Goldstone bosons - the non-linear sigma model

Monika Blanke

Higgs as pseudo-Nambo-Goldstone boson

Hierarchy problem – how to shield Higgs from quadratic divergences?

Goldstone theorem

For each continuous symmetry which is spontaneously broken, there exists a massless scalar degree of freedom, the Goldstone boson.

- local symmetry: GB eaten by corresponding gauge boson
- global symmetry: GB remains as physical degree of freedom

➤ Conceptual idea

- implement Higgs field as GB of spontaneously broken global symmetry
- generate Higgs potentiel via small explicit symmetry breaking
- known analog: pions in QCD

A look at the potential

Higgs mode: mass from curvature of potential around minimum Goldstone mode(s): massless, shift symmetry along flat direction(s)

Spontaneous symmetry breaking

Spontaneous breaking of symmetry group G to its subgroup H

- spontaneously broken symmetry ensures presence of degenerate valley at minimum of potential
- vacuum singles out point along flat direction
- GB fields parametrise motion along valley correspond to broken directions in symmetry group
 ➤ massless as potential is flat
- *formally:* GBs span the coset G/H
 ➤ massless GB mode for each broken generator

Effective GB Lagrangian

Basic idea

- origin of symmetry breaking is irrelevant for GB dynamics
- GBs parametrically lighter than other degrees of freedem (e.g. Higgs modes) the latter can be integrated out

> effective theory description in terms of non-linear Goldstone fields

Ansatz:

- \bullet global symmetry G broken to H by VEV Σ_0
- GBs $\Pi^a(x)$ parametrized by NGB matrix

$$U_{\mathsf{NGB}} = e^{i\Pi^a(x)T^a/f}$$

$$T^a$$
 – broken generators of G/H

f – pion decay constant, magnitude determined by Σ_0

Constructing the non-linear sigma model

 $U_{\rm NGB}$ acts on VEV Σ_0 to rotate it along broken directions

$$\Sigma = U_{\mathsf{NGB}} \left[\Sigma_0 \right]$$

exact form depends on $\boldsymbol{\Sigma}_0$'s symmetry transformation properties, e.g.

$$\Sigma = U_{\text{NGB}}\Sigma_0$$
 for Σ_0 in fundamental
 $\Sigma = U_{\text{NGB}}^{\dagger}\Sigma_0 U_{\text{NGB}}$ for Σ_0 in adjoint

> effective GB Lagrangian built by forning invariants using the Σ field **non-linear sigma model** (nl σ m)

Example: QCD and the chiral Lagrangian

• QCD Lagrangian (full theory, three flavours)

$$\mathcal{L}_{\mathsf{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{a\,\mu\nu} + \sum_{i=u,d,s} \bar{q}_i (i \not\!\!D - m_{qi}) q_i$$

- for m_q → 0: global chiral flavour symmetry SU(3)_L × SU(3)_R
 > should be reflected in spectrum of QCD bound states
- observation: bound states only reflect one $SU(3)_V$ (e. .g. meson octet)

> QCD dynamics leads to spontaneous breaking $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$

The quark condensate

- RGE running of QCD coupling constant
 - > asymptotic freedom
 - strong coupling at low energy scales, confinement
- \bullet formation of quark condensate at scale Λ_{QCD}

$$\langle \bar{q}q \rangle = \langle \bar{q}_{Li}q_{Rj} + h.c. \rangle \propto \delta_{ij} \Lambda^3_{\mathsf{QCD}}$$

- $\langle \bar{q}q \rangle$ condensate spontaneously breaks $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$
- 8 GBs, corresponding to broken $SU(3)_A$ generators, forming pseudoscalar octet

Pseudoscalar meson octet

- $\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta_{8}$ form octet of pseudoscalar mesons
- GBs of spontaneously broken global $SU(3)_A$ symmetry
- finite quark masses constitute small explicit symmetry breaking
 - ➤ pseudoscalar mesons acquire mass
- significantly lighter than other QCD bound states (η₁, excited mesons, baryons...)
 - protected by global symmetry

Constructing the low-energy effective Lagrangian

• $\langle \bar{q}q \rangle$ is bi-fundamental under $SU(3)_L \times SU(3)_R$ > assume bi-fundamental VEV

$$\Sigma_0 = f \begin{pmatrix} 1 & \\ & 1 \\ & & 1 \end{pmatrix}$$

- symmetry transformation $\Sigma_0 \rightarrow U_L \Sigma_0 U_R^{\dagger}$
- Σ_0 invariant under $SU(3)_V$ ($U_L = U_R$), but breaks $SU(3)_A$ ($U_L = U_R^{\dagger}$)
- \bullet define non-linearly realised pion field using $U_{\rm NGB}$

$$\Sigma(x) = e^{i\Pi^a T^a / f} \Sigma_0 e^{i\Pi^a T^a / f}$$

Transformation properties

• unbroken symmetry $SU(3)_V$

$$\Sigma(x) \to U_V \Sigma(x) U_V^{\dagger}$$

- \succ linearising in pion fields: $\Pi^a T^a \rightarrow U_V \Pi^a T^a U_V^{\dagger}$
- i.e. pion fields transform in the adjoint of $SU(3)_V$ (cf. meson octet)
- broken symmetry $SU(3)_A$

$$\Sigma(x) \to U_A \Sigma(x) U_A = f e^{2i \Pi^a T^a / f}$$

with $\Pi^{a'}T^a = \Pi^a T^a + fc^a T^a + \mathcal{O}\left((\Pi^a)^2\right)$

shift symmetry – proof that pions are massless
 pions transform non-linearly

Leading order Lagrangian

Guiding principle:

- write down all terms in $\Sigma(x)$ that are allowed by the full $SU(3)_L \times SU(3)_R$ symmetry
- organise them by number of derivatives (powers of momenta)
- zero-derivative term ${\rm Tr}\, \Sigma^\dagger \Sigma \propto {\rm Tr}\, 1\!\!1$
- first non-trivial term contains two derivatives

$$\frac{1}{4} \operatorname{Tr} \left[(\partial_{\mu} \Sigma)^{\dagger} \partial^{\mu} \Sigma \right]$$

> pion kinetic term $\operatorname{Tr}[\partial_{\mu}\Pi\partial^{\mu}\Pi]$ > leading 4-pion interaction term $\frac{4}{f^2}\operatorname{Tr}[\partial_{\mu}\Pi\partial^{\mu}\Pi\Pi^2]$ etc.

Summary

Study goal: Goldstone bosons

- > Goldstone theorem
- ➤ non-linear sigma model
- QCD and chiral Lagrangian

Reading assignment

 chapter 2–2.2 of C. Csaki, S. Lombardo, O. Telem, TASI Lectures on Non-Supersymmetric BSM Models, arXiv:1811.04279