

,

Stochastic Optical Reconstruction Microscopy: Conclusion

Limitations

- Technique is only available for fluorescence applications (not possible for light transmission, scattering or phase-sensitive applications) and needs special dye molecules (switching ability) in the sample (labeling).
- > Low time resolution due to the large number of required image frames. Mostly (for biological specimens) fixation is needed thus giving "only" structural information.
- > Low fluorophore density can ensure high localization precision but leads to less optical information due to "pixelization" (unconnected image point).
- High label density gives smooth images but may lead to interaction of neighboured fluorophores and thus quenching; localization precision may suffer from higher uncertainty to measure photons of two or more molecules.
- > Non-specific labeling may lead to a high background.

Nanooptics 24/12

- 4. Nano-optics using far-field optical techniques
 - 4.1 Introduction: single-molecule methods in biology
 - 4.2 Single-molecule tracking (SMT)
 - 4.3 Stochastic optical reconstruction microscopy (STORM)
 - 4.4 4pi microscopy
 - 4.5 Stimulated emission depletion (STED)
 - 4.6 3D laser lithography using STED

Nanooptics 24/13

4

Nanooptics 24/22

