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2 Classical optics and microscopy
21 Microscopic imaging

2.1.1  Geometrical optics

2.1.2  Primary aberrations and Abbe's sine condition
2.1.3 Resolving power and criteria

2.1.4  Image formation

2.1.5  Fourier optics
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AIIT Geometrical optics - paraxial approximation

AIT Geometrical optics — paraxial approximation
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AT Geometrical Optics — Abberations

Paraxial approximation: sing = @

5
Exact Taylor series: sing = q, %_

,abberations of third order”

Primary (monochromatic) abberations

Spherical abberation
Astigmatism

Coma

Field curvature

Field distortion
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AT Spherical Abberation

For monochromatic light the abaxial
rays are refracted stronger then the
paraxial rays.

Workaround

» Suppression of abaxial rays using a
small aperture close to the lens
(,aperture stop® or ,stop®).

» Lens shape, e.g., plano-convex lenses
for incident collimated pencil of rays.

» Corrected lens systems
» Aspherical lenses

—
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AT Astigmatism (,absence of points®)

Astigmatism of oblique ,pencils of rays*

» Occurs for objects remote from the symmetry axis.

» The image of a point produces two orthogonal lines at different positions, inbetween is
a blurred area.

Workaround includes the optical axis
» Stop down the aperture - -

7

(_ Meridional plane )

Sagittal
plane .

perpendicular to meridional plane
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AT Coma

» Magnification depends on angle of rays with reference to the
optical axis.

> Arises if object is remote from the optical axis.

Workaround
» Stop down aperture
» Special lens system — Aplanat

Image of a holey plate
with coma

Image
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AKIT Wide angle rays - Abbe's Sine Condition

In case of ideal point imaging all contributing rays must have the
same optical path (distance of wavefronts). Thus we get

PP =PP, = PP=DPP = |Aa=Ab

Aa i
T - S |]3| B ﬁjnn
Ab = 4] ~ sing Sine condition
— = sinf
B
B
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AT Abbe's Sine Condition
G _sinf GT "
B siny L % B
g b —

The sine condition can be simplified in case of a very large object distance g — co:

AT Resolving power

Airy diffraction fringes
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AT Resolution criteria
Rayleigh

definitely
resolved

no longer
resolved

Sparrow

E. Hecht, Optik
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AT lllumination

Incoherent illumination Coherent illumination

E. Hecht, Optik
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AIT Image formation according to Abbe
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AWIT Image formation according to Abbe

Abbe’s diffraction plate diffraction image
(focal plane)
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AKIT Image formation according to Abbe
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ST Diffraction at double slit

Formula for 1. maxima (normal light incidence):

2

A=dsi = d=
sing sin @

Exciting the slits with a phase difference of = (oblique light incidence) results
in 0. and 1. maxima for:

A

4 .
E:dsm(p = d-m
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AT Diffraction at double slit

AKIT Image formation according to Abbe

! (2}! (1)
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Exciting the . Hence) results
in0.and 1.8 3
A dsi = d= A
2 sing ~ 2sing
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AT Fourier optics
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AT Example: Circular Aperture

cylinder function Fourier transform

F(k)
|

1 Jx*+)* <a

0 Frrsa

S(x,y)= { F(k,.k,)= If:f(x,y) SEE g gy
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Angular Spectrum Representation
T of Optical Fields

Pt

E% Etux (x,,2)= Em(‘ + Emm
[,
o \ o { |

Consider the field E(x,y,z) in a plane z = const transverse to an arbitrary axis z.
The 2D-Fourier transform E of E is then given by:

1

EA(/c\,/c‘.;z =—
g P

[[ EGe, v 2)exp(=ilk,x+ k, yD drdy
so that
E(x,y,z) = ” E(k,,k,; z) exp(ilkx +k,y])dk dk,
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Angular Spectrum Representation of Optical
KIT ° P Fieﬁds P

We assume that the medium in the plane is homogeneous, isotropic and source-
free. Then

(V2+k*)E(x,y,2)=0; k=n(w/c) and n=. ue (Helmholtzequation)

Inserting the Fourier representation of E(x,y,z) into the Helmholtz equation we find

E(k, k;2) = E(k,.k,;0) explik.z); k. =k -k -k

E(x,y,2) = [ E(k,.,;0) explilk,x + k,y + k.2]) dk,dk,

For the case of a purely dielectric medium, the angular spectrum is a superposition
of only two characteristic solutions: plane waves and evanescent waves.

Plane waves:  exp(i[k x+k y]) exp(ilk |2); k7 +k] <k,

Evanescentwaves:  exp(ilk,x+k y]) exp(—|k.|z); & +k] >k’
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