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Moderne Methoden der Datenanalyse

The NN training

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

2/52

Content of this lecture 
● Preparation for training and practical training aspects.

● Challenges during training and application and how to cope with them.

● Assessment of the training.
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The NN Task

Formulation of the 
task in reasonable 
mathematical form 

A set of (labeled) 
samples

An NN architecture, 
suited to solve the 
task

Definition of a suited 
loss function

Task
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Preparation for training
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Preparation for training
● Test dataset:

The data that the NN will be applied to.

● Training dataset (    ):
The data that the NN will be trained on.

● Validation dataset (    ):
The data that the NN will be validated on 
during training.

TestTraining (     )

Validation (     )
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K-fold cross validation
● In particle physics we use the data of our 

background model for training. TestTraining (     )

Validation (     )
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K-fold cross validation
● In particle physics we use the data of our 
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● Splitting those in stat. independent training 
and test datasets may imply a significant 
loss of sample size for signal extraction.
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datasets but still use full sample sizes for 
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K-fold cross validation
● In particle physics we use the data of our 

background model for training. 

● Splitting those in stat. independent training 
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(Here shown for 2-fold cross validation) 
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Training procedure 

Weight 
initialization.
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Training procedure 

Weight 
initialization. Gradienten-

descent
Stopping 
criterion

NN configuration for 
the application to the 
test dataset.

Training:
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Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

● The initialization of the weights happens randomly following a normal or uniform distribution. 

●  Naive ansatz:
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what variance? 

● The initialization of the weights happens randomly following a normal or uniform distribution. 

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

9/52

Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

●  Naive ansatz:

● Assume all weights to be initialized as standard 
normal distributed:                                               
         .

● Then           is also normal distributed, with 
what variance? – 

● The initialization of the weights happens randomly following a normal or uniform distribution. 

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

9/52

Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

●  Naive ansatz:

● Assume all weights to be initialized as standard 
normal distributed:                                               
         .

● i.e. increased probability for                     .

● The initialization of the weights happens randomly following a normal or uniform distribution. 

● Then           is also normal distributed, with 
what variance? – 

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

9/52

Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

●  Naive ansatz:

● Assume all weights to be initialized as standard 
normal distributed:                                               
         .

● What is the consequence for           ? 

● The initialization of the weights happens randomly following a normal or uniform distribution. 

● Then           is also normal distributed, with 
what variance? – 

● i.e. increased probability for                     .

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

9/52

Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

●  Naive ansatz:

● Assume all weights to be initialized as standard 
normal distributed:                                               
         .

● What is the consequence for           ? – 

● The initialization of the weights happens randomly following a normal or uniform distribution. 

● Then           is also normal distributed, with 
what variance? – 

● i.e. increased probability for                     .

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

9/52

Initialization of trainable parameters (TPs)
● Thresholds/biases are usually initialized to 0.

●  Naive ansatz:

● Assume all weights to be initialized as standard 
normal distributed:                                               
         .

● i.e. nodes in subsequent layers will not 
contribute any more to the information gain.

● The initialization of the weights happens randomly following a normal or uniform distribution. 

● Then           is also normal distributed, with 
what variance? – 

● i.e. increased probability for                     .

● What is the consequence for           ? – 
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Glorot initialization
● This situation can be prevented when initializing the weights in the following way:

● This method of initialization is called Glorot 
or Xavier initialization. 

● Initialize weights according to:

● Scale all weights according to:

● This leads to:
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ML applications of gradient descent
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Gradienten decent in practice
● We will discuss three practical flavors of gradient descent (GD): 

● Batch gradient descent, (BGD).

● Stochastic gradient descent (SGD).

● Mini-batch gradient descent (mBGD).
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Batch gradient descent (BGD)

Training (     )

Validation (     )

● Evaluate                                  on     (             ). 

● After weight actualization validate                                 on      
    (             ).
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Stochastic gradient descent (SGD)

● After evaluation permute     randomly.

● Evaluate                                  on a single sample of     (           ). 

● After weight actualization validate                                 on      
    (             ).

Training (     )

Validation (     )
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Mini-batch gradient descent (mBGD)
● Evaluate                                  on a mini-batch drawn 

from     (                            ). 

● After weight actualization validate                                 on      
    (             ).

● After evaluation permute     randomly.

Training (     )

Validation (     )
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Discussion of gradient descent
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● Each time                                  is evaluated on     we call epoch.
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● Each time                                  is evaluated on     we call epoch.

● This usually happens after     could have been sampled (in principle) once completely. But it 
is also possible to define an epoch by fixed size of gradient descent steps.   
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Discussion of gradient descent
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● Each time                                  is evaluated on     we call epoch.

● This usually happens after     could have been sampled (in principle) once completely. But it 
is also possible to define an epoch by fixed size of gradient descent steps.   

● SGD und mBGD are classical boostrap methods. NB: they can be applied on growing 
datasets. The nowadays nearly exclusively used method is the mBGD. Batch sizes vary 
depending on what you can afford hardware-wise. 
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Challenges during training
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● We will next discuss the following challenges and how to cope with them during training:

● Batch normalization. 
● Generalization property of the NN training. 

● Exploding/vanishing gadients.

● Overtraining and regularization methods.
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Exploding/Vanishing gradient
19/52

●             is the product of derivatives of consecutive NN layers (see backward pass).

Backwarp pass

● For an NN with many layers this product can become very long!

● It may happen that each factor contributes with       , i.e.                    , the        in the first 
layers are never really updated in such a case (→ vanishing gradient).
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jumps in the updates of the        (→ exploding gradient).

● It may happen that each factor contributes with       , i.e.                    , the        in the first 
layers are never really updated in such a case (→ vanishing gradient).

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

Exploding/Vanishing gradient
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●             is the product of derivatives of consecutive NN layers (see backward pass).

Backwarp pass

● For an NN with many layers this product can become very long!

● NB: this complex is generally discussed as unstable gradient problem. 

● It may happen that each factor contributes with       , i.e.                      , we obtain erratic 
jumps in the updates of the        (→ exploding gradient).

● It may happen that each factor contributes with       , i.e.                    , the        in the first 
layers are never really updated in such a case (→ vanishing gradient).
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Initialization and feature standardization
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● Two popular ways to address unstable gradients are Glorot initialization (see slide 10) and 
standardization (of the input features):  

● Input features with arbitrary potentially strongly varying scales are mapped onto a 
standard scale.
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Batch normalization
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● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

Batch normalization
22/52

E.g. prevent this weight 
from becoming much 
larger than the others. 

● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 
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Batch normalization
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E.g. prevent this weight 
from becoming much 
larger than the others. 

● Procedure:

● Standardize outputs of layer     :

● Scale and shift the result into an abitrary 
parameter space:

     and      give the NN the possibility to 
apply the            always on the same 
sub-manifold in parameter space. 

● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 
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E.g. prevent this weight 
from becoming much 
larger than the others. 

● Procedure:

● Standardize outputs of layer     :

● Scale and shift the result into an abitrary 
parameter space:

● How would you determine the         &        ?

● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 
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E.g. prevent this weight 
from becoming much 
larger than the others. 
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● Standardize outputs of layer     :

● Scale and shift the result into an abitrary 
parameter space:

● How would you determine the         &        ? 
– from the mini-batch during training. 
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E.g. prevent this weight 
from becoming much 
larger than the others. 

● Procedure:

● Standardize outputs of layer     :

● Scale and shift the result into an abitrary 
parameter space:

● How would you determine the         &     
when applying the NN to the test data? 

● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 

● How would you determine the         &        ? 
– from the mini-batch during training. 
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E.g. prevent this weight 
from becoming much 
larger than the others. 

● Procedure:

● Standardize outputs of layer     :

● Scale and shift the result into an abitrary 
parameter space:

● How would you determine the         &     
when applying the NN to the test data? – 
use the values calculated on all    .

● Standardization of the outputs of individual NN layers (→ batch normalization) helps 
preventing issues with strongly unequalized weights also during the training. 

● How would you determine the         &        ? 
– from the mini-batch during training. 
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What does the MLP learn?!?
26/52

● Reminder: In general we have to assume that the underlying truth to a classification or 
regression problem is unknown. 
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● Fundamental issue generalization:

● Reminder: In general we have to assume that the underlying truth to a classification or 
regression problem is unknown. 

What does the MLP learn?!?
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● Truth unknown, the training data consist only of samples from the ground truth. 

● Reminder: In general we have to assume that the underlying truth to a classification or 
regression problem is unknown. 

What does the MLP learn?!?

● Fundamental issue generalization:
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● Truth unknown, the training data consist only of samples from the ground truth. 

● Reminder: In general we have to assume that the underlying truth to a classification or 
regression problem is unknown. 

What does the MLP learn?!?

● Fundamental issue generalization:

● The sample is subject to fluctuations (→ variance). 
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regression problem is unknown. 
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● Truth unknown, the training data consist only of samples from the ground truth. 

● Reminder: In general we have to assume that the underlying truth to a classification or 
regression problem is unknown. 

What does the MLP learn?!?

● Fundamental issue generalization:

● The sample is subject to fluctuations (→ variance). 

● In addition training data could look fundamentally different from test data (→ bias). 

Training dataset:
„General“ properties „Specific“ properties
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Identification of general properties
28/52

● (How) can one distinguish general from specific properties of the training dataset?

● Example: the training dataset is indicated by the blue points.

Obvious connection to the issue of 
overfitting → overtraining. 

Training dataset:
„General“ properties „Specific“ properties
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Training and validation
29/52

● The issue of generalization of the NN model after training, nowadays is addressed through 
the use of the validation dataset    (see slide 5):
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● The issue of generalization of the NN model after training, nowadays is addressed through 
the use of the validation dataset    (see slide 5):

● If the NN model mostly describes unbiased general properties of the ground truth, we can 
expect that it will also describe    „reasonably well“. 
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● The issue of generalization of the NN model after training, nowadays is addressed through 
the use of the validation dataset    (see slide 5):

● An obvious way to check the consistency of the training is via the empirical risk function and 
thus the training objective itself. But it‘s not the only way… 

● If the NN model mostly describes unbiased general properties of the ground truth, we can 
expect that it will also describe    „reasonably well“. 
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Training and validation
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● The issue of generalization of the NN model after training, nowadays is addressed through 
the use of the validation dataset    (see slide 5):

● If the NN model mostly describes unbiased general properties of the ground truth, we can 
expect that it will also describe    „reasonably well“. 

● NB: In the past people evaluated             on the training and validation datasets and 
quantified their consistency with help of a Kolmogorow-Smirnow test. 

● An obvious way to check the consistency of the training is via the empirical risk function and 
thus the training objective itself. But it‘s not the only way… 
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Learning curve
30/52

● Typically the risk function drops with increasing number of epochs on the training dataset. 

● On the validation dataset the risk function will (mildly) increase again after a certain amount 
of epochs.

Loss on the training 
dataset

Loss on the validation 
dataset

Overtraining/OverfittingUnderfitting

Epoch

NB: It is not unusual for the loss to 
take smaller values on the training 
compared to the validation dataset.
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Learning curve
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Verlustfunktion auf 
Trainingsdatensatz

Verlustfunktion auf 
Validierungsdatensatz

Overtraining/OverfittingUnderfitting

Example of slide 28:

Epoch
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Early stopping
32/52

● These thoughts motivate a simple but very effective strategy to guarantee a sufficient level 
of generalization of the NN model:
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Early stopping
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● These thoughts motivate a simple but very effective strategy to guarantee a sufficient level 
of generalization of the NN model:

● Evaluate    after each epoch on    .
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Early stopping
32/52

● These thoughts motivate a simple but very effective strategy to guarantee a sufficient level 
of generalization of the NN model:

● If     evaluated on     does not decrease any more after a certain latency, stop the training.  

● Evaluate    after each epoch on    .
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Early stopping
32/52

● These thoughts motivate a simple but very effective strategy to guarantee a sufficient level 
of generalization of the NN model:

● If     evaluated on     does not decrease any more after a certain latency, stop the training.  

● Such a procedure is called early stopping. Here it is described in it‘s simplest form. 

● Evaluate    after each epoch on    .
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Discussion of generalization
33/52

● Since the optimization of the NN model is based on samples, the minimum that is reached 
on the training dataset can maximally be consistent with the minimum on the validation 
dataset, i.e. the expectation values of the estimates on both datasets coindice within their 
variances.    
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Discussion of generalization
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● Since the optimization of the NN model is based on samples, the minimum that is reached 
on the training dataset can maximally be consistent with the minimum on the validation 
dataset, i.e. the expectation values of the estimates on both datasets coindice within their 
variances.    

● If a training setup reaches consistency this confirms a good generalization property of the 
NN model.

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/


Priv.-Doz. Dr. Roger Wolf 
http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

Discussion of generalization
33/52

● Since the optimization of the NN model is based on samples, the minimum that is reached 
on the training dataset can maximally be consistent with the minimum on the validation 
dataset, i.e. the expectation values of the estimates on both datasets coindice within their 
variances.    

● If a training setup reaches consistency this confirms a good generalization property of the 
NN model.

● If the NN has bad generalization properties it is in the worst case …?
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Discussion of generalization
33/52

● Since the optimization of the NN model is based on samples, the minimum that is reached 
on the training dataset can maximally be consistent with the minimum on the validation 
dataset, i.e. the expectation values of the estimates on both datasets coindice within their 
variances.    

● If a training setup reaches consistency this confirms a good generalization property of the 
NN model.

● If the NN has bad generalization properties it is in the worst case useless! 
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Unfolding vs. NN generalization
34/52

● The discussion of generalization in ML has obvious correspondences to the „inverse 
problem“ of unfolding:

Unfolding: Machine Learning:

Truth to be unfolded Ground truth to be 
approximated

Unfolding matrix Training dataset

Unfolding NN model after training
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Unfolding vs. NN generalization
34/52

● The discussion of generalization in ML has obvious correspondences to the „inverse 
problem“ of unfolding:

Unfolding: Machine Learning:

Truth to be unfolded Ground truth to be 
approximated

Unfolding matrix Training dataset

Unfolding NN model after training

NB: A very modern NN architecture, the 
Normalizing Flow makes this relation 
explicit.
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Unfolding vs. NN generalization
34/52

● The discussion of generalization in ML has obvious correspondences to the „inverse 
problem“ of unfolding:

Unfolding: Machine Learning:

Truth to be unfolded Ground truth to be 
approximated

Unfolding matrix Training dataset

Unfolding NN model after training

● As in the case of unfolding regularization measures help improving the congruence of the 
model with the ground truth.
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Dropout
35/52

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
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Dropout
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● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
● Before each gradient descent, 

randomly earse nodes and all related 
connections with a given probability    
(including input nodes).
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Dropout
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● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
● Before each gradient descent, 

randomly earse nodes and all related 
connections with a given probability    
(including input nodes).

● This will create a gradient descent step 
for a slightly varying NN architecture.
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Dropout
35/52

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
● Before each gradient descent, 

randomly earse nodes and all related 
connections with a given probability    
(including input nodes).

● This will create a gradient descent step 
for a slightly varying NN architecture.

● Rescale all remaining weigths by       
Why?
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Dropout
35/52

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
● Before each gradient descent, 

randomly earse nodes and all related 
connections with a given probability    
(including input nodes).

● This will create a gradient descent step 
for a slightly varying NN architecture.

● Rescale all remaining weigths by       
Why? – Imagine you erased a fraction   
of nodes. The mean inputs to the next 
layer      would than drop to:
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Dropout – Example
36/52

Dropout:

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
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Dropout – Example
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Dropout:

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
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Dropout:

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
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Dropout – Example
36/52

Usual choices of 
dropout probabilities 
are                       .

Dropout:

● It has been shown to have a regularizing effect to train an ensemble with varying NN 
architectures and to average over the results within this ensemble.

● A simple realization is the so-called 
(inverted) dropout:
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How and why does Dropout work?
37/52

● How can dropout regularize the weights of an NN?

● Here node    obtains its information from 5 predecessor nodes.

● Each predecessor node could be erased during the next gradient 
descent step.

● The decision of node    may not rely on the information of a single 
predecessor node. The relevant information must be distributed 
over as many predecessors as possible. 

● This leads to a more equalized distribution of weights.

● It can be shown that dropout is equvalent to an L2 regularization, where the parameter    is 
determined in each node individually. 
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L1 and L2 regularization
38/52

● The last form of regularization that we will discuss today is L1 and/or L2 regularization.  

● This should be known to you from the discussion of optimization tasks with boundary 
conditions, when implemented in the form of penalty terms.

● Here you simply add the sum of all weights in form of the L1/L2 norm to the loss function:

(least absolute shrinkage and selection operator, Lasso)

(ridge regularization)
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39/52

L1 regularization                        L2 regularization
● Derivative of L1-Norm: ● Derivative L2-Norm:

● Erase single weights. ● Reduce contributions from individual 
weights. 

Imagine the length 
of     to be large, so 
that           will, to 
first order, be 
independent of      .
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L1 regularization                        L2 regularization
● Derivative of L1-Norm: ● Derivative L2-Norm:

● Erase single weights. ● Reduce contributions from individual 
weights. 

NB: if the loss function is an NLL function the L2 
norm is equivalent to a constraint on the weights 
based on a multivariate normal distribution with     
             and                     .
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Discussion of regularization techniques

● The more TPs the higher the risk to overtrain.

● The larger the training dataset the smaller the risk to overtrain.

● In general the following statements hold:

● It is therefore also always possible to reduce the risk of overtraining by increasing the 
training dataset.

● A procedure that we have not discussed here, since it is irrelevant in particle physics is 
called data augmentation: there one artificially increases the training dataset by turning, 
stretching, mirroring individual samples of the training dataset. 
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Success after training
● The success of a training in solving a given task is evaluated comparing the predictions       

with the labels       on    .

41/52

● Does the prediction coincide with the truth label „sufficiently“ often the training was 
successful in solving the task. 
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Binary classification
● For the special case of binary classification this assessment can be reduced to the 

discussion of binary hypothesis tests:

42/52

~Label (    )
Prediction (    )
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     is true (→ no singal)
43/52

● Specifity 
● True negative rate 

(TNR)

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:

~Label (    )
Prediction (    )
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● Fallout
● False positive rate 

(FPR)

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:

     is true (→ no singal)

~Label (    )
Prediction (    )
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● Miss rate
● False negative rate 

(FNR)

     is true (→ signal)
● For the special case of binary classification this assessment can be reduced to the 

discussion of binary hypothesis tests:

~Label (    )
Prediction (    )
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● Sensitivity
● Recall, hit rate
● True positive rate (TPR)

     is true (→ signal)
● For the special case of binary classification this assessment can be reduced to the 

discussion of binary hypothesis tests:

~Label (    )
Prediction (    )
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     has been classified
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● Negative predictive 
value (NPV)

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:

~Label (    )
Prediction (    )
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● Relevance
● Precision
● Positive predictive 

value (PPV)

     has been classified
● For the special case of binary classification this assessment can be reduced to the 

discussion of binary hypothesis tests:

~Label (    )
Prediction (    )
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Error of 1. und 2. kind
49/52

● To refresh your minds: which of 
these quantities refers to the 
error of 1. (   ) and 2. (   ) kind?

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:
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● Fallout
● False positive rate 

(FPR)

● Miss rate
● False negative rate 

(FNR)

Error of 1. und 2. kind

● To refresh your minds: which of 
these quantities refers to the 
error of 1. (   ) and 2. (   ) kind?

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:
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Reminder separation power
50/52

● Fallout
● False positive rate 

(FPR)

● Miss rate
● False negative rate 

(FNR)

● The function                       is 
called separation power of the 
hypothesis test.

Here    is the critical value of     on 
which the acceptance of          is 
based and    is the sample size.

● For the special case of binary classification this assessment can be reduced to the 
discussion of binary hypothesis tests:
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ROC curve
● For binary classification the separation power is often displayed in form of the receiver 

operating characteristics (ROC) curve:

51/52

PLB 759 (2016) 641

An example from particle physics:
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PLB 759 (2016) 641

ROC curve
● For binary classification the separation power is often displayed in form of the reciever 

operating characteristics (ROC) curve:

An example from particle physics:In this representation the working point for 
signal/background separation would be 
chosen in the most right and upper corner 
of the ROC curve.
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As measure for the separation power of 
such an algorithm the area under curve 
(AUC) of the ROC curve is usually 
chosen.

ROC curve
● For binary classification the separation power is often displayed in form of the reciever 

operating characteristics (ROC) curve:

An example from particle physics:
In this representation the working point for 
signal/background separation would be 
chosen in the most right and upper corner 
of the ROC curve.
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PLB 759 (2016) 641

As measure for the separation power of 
such an algorithm the area under curve 
(AUC) of the ROC curve is usually 
chosen.

ROC curve
● For binary classification the separation power is often displayed in form of the reciever 

operating characteristics (ROC) curve:

An example from particle physics:

Recap: which quantities from the 
previous slides do you find on the 
x- and y-axis of this 
representation?

In this representation the working point for 
signal/background separation would be 
chosen in the most right and upper corner 
of the ROC curve.
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Confusion matrix
52/52

● For applying a ROC curve to multi-classification it has to be reduced to pairwise binary 
classification.

● Alternatively the assessment is based on a form of the confusion matrix:

C
M

S-PA
S-H

IG
-18-032
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C
M

S-PA
S-H

IG
-18-032

Confusion matrix
● For applying a ROC curve to multi-classification it has to be reduced to pairwise binary 

classification.

● Alternatively the assessment is based on a form of the confusion matrix:

● Here one prefers large values on 
the diagonal of the matrix.
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C
M

S-PA
S-H

IG
-18-032

Confusion matrix
● For applying a ROC curve to multi-classification it has to be reduced to pairwise binary 

classification.

● Alternatively the assessment is based on a form of the confusion matrix:

● Here one prefers large values on 
the diagonal of the matrix.

● There are various flavors of 
confusion matrices, depending 
on how its entries have been 
normalized/scaled (or not).

In this case the columns have been 
normalized to 1, i.e. the diagonal 
entries correspond to the TPR (also 
called purity).
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Backup 
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A1/2

Linear regression  – NN model – 
●                 : value pair of sample (      ) and truth-label (      );

● Model:

● Activation function: Identity

● Loss function L2 norm

● Empirical risk functional: MSE

● Minimization algorithm: gradient descent
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A2/2

NN training (by human)
● Necessary conditions for minimum:

● Normal equations:
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