – limitations  
● The attempt to apply the same learning rule to more complex problems fails. Q: Why?

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:
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The perceptron learning rule – limitations 

● A: For the given example the samples are not linearly separable, i.e. one cannot draw a 
line to separate the blue from the red points! 

Example hyperplane

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:

● The attempt to apply the same learning rule to more complex problems fails. Q: Why?
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The perceptron learning rule – limitations  

● NB: The problem can still be solved. One could 
re-label the values 0 and 1 for each hyperplane, 
but the complexity of the problem would still 
grow exponentially. 

Example hyperplane

Algorithm: 

● Initialize weights randomly.

● Only update for examples w/ wrong predictions.

● For those, apply the following learning rule:

● The attempt to apply the same learning rule to more complex problems fails. Q: Why?

● A: For the given example the samples are not linearly separable, i.e. one cannot draw a 
line to separate the blue from the red points! 
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The role of the activation function – revisited 
● The issue of the perceptron learning rule originates from the use of the Heavyside step 

function as activation function:

● Small changes of the weights of the perceptron have no influence on its output.

Each of these curves 
leads to the same 
output. 
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The role of the activation function – revisited 

● Solution: Introduce a continuous activation 
function. 

● This turns the NN output function differentiable in 
any variable:

● This allows checking what changes in       one 
obtains from small changes in    .

● The issue of the perceptron learning rule originates from the use of the Heavyside step 
function as activation function:

● Small changes of the weights of the perceptron have no influence on its output.

Each of these curves 
leads to the same 
output. 
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The continuous activation function

● Example sigmoid function:

● Gradual changes of the weights lead to 
gradual changes of the NN output.

● The issue of the perceptron learning rule originates from the use of the Heavyside step 
function as activation function:

Wrongly predicted samples
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Not linearly separable tasks 
● We take the sigmoid function as an example of addressing not linearly separable tasks, 

here demonstrated with a 1d example:

Imagine running through    with a window of 
constant width and counting the relative frac-
tions of blue and red samples in that window. 
The sigmoid function represents to a good 
approximation the PDF to observe red.
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Imagine running through    with a window of 
constant width and counting the relative frac-
tions of blue and red samples in that window. 
The sigmoid function represents to a good 
approximation the PDF to observe red.

Imagine running through    with a window of 
constant width and counting the relative frac-
tions of blue and red samples in that window. 
The sigmoid function represents to a good 
approximation the PDF to observe red.

● We take the sigmoid function as an example of addressing not linearly separable tasks, 
here demonstrated with a 1d example:
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Summary 
● Continuous activation functions allow transmission of information through hyperplanes.

● Gradual changes of the weights lead to gradual changes of the NN output. In this way the 
minimization task can in principal be solved analytically!

● NB: To solve the minimization task you also need the differentiability of the loss function.

● For practical reasons neither the loss, nor the NN output function need to have a total 
derivative. It is sufficient if a gradual change in feature space leads to a gradual change 
in the NN output and loss function.

● An example of an activation function, which is not fully differentiable in all points of its 
input space is ReLU (slide 4).
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The perceptron learning rule  

Step 0

Algorithm: 

● Initialize weights randomly.

● Only update only examples w/ wrong predictions.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Step 0

A1/6
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The perceptron learning rule  

Step 1

Algorithm: 

● Initialize weights randomly.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Step 1

A2/6

● Only update only examples w/ wrong predictions.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
https://en.wikipedia.org/wiki/Jordan_normal_form


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

The perceptron learning rule  

Step 1

Algorithm: 

● Initialize weights randomly.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Step 1

A3/6

● Only update only examples w/ wrong predictions.
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The perceptron learning rule  

Step 2

Algorithm: 

● Initialize weights randomly.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Step 2

A4/6

● Only update only examples w/ wrong predictions.
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The perceptron learning rule  

Step 2

Algorithm: 

● Initialize weights randomly.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Step 2

A5/6

● Only update only examples w/ wrong predictions.
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The perceptron learning rule  

Algorithm: 

● Initialize weights randomly.

● For those, apply the following learning rule:

● Solution: Hyperplane in Hessian canonical form                       i.e.                    in the plane 
(=on the boundary).

Done

● Only update only examples w/ wrong predictions.
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Notes on the lecture  
● [1] In the previous lecture we have demonstrated that for the pentagon only five and not 

infitely many notes are necessary! This was the case, since for the pentagon the corners 
are connected by straight lines. In the slides following this annotation a general solution is 
discussed. 

● [2] The difference to [1] is that here there is no alternative to filling the disconnected contours 
with dots.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/
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