A brief tour of the Standard Model

Monika Blanke

Standard Model (SM) in a nutshell

Basic ingredients

- matter fields three generations of quark and leptons
- gauge fields force carriers of strong, weak and electromagnetic interactions
- Higgs field responsible for electroweak symmetry breaking, particle masses

Gauge symmetry

gauge symmetry group G_{SM} – group of local symmetry transformations under which SM Lagrangian is invariant

$$G_{\mathsf{SM}} = \underbrace{SU(3)_c}_{\mathsf{QCD}} \times \underbrace{SU(2)_L \times U(1)_Y}_{\mathsf{electroweak}}$$

Interactions and force carriers

- $SU(3)_c$ strong interactions (QCD) >> gluons
- $SU(2)_L \times U(1)_Y$ electroweak (EW) interactions $\gg W^{\pm}, Z$, photon

Interlude: Lie groups

SU(N) – continuous groups ("Lie groups") of special unitary $N \times N$ matrices, i. e. $U_N^{\dagger}U_N = 1$, det $U_N = 1$

- $N^2 1$ generators
- \bullet for local symmetry: each generator corresponds to one massless spin-1 particle $\vartriangleright N^2-1$ gauge bosons
- non-abelian: elements do not commute \succ gauge bosons self-interact

 $m{U(1)}$ – group of 1-dim. unitary transformations, i. e. rotations by complex phase $e^{i\phi}$

abelian, one generator

Quantum chromodynamics (QCD)

Basics of QCD

 observed spectra of mesons and baryons led to the postulation of three quark flavours u, d, s which carry colour-charges (red, green, blue)

Quantum chromodynamics (QCD)

Basics of QCD

- observed spectra of mesons and baryons led to the postulation of three quark flavours u, d, s which carry colour-charges (red, green, blue)
- (q_r, q_g, q_b) form a triplet under the gauge symmetry SU(3)
- $\bullet\,$ the 8 gauge bosons of SU(3) are the gluons
- mesons and baryons carry no colour, they are SU(3) singlets
 ➤ confinement

The QCD Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = \bar{q}_i (i \not\!\!D_{ij} - m \delta_{ij}) q_j - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

• q_i : quark field of colour i = r, g, b with mass m

The QCD Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = \bar{q}_i (i \not\!\!\!D_{ij} - m \delta_{ij}) q_j - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

- q_i : quark field of colour i = r, g, b with mass m
- $D_{\mu,ij}$: covariant derivative

$$D_{\mu,ij} = \partial_{\mu}\delta_{ij} + ig_s T^a_{ij}G^a_{\mu}$$

• G^a_{μ} : gluon field $(a = 1, \dots, 8)$

The QCD Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = \bar{q}_i (i \not\!\!\!D_{ij} - m \delta_{ij}) q_j - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

- q_i : quark field of colour i = r, g, b with mass m
- $D_{\mu,ij}$: covariant derivative

$$D_{\mu,ij} = \partial_{\mu}\delta_{ij} + ig_s T^a_{ij}G^a_{\mu}$$

- G^a_{μ} : gluon field ($a = 1, \dots, 8$)
- $G^a_{\mu\nu}$: gluon field strength tensor

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\nu + g_s f_{abc} G^b_\mu G^c_\nu$$

Electroweak symmetry

 $SU(2) imes U(1)_Y$

 unified theory of weak (W[±], Z) and electromagnetic (photon) interactions ➤ gauge couplings g, g'

$$-\frac{1}{4}W^{a}_{\mu\nu}W^{a,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

- 3+1 electroweak gauge bosons
 - massless photon ✓

Electroweak symmetry

 $SU(2) imes U(1)_Y$

 unified theory of weak (W[±], Z) and electromagnetic (photon) interactions ➤ gauge couplings g, g'

$$-\frac{1}{4}W^{a}_{\mu\nu}W^{a,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

- 3+1 electroweak gauge bosons
 - massless photon
 - W^{\pm}, Z with

$$m_W = 80 \,\mathrm{GeV} \qquad m_Z = 91 \,\mathrm{GeV}$$

 \succ electroweak symmetry is broken, only $U(1)_{\rm em}$ conserved

The Higgs field

• introduce a complex scalar field

$$H = \begin{pmatrix} \phi^+ \\ (h + i\phi^0)/\sqrt{2} \end{pmatrix}$$

 $SU(2)_L$ doublet with hypercharge $Y_H = 1/2$

most general renormalisable potential

$$V(H) = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

For $\mu^2 < 0$, the potential has a "mexican hat" shape and the vacuum breaks electroweak symmetry:

$$\langle H\rangle = \begin{pmatrix} 0\\ v/\sqrt{2} \end{pmatrix} \neq 0$$

Spontaneous symmetry breaking

Thanks to Flip Tanedo for the cartoon!

Spontaneous symmetry breaking

Thanks to Flip Tanedo for the cartoon!

Masses for W^{\pm} and Z

Inserting $\langle H\rangle$ in couplings between Higgs and $SU(2)_L\times U(1)_Y$ gauge fields gives

$$\frac{g^2 v^2}{4} W^+_\mu W^{\mu-} + \frac{(g^2 + g'^2) v^2}{4} Z_\mu Z^\mu$$

with $(\tan \theta_W = g'/g)$

$$W^{\pm}_{\mu} = (W^{1}_{\mu} \mp iW^{2}_{\mu})/\sqrt{2}$$
$$Z_{\mu} = \cos\theta_{W}W^{\mu}_{3} - \sin\theta_{W}B_{\mu}$$
$$A_{\mu} = \sin\theta_{W}W^{\mu}_{3} + \cos\theta_{W}B_{\mu}$$

Masses for W^{\pm} and Z

Inserting $\langle H\rangle$ in couplings between Higgs and $SU(2)_L\times U(1)_Y$ gauge fields gives

$$\frac{g^2 v^2}{4} W^+_\mu W^{\mu-} + \frac{(g^2 + g'^2) v^2}{4} Z_\mu Z^\mu$$

with $(an heta_W = g'/g)$

$$W^{\pm}_{\mu} = (W^{1}_{\mu} \mp iW^{2}_{\mu})/\sqrt{2}$$
$$Z_{\mu} = \cos\theta_{W}W^{\mu}_{3} - \sin\theta_{W}B_{\mu}$$
$$A_{\mu} = \sin\theta_{W}W^{\mu}_{3} + \cos\theta_{W}B_{\mu}$$

> mass terms for W^{\pm} and Z, while photon A_{μ} remains massless

The Higgs degrees of freedom

- ϕ^\pm and ϕ^0 can be removed from theory by suitable gauge transformation
 - \succ absorbed by W^{\pm} and Z to become their third degree of freedom

Goldstone bosons "eaten" by the gauge bosons corresponding to the broken generators

 \bullet one physical degree of freedom remains – Higgs boson h with $m_h \sim 125 \, {\rm GeV}$

Quark sector

Left-handed quarks are introduced as $SU(2)_L$ doublets

$$Q_j = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

and right-handed quarks as $SU(2)_L$ singlets

$$U_j = u_R, c_R, t_R \qquad D_j = d_R, s_R, b_R$$

Quark sector

Left-handed quarks are introduced as $SU(2)_L$ doublets

$$Q_j = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

and right-handed quarks as $SU(2)_L$ singlets

$$U_j = u_R, c_R, t_R \qquad D_j = d_R, s_R, b_R$$

All quarks transform as $SU(3)_{QCD}$ triplets, i. e. they come in three colours.

Quark sector

Left-handed quarks are introduced as $SU(2)_L$ doublets

$$Q_j = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

and right-handed quarks as $SU(2)_L$ singlets

$$U_j = u_R, c_R, t_R \qquad D_j = d_R, s_R, b_R$$

All quarks transform as $SU(3)_{QCD}$ triplets, i. e. they come in three colours.

The correct hypercharges Y can be obtained from the electric charge

$$Q = T_3 + Y$$

where $T_3 = \pm 1/2$ for doublet components and $T_3 = 0$ for singlets.

Lepton sector

Also the left-handed leptons are $SU(2)_L$ doublets

$$L_{j} = \begin{pmatrix} \nu_{e,L} \\ e_{L} \end{pmatrix}, \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix}, \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

and the right-handed charged leptons are $SU(2)_L$ singlets

$$E_j = e_R, \mu_R, \tau_R$$

Leptons do not carry QCD colour, and $U(1)_Y$ hypercharges are chosen according to $Q = T_3 + Y$.

Lepton sector

Also the left-handed leptons are $SU(2)_L$ doublets

$$L_{j} = \begin{pmatrix} \nu_{e,L} \\ e_{L} \end{pmatrix}, \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix}, \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

and the right-handed charged leptons are $SU(2)_L$ singlets

$$E_j = e_R, \mu_R, \tau_R$$

Leptons do not carry QCD colour, and $U(1)_Y$ hypercharges are chosen according to $Q = T_3 + Y$.

Note that the SM does *not* contain right-handed neutrinos! >> no neutrino masses within the SM

Yukawa sector and fermion masses

- chiral transformations properties under EW symmetry prohibits Dirac mass terms for quarks and leptons.
- Yukawa couplings are invariant under gauge symmetry

$$\mathcal{L}_{\text{Yuk}} = \sum_{i,j=1}^{3} (-Y_{U,ij} \bar{Q}_{Li} \tilde{H} U_{Rj} - Y_{D,ij} \bar{Q}_{Li} H D_{Rj} - Y_{E,ij} \bar{L}_{Li} H E_{Rj} + h.c.)$$

where i,j are generation indices and $\tilde{H}=\epsilon H^*=(H^{0*},-H^-)^T$

Yukawa sector and fermion masses

- chiral transformations properties under EW symmetry prohibits Dirac mass terms for quarks and leptons.
- Yukawa couplings are invariant under gauge symmetry

$$\mathcal{L}_{\text{Yuk}} = \sum_{i,j=1}^{3} (-Y_{U,ij} \bar{Q}_{Li} \tilde{H} U_{Rj} - Y_{D,ij} \bar{Q}_{Li} H D_{Rj} - Y_{E,ij} \bar{L}_{Li} H E_{Rj} + h.c.)$$

where i,j are generation indices and $\tilde{H}=\epsilon H^*=(H^{0*},-H^-)^T$

• EW symmetry breaking yields fermion mass terms

$$\sum_{i,j=1}^{3} (-m_{U,ij}\bar{u}_{Li}u_{Rj} - m_{D,ij}\bar{d}_{Li}d_{Rj} - m_{E,ij}\bar{\ell}_{Li}\ell_{Rj} + h.c.)$$

with fermion masses given by $m_A = vY_A$ (A = U, D, E)

Study goal: brief recap of the Standard Model

- > particle content
- ➤ gauge symmetry
- ➤ Higgs mechanism
- ➤ generation of particle masses

Further reading (if needed)

- M. Mühlleitner, *The Standard Model of Particle Physics*, https://www.itp.kit.edu/~maggie/icise/standardmodel.pdf
- your favourite particle physics textbook