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Moderne Methoden der Datenanalyse: 
  

- Confidence in the NN decision -  
 

- Advanced NN structures: CNNs - 
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This is a very rich topic, with enough content for whole courses. 
Please consider the following teasers

21.7.2023 
Jan Kieseler
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Recap

• Feed-forward neural networks can be trained to be powerful classifiers 

• The training of a NN is subject to many parameter choices 
• Learning rates, regularisation, stopping time 

• It is crucial to have well-defined training and test datasets 

• It is crucial to define success metrics 

• We can determine that a NN works well and investigate the output

2
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σtt̄ = 803 pb

σtt̄ = 803 ± 2 (stat.) ± 25 (syst.) ± 20 (lumi.) pb
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What about uncertainties on NN?

• Some terminology from Machine Learning 

• This is a hot topic in machine learning

4
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Aleatoric uncertainties

5

Where are statistical processes 
in the MLP training?

• Reminder: a DNN training consists of 
dataset + architecture  + loss function + minimisation
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Aleatoric uncertainties

• Random initialisation of weights and biases  

• Random choice of mini batches 

• Stochastic minimisation procedures 

• Random distinction of training, (test), and validation sample  

• The whole sample is sampled from the ground truth

5

Where are statistical processes 
in the MLP training?

• Reminder: a DNN training consists of 
dataset + architecture  + loss function + minimisation
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Estimation of aleatoric uncertainties: some teasers

6
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Estimation of aleatoric uncertainties: some teasers

6

Deep Ensembles

• Initialise identical NNs 
with varying random 
seeds and check the 
distribution of 
outcomes 

• Obvious frequentist 
approach
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Estimation of aleatoric uncertainties: some teasers

6

Bayesian methods

 
• Learns probability 

distribution over possible 
neural networks 

• Won’t be covered here 
• Resources and tutorial 

e.g. [arxiv:2007.06823]

ω → p(ω | ̂y(x))

Deep Ensembles

• Initialise identical NNs 
with varying random 
seeds and check the 
distribution of 
outcomes 

• Obvious frequentist 
approach
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Estimation of aleatoric uncertainties: some teasers
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Bayesian methods

 
• Learns probability 

distribution over possible 
neural networks 

• Won’t be covered here 
• Resources and tutorial 

e.g. [arxiv:2007.06823]

ω → p(ω | ̂y(x))

Deep Ensembles

• Initialise identical NNs 
with varying random 
seeds and check the 
distribution of 
outcomes 

• Obvious frequentist 
approach

Dropout

• Next slide

arXiv:1506.02142, >6k citations
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Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the 
network to create redundant 
representations 

7

arXiv:1506.02142≈

Sample



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Dropout to estimate uncertainty
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samples from these redundant (but all 
different!) representations 

7

arXiv:1506.02142≈

Sample



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the 
network to create redundant 
representations 

• Dropout during inference/test time (MC) 
samples from these redundant (but all 
different!) representations 

• If dropout is placed before every MLP 
layer in the DNN, this sampling 
approximates a Bayesian FF NN → 
uncertainties can be estimated 

7

arXiv:1506.02142≈

Sample



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the 
network to create redundant 
representations 

• Dropout during inference/test time (MC) 
samples from these redundant (but all 
different!) representations 

• If dropout is placed before every MLP 
layer in the DNN, this sampling 
approximates a Bayesian FF NN → 
uncertainties can be estimated 

• Powerful and easy to use tool

7

arXiv:1506.02142≈

Sample



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the 
network to create redundant 
representations 

• Dropout during inference/test time (MC) 
samples from these redundant (but all 
different!) representations 

• If dropout is placed before every MLP 
layer in the DNN, this sampling 
approximates a Bayesian FF NN → 
uncertainties can be estimated 

• Powerful and easy to use tool
• Can also cover epistemic uncertainties

7

arXiv:1506.02142≈

Sample



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Epistemic uncertainties

• The model does not have enough degrees of freedom to map the 
ground truth  
→ underfitting 

• The model systematically maps specific, non-general properties of the 
training sample  
→ overfitting 

• Differences between training and test sample 
→ bias 

• Much as systematic uncertainties, epistemic uncertainties can be 
reduced on the basis of additional information

8
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A DNN in an analysis

9

What additional uncertainties have to be taken into account 
due to the presence of the NN, to trust our measurement? 

…
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A DNN in an analysis

9

What additional uncertainties have to be taken into account 
due to the presence of the NN, to trust our measurement? 

After training NN acts like a 
deterministic high-level variable  
→ no additional uncert. required. 

✓

…
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A DNN in an analysis
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What additional uncertainties have to be taken into account 
due to the presence of the NN, to trust our measurement? 

After training NN acts like a 
deterministic high-level variable  
→ no additional uncert. required. 

✓

Intrinsic (stat.) uncertainties of NN 
training only of importance for 
reproducibility of the training. 

✓

…
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A DNN in an analysis

9

What additional uncertainties have to be taken into account 
due to the presence of the NN, to trust our measurement? 

After training NN acts like a 
deterministic high-level variable  
→ no additional uncert. required. 

✓

Intrinsic (stat.) uncertainties of NN 
training only of importance for 
reproducibility of the training. 

✓

NN exploits input variable space much 
deeper than e.g. cut-based selection 
requirements  
→ thorough control of input space required. 

!!!!

…

The NN is ‘just’ a function y = Φω(x)
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A DNN in an analysis

9

What additional uncertainties have to be taken into account 
due to the presence of the NN, to trust our measurement? 

After training NN acts like a 
deterministic high-level variable  
→ no additional uncert. required. 

✓

Intrinsic (stat.) uncertainties of NN 
training only of importance for 
reproducibility of the training. 

✓

NN exploits input variable space much 
deeper than e.g. cut-based selection 
requirements  
→ thorough control of input space required. 

!!!!

…

The NN is ‘just’ a function y = Φω(x)
Is the function acting in the right way 
on the well understood inputs?
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,  
 not understood, possibly mismodelled, 

no idea what the DNN does

y = Φω(x)
x

,  
 well understood,  

correlations between  well understood, 
the DNN captures the ‘right’ features

y = Φω(x)
x

x

Reminder:  
• most measurements compare data 

to a simulation (hypothesis test) 
• The DNN is trained on simulation
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Unboxing the NN

• Exploit Taylor expansion of  in  with fixed  and  after training to 
identify the  with with largest influence on  : 
 

 

 
: sample size 
: Taylor coefficient labeled by  

• Introduce generalised features of the input feature space: 
1st order feature 

2nd order feature 
…

̂yj x ω b
xi ̂yj

< tα > =
1
N

N

∑
k=1

tα({x(k)})

N
tα α

α = x1, x2, . . .
α = x1x1, x1x2, x2x1, . . .

11

arXiv:1803.08782
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Meaning of generalised features

• 1st oder feature: 
• Physical location of of feature/marginal distributions, e.g. signal at 

small , signal at large  

• 2nd order feature: 

•  : Linear correlations across two features  

• : “Self-correlations”, i.e. curvature of  w.r.t.   
(since it is the 2nd derivative)

x1 x1

xixj

xixi ̂yj xi

12
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Simple example

• Two input features  and  

• Binary classification 

• Signal and background samples 
from normal distributions: 

 and 
 

• The task is symmetric

x1 x2

μS = (0.5, 0.5)
μBG = (−0.5, − 0.5)

13
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DNN and training

• One hidden layer with 100 nodes 
• tanh activation 
• sigmoid on output 

• Loss function: binary cross entropy 

• Minimiser: Adam, lr=1e-4 

• Mini-batch training with early stopping after 30 epochs (more later)

14

…
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Taylor coefficients

•  and  found to be most influential 
(distinction of S and BG by location) 

•  indicate that correlations play a role  
(for S and BG  and  are linearly 
correlated)

x1 x2

xixj
x1 x2

15
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Taylor coefficients as a function of time

•  and  found to be most influential 
(distinction of S and BG by location) 

•  indicate that correlations play a role  
(for S and BG  and  are linearly correlated) 

• After convergence  are stable and 
reproducible even though the NNs 
themselves are different

x1 x2

xixj
x1 x2

< tα >

16

• Allows monitoring of the training process
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Considering sample space

• Monitor what phase space regions the NN 
identifies as important and at what point in the 
training it starts to investigate them:  

• After epoch 1: 

17
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Considering sample space

• Monitor what phase space regions the NN 
identifies as important and at what point in the 
training it starts to investigate them:  

• After epoch 50: 

18
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A slightly more complex task

• Adding different linear correlations to S and BG 

• Steep initial learning curve 

• Only later, the additional importance of the correlation  is identified 
as being important (improving area-under-ROC by 10%)

x1x2

19
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Watch the NN learn

• After epoch 1

20
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Watch the NN learn

• After epoch 100

21
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Watch the NN learn

• After epoch 2000 

• Learned that S and BG are separated in feature 
space. Difference in correlations missed until epoch 
~1000

22

• Powerful tool to check convergence; in general be careful with early stopping
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A real-life example

• ATLAS data from the ML 
challenge of 2014 [1] 

•  used for an 
unambiguous importance 
ranking

< tα >

23

[1] https://higgsml.lal.in2p3.fr/documentation/
PhD Stefan Wunsch 
https://cds.cern.ch/record/2751100?ln=de

32’

https://higgsml.lal.in2p3.fr/documentation/
https://cds.cern.ch/record/2751100?ln=de
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Conclusions of the Higgs boson ML challenge

• Without knowing the physics, the NN has: 
• Identified mvis and MMC mass as 

important 
• Identified that both peak in S and 

BG; peaks gets rated high 
• Identified correlations to be more 

important than 1st order features 

• The DNN has indeed identified the 
relevant physics features, not spurious 
outliers

24
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Intermediate summary

• In machine learning, we distinguish between aleatoric and epistemic 
uncertainties (  statistical and systematic uncertainties) 

• There are methods to estimate both, and a lot of research refining 
them 

• For most bread-and-butter applications in physics, the DNN can be 
taken as a deterministic function 

• What matters often most is to understand and model the inputs well 
and guarantee a physically meaningful DNN output

≈

25
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Time for questions

26

Epistemic

Aleatoric

Reproducibility

Ranking

Correlations

Deterministic

36’
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Moderne Methoden der Datenanalyse: 
  

Advanced Neural Network Structures: CNNs

27
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Recap: DNNs and their parameters

• All nodes of consecutive layers are connected with each other 
• Typically an ANN is called “deep” if it has >4 hidden layers 
• Referred to as Multi-Layer Perceptron, Feed-Forward NN

28

Hidden layersInput layer Output layer
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DNNs as universal function approximators

• DNNs are universal function approximators, already with very few parameters 
• But beware of extrapolation / out-of-distribution effects 

• How many parameters are needed?

29

“Out-of-distribution”

• Very simple NN: one hidden layer, one input, one output, tanh activation

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP
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Counting parameters

• Typical small MLPs: about 10k - 100k 
• ChatGPT: 1.5 Billion 
• More free parameters → more expressivity

30

Hidden layersInput layer Output layer

  7 x 8 + 8 x 9  +  9 x 9  + 9 x 8  + 8 x 5 = 321Nω =
        8    +     9     +     9     +    8     +  0 = 34  Nb ≥
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More parameters → more resources

• More parameters: 
• More training data 
• More resources to evaluate 
• Even more resources to train

31

MNIST [L. Deng, IEEE 2012] 
60k images

Common Crawl

~10k-100k parameters 
Trains in minutes on your laptop 
Uses ~10 Wh of electricity

~1.5Trillion parameters 
Trained 6 month 
$100M for compute, roughly 10 000 MWh

↔

↔Not an MLP!

Only estimates, no official 
numbers
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Recap

• Architecture needs to fit the desired output ✓ 
• Architecture needs to fit the input data 

32

R. Wolf
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Main building blocks of architectures

• MLP / Feed forward ✓ 

• CNNs 

• RNNs 

• Attention 

• GNNs

33

Next time
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Recap

• Architecture needs to fit the desired output ✓ 
• Architecture needs to fit the input data 

34

R. Wolf
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Convolutional Neural Networks

35

Image-like data

50’
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CNNs are everywhere and at the core of computer vision

36

• Self-driving cars 
• Surveillance 
• Skin cancer 

detection 
• … 
• Particle physics
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Structure counts

• Is this an image of a cat? 

• Typical (phone) cameras 10-50 MP 
• How many parameters does the first layer have?

37

?

Cat node

O(300) parameters
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Structure counts

• Is this an image of a cat? 

• Typical (phone) cameras 10-50 MP 
• How many parameters does the first layer have?

37

?

Cat node

O(300) parameters

• In this example: 80 - 400 million parameters in first layer 

• Also, this architecture will not perform well
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Structure counts

• What if the cat moved? 

• Present entirely different input to the DNN 

• This complexity cannot be captured by as little as 8 nodes 
• Lack of expressivity 

• Solution: exploit the structure of the data

38
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Introducing filters

• Create a cat-face 
filter (no ML here) 

• Slide it over the image 

• Take maximum of all cat scores: 
image cat score 

• We found the cat

39

Very cat-like: 
Score = 1

Not at all cat-like 
Score = 0
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Cats come in different shapes

• Many different very complex filters 
are needed 

• Can be solved by 
• Learning filters from examples 
• Abstraction

40

Not a cat

Not a cat
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Learning the filters

• Learn (approximations of)  different shapes 
• Represent them by  (combinations of) output nodes

41

Each color 
highlights a single 
shared param.
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A CNN kernel: step by step

• Inputs  

• For one channel: 

x

yj = θ (
Nk

∑
i

ωi xI( j,i) − T)

42

Activation function
Learnable weights: 
Relative position to j

Learnable bias

Index m of the pixel on the i-th place 
in the neighbourhood of j

(  )Nk (  )Nk

1 2 3
6 7 8
11 12 13

+2 for full row
+2 for full row

I(7,i) = { }
conditions at the edges → wait a few slides

Kernel size
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Multiple output channels

• Inputs  

• For Nc output channels ( ) 

x

α

yjα = θ (
Nk

∑
i

ωiα xI( j,i) − Tα)

43

The weights are still shared 
and depend only on relative 
position w.r.t. pixel j 
(and )α

(  )Nk (  )Nk
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Multiple output channels

• Inputs  

• For Nc output channels ( ) 

x

α

yjα = θ (
Nk

∑
i

ωiα xI( j,i) − Tα)

43

The weights are still shared 
and depend only on relative 
position w.r.t. pixel j 
(and )α

(  )Nk (  )Nk
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Multiple input channels

• Inputs  

• For NF input channels/features 

 

• This is a complete convolutional 
layer

x

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

44

One kernel ≙ one dense MLP layer

(          )Nk (          )Nk Still strictly relative
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Example

• No activation 
• No bias 
• One input 
• One output 

yj =
Nk

∑
i

ωi xI( j,i)

45

1 0 1
0 1 0
1 0 1

Kernel
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Example

• No activation 
• No bias 
• One input 
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ωi xI( j,i)
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1 0 1
0 1 0
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Kernel
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Time for some (more) questions

46

Parameters

Filter

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

Kernel

Channels

Bias

Neighbourhood

65’
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Longer side note: where is the convolution?

• Convolution:  

 

• Discrete: 

( f * g)(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

47

• CNN:  

 yj =
Nk

∑
i

ωi xI( j,i)

’n-m’ hidden here
https://en.wikipedia.org/wiki/Convolution [accessed 13.7.23]

https://en.wikipedia.org/wiki/Convolution
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Re-shuffle symbols

48

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

Index m of the pixel on the i-th place 
in the neighbourhood of jyj =

Nk

∑
i

ωi xm=I( j,i)
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Re-shuffle symbols

48

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

Index m of the pixel on the i-th place 
in the neighbourhood of jyj =

Nk

∑
i

ωi xm=I( j,i)

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

Switch perspective

The i-th place for a pixel with index m 
in the neighbourhood of j  

If not in neighbourhood: extend kernel  
such that  ω = 0

✓

Pixels  
in image

=
Np

∑
m=1

ωi=I−1( j,m)xm
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Re-shuffle symbols

48

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

Index m of the pixel on the i-th place 
in the neighbourhood of jyj =

Nk

∑
i

ωi xm=I( j,i)

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

Switch perspective

The i-th place for a pixel with index m 
in the neighbourhood of j  

If not in neighbourhood: extend kernel  
such that  ω = 0

✓

Pixels  
in image

=
Np

∑
m=1

ωi=I−1( j,m)xm

Simple replacement as x[m] = xm

✓
yj =

Np

∑
m=1

x[m] ωi=I−1( j,m)
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It is a convolution

49

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

This is index j!

 

 can be rephrased as a distance index

yj =
Np

∑
m=1

x[m] ωI−1( j,m)

I−1( j, m)



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

It is a convolution

49

( f * g)[n] =
+∞

∑
m=−∞
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It is a convolution

49

* technically, depending on the definition, this could implement a convolution or cross correlation, possibly implementing a sign flip w.r.t. 
convolution. In practice this does not matter since  are learnable and can re-absorb the flip. A detailed explanation can be found here: 
https://ai.stackexchange.com/questions/21999/do-convolutional-neural-networks-perform-convolution-or-cross-correlation 
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Translational equivariance as direct consequence

• Convolutions and translation 
commute 

• Shift + convolution is the same 
as convolution + shift 

• This is referred to translation 
equivariance 
(not invariance)

50

https://en.wikipedia.org/wiki/Convolution

Credit: Maurice Weiler

https://en.wikipedia.org/wiki/Convolution
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Conditions at the edges

• For a 3 x 3 kernel, the image size will be 
reduced by 2 pixels on top and bottom 

• For a 5 x 5 kernel? 

• If this is not desired (zero) padding the 
image can help

51

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2 

arxiv:1603.07285

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2
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Cats (still) come in different shapes

• Many different very complex filters 
are needed 

• Can be solved by 
• Learning filters from examples 
• Abstraction

52

Not a cat

Not a cat

✓



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

Breaking up the problem into smaller parts

 

• This is one complete 
convolutional layer with 

 

• Counting weights: 
how many do we have? 

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

α ϵ {1, . . . , NC}

53

One kernel ≙ one dense MLP layer

(          )Nk (          )Nk
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One kernel ≙ one dense MLP layer

(          )Nk (          )Nk

• With , kernels must not be too big 
• Smaller kernels cannot capture a whole cat 

• Break down problem: abstraction and pooling

Nk ≈ H ⊗ W

NC ⋅ NF ⋅ Nk
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Abstraction and pooling

54
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Abstraction and pooling
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Eye filter
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Abstraction and pooling
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Nose filter

Eye filter
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Abstraction and pooling
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Cat face filter

Nose filter

Eye filter
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Abstraction and pooling
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Cat face filter

Nose filter
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Abstraction and pooling

• Use smaller kernels to capture individual features 
• Summarise (pool) the filter outputs of several neighbouring pixels 

• Take maximum (max pooling) 
• Take average/sum (average pooling) 
• Reshape tensor 

• Go in bigger steps ‘skipping’ pixels: strides
54
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Pooling

• Max pooling: which filter has triggered the largest output? 
• Is this more of an eye or a nose in that patch 

• Reshaping: re-organise the information without removal of information 
• Not used so much, in particular for classification

55

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/ 

reshape (2,2,9,4) (7,3,6,1)

(8,5,3,1) (2,4,2,6)

Why?

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
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Strides

56

arxiv:1603.07285

Stride 1, padding Stride 2Stride 1, no padding
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Strides

• The stride is the amount the filter ‘moves’ at each step

56

arxiv:1603.07285

Stride 1, padding Stride 2Stride 1, no padding
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The notion of the receptive field

• For a given pixel, from how far away could it have accumulated 
information 

• Central concept when designing neural networks in general 

• Easily accessible for CNNs 

• Needs to be big enough to capture the object

57

80’
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Our CNN toolbox

• CNN kernel 
• Learns filters 

 
 
 
 

• Strides + Pooling 
• Build summaries 

 
 
 
 

• Stack CNN layers 
• Abstraction
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yjα = θ
NF

∑
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ωiαβ xI( j,i)β − Tα
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Example: LeNet (1998)

• Very early CNN  
(“the” CNN) 

• Shows typical features 
of also modern 
classification CNNs: 
(pooling, pixel dims → 
feature dims, …)

59

LeCun et al, Proceedings of the IEEE, 1998

MNIST dataset
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Unboxing: we can directly visualise the filters

60

A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

https://adamharley.com/nn_vis/cnn/2d.htmlTry yourself:

https://adamharley.com/nn_vis/cnn/2d.html
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CNNs are very powerful: fewer parameters

• CNNs break down the large number of input pixels with a much 
smaller number of parameters 

• Abstraction and pooling maintain 
expressivity

61

R. Wolf



Dr. Jan Kieseler, Priv.-Doz. Dr. Roger Wolf

CNNs are very powerful: effective training sample

• The filter weights are shared for all j 

• They are trained for every  : 

•  ‘see’ (sample size * number of pixels) training examples 

• There are (almost) always multiple benefits from using the structure of the data

yj

ω

62

R. Wolf

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

Millions
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Physics examples: jet tagging

• Identifying origin of a jet very useful for 
many analyses 

• Treat the jet deposits (e.g. in the 
calorimeter) as an image 

• Performance gain over high-level variables

63

Top Quark/gluon

arxiv:1803.00107 
(and many others)

Better
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Structure matters: CNNs are not just for images

• Interpret all reconstructed particles in 
the jet as individual ‘pixels’ in a 1D image 

• Pre-process using 1D ‘CNNs’ 
• Translation equivariance 
→ particle equivariance 

• Enabled to use all jet constituents 
for the first time 

• Enormous performance gain in 
particular at high momentum 

• Standard tagger in CMS 
• >>100 analyses 

 
 

64

arxiv:2008.10519
now• Gain  up to decades more data taking!≈
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Summary

• Feed-forward NN can be powerful classifiers directly for analysis 

• With great power comes great responsibility 
understand the inputs, their correlations, and the network response to 
them e.g. through Taylor expansion and beware of out-of-distribution 
effects 

• Understanding and utilising the structure of the data is key 

• CNN architectures combine translation equivariant feature detection, 
abstraction and pooling of information 

• Stay tuned for next time:

65

“Attention is all you need” 
featuring 

“Everything is a graph” 


