The electroweak hierarchy problem

Monika Blanke

The SM – a story of success

The Standard Model of particle physics – a story of success

- all SM particles have been observed in the laboratory
- latest discoveries
 - 1995 top quark
 - 2000 tau neutrino
 - 2012 Higgs boson
 - > all of them had previously been postulated based on theoretical arguments
- no particles beyond the SM have been discovered so far
 ➤ mass limits in the O(1) TeV range (depending on couplings etc.)

Indirect probes of the SM

New particles could also be seen through their quantum contributions to SM observables \succ precision tests

- electroweak observables
- Higgs couplings
- flavour violating decays
- few slight tensions ("anomalies"), but overall astonishingly good agreement with SM predictions!
- > constraints on the New Physics scale of several TeV (even up to 10^5 TeV for neutral kaon mixing!)

Problems of the SM

Open questions:

- neutrino masses
- dark matter and dark energy
- baryon asymmetry of the universe
- inclusion of (quantum) gravity
- structure of the SM: gauge group, flavour structure
- etc.
- SM not complete extension needed! But at which energy scale?

Back to the Higgs potential

classical level: shape of Higgs potential determined by Lagrangian parameters μ^2 , λ :

$$V(H) = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Back to the Higgs potential

classical level: shape of Higgs potential determined by Lagrangian parameters μ^2 , λ :

$$V(H) = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

quantum level: radiative corrections

 Λ : dimensionful regulator, cut-off scale

A closer look at the quadratic divergence

$$\delta\mu^2 = \frac{\Lambda^2}{32\pi^2} \left[6\lambda + \frac{1}{4} (9g^2 + 3g'^2) - 6y_t^2 \right] + \cdots$$

• removed in dimensional regularisation, hence unphysical within SM

 \bullet appears in the presence of NP, where Λ becomes mass scale M of new particles

 \succ fine-tuning between tree and loop contributions if $M\gtrsim 1\,{\rm TeV}$

A could be different for different terms
 ➤ fine-tuned cancellation possible (but ugly)

▶ electroweak hierarchy problem – why is $v \ll M_{\text{Planck}}$?

Requirements for a natural scale of electroweak symmetry breaking

- new particles are present at (or below) the TeV scale
- they do not re-introduce the fine-tuning problem

introduce symmetry that protects the Higgs potential

More exotic explanations (not the focus of this course)

- anthropic explanation, multiverse
- cosmological relaxation
- etc.

Supersymmetry

most popular candidate: supersymmetry (SUSY)

Some SUSY basics

- SUSY is a symmetry connecting bosons and fermions
- for each SM particle a superpartner with opposite spin-statistics is introduced

spin 1/2 fermions ➤ spin 0 sfermions
spin 1 gauge bosons ➤ spin 1/2 gauginos
spin 0 Higgs field ➤ spin 1/2 higgsinos

- ullet we also need two Higgs doublets, H_u and H_d
- if SUSY is unbroken, particles and their superpartners have the same masses ➤ SUSY must be broken

SUSY's solution to the hierarchy problem

Additional contrbutions to the Higgs potential from superpartners, e.g.

Due to the opposite spin-statistics, these diagrams are opposite in sign.

SUSY's solution to the hierarchy problem

Additional contrbutions to the Higgs potential from superpartners, e.g.

Due to the opposite spin-statistics, these diagrams are opposite in sign.

If the masses are equal, $m_t=m_{ ilde{t}_1}$, then the contributions cancel exactly.

SUSY non-renormalisation theorem

If SUSY is exact, then the Higgs potential does not receive quantum corrections.

In the presence of SUSY breaking

If $m_t \neq m_{\tilde{t}_{1,2}}$, then the cancellation is not exact anymore:

$$\delta \mu_u^2 = \frac{-3Y_t^2}{8\pi^2} \left[m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 + |A_t|^2 \right] \log \frac{\Lambda_{\text{SB}}}{m_t}$$

 $m_{\tilde{t}_{1,2}}$: masses of the stop partners A_t : trilinear coupling between stops and Higgs $\Lambda_{\rm SB}$: scale of SUSY breaking

In the presence of SUSY breaking

If $m_t
eq m_{\tilde{t}_{1,2}}$, then the cancellation is not exact anymore:

$$\delta \mu_u^2 = \frac{-3Y_t^2}{8\pi^2} \left[m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 + |A_t|^2 \right] \log \frac{\Lambda_{\text{SB}}}{m_t}$$

 $m_{\tilde{t}_{1,2}}$: masses of the stop partners A_t : trilinear coupling between stops and Higgs $\Lambda_{\rm SB}$: scale of SUSY breaking

For a natural scale of electroweak symmetry breaking, the stops (scalar top quark partners) should be below the TeV scale.

More about SUSY

The good...

- stabilisation of electroweak scale
- dark matter candidate (assuming *R*-parity conservation)
 - lightest neutral gaugino/higgsino, gravitino, sneutrino, ...
- successful gauge coupling unification

More about SUSY

The good...

- stabilisation of electroweak scale
- dark matter candidate (assuming *R*-parity conservation)
 ➤ lightest neutral gaugino/higgsino, gravitino, sneutrino, ...
- successful gauge coupling unification
- ...and the bad
 - SUSY would have preferred a lighter Higgs ($m_H < m_Z$ at the classical level)
 - no superpartners seen at high energies yet
 - no indirect sign of SUSY in precision tests of the SM

- **composite Higgs** bound state of some new strong interaction, mass scale set by compositeness scale
- Higgs as pseudo-Goldstone boson mass scale protected by Goldstone theorem, parametrically lighter than symmetry breaking scale
- extra dimensions (large, warped) "true" higher-dimensional scale of gravity different from effective 4D one
- gauge-Higgs unification Higgs as extra degree of freedom of gauge field in extra-dimension model, mass protected by gauge symmetry

Summary

Study goal: hierarchy problem

- > SM very successful, but requires extension
- large NP scale introduces fine-tuning in Higgs potential
- TeV-scale NP and protective symmetry required to avoid hierarchy problem
- SUSY as popular solution, but under increasing experimental pressure

Reading assignment

• chapter 1 of C. Csaki, S. Lombardo, O. Telem, *TASI Lectures on Non-Supersymmetric BSM Models*, arXiv:1811.04279