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Solution to Problem Set 1 

Nonlinear Optics (NLO) 
Due: 10. May 2016 

1) Refractive Index, Extinction Coefficient and Absorption 

Express the real and imaginary part of the complex refractive index  

 j in n n   (0.1) 

using the real and imaginary part of the complex susceptibility  
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i

    . (0.2) 

Simplify the results in the case of low losses, i  , and derive an expression for the power 

attenuation coefficient  , that is experienced by a plane wave in a homogeneous medium. 

Solution 

The complex refractive index n  and the complex dielectric constant r  are related by 
2

r n  . Using (0.1) we get the relations between real and imaginary part 
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The dielectric constant can itself be expressed by real and imaginary parts of the first order 

susceptibility 
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By comparing the imaginary parts of (0.4) and inserting (0.3) we get 
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Comparing the real part of (0.4) and substituting (0.3) we find a quadratic equation for n : 
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Equation (0.6) can be solved for n  by substituting 2
N n : 
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Since 2 0n  , only 1 0N   is a meaningful solution. From Eq. (0.6) one can get the expression 

for imaginary part in by substituting the expression for n obtained in Eq. (0.7) 
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When the condition 
i

   is fulfilled, the real and imaginary parts of the complex 

refractive index n  can be approximated as  

 
2

2

(1 ) (1 )
1 1

2 2 (1 )

in
  


  
      

 (0.9) 

 

2

2

2

2

(1 ) (1 )
1

2 2 (1 )

(1 ) (1 ) 1
1

2 2 2 (1 )

2 1

i
i

i

i

n
 


 





  
     

  
     

 


 (0.10) 

as shown in Eq. (0.5), in  and i  exhibit opposite sign, therefore we choose the negative sign 

when taking the square root.  

The Intensity profile of a beam propagating in z-direction changes with  

0
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with 0 0 0jn ik n k n k n k        and 0k  being the wavenumber in vacuum. For the power 

attenuation coefficient follows: 0
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2) Kramers-Kronig Relations 

The polarization P(t) of a medium does not only depend on the interaction with a field E(t) at 

one particular point in time t, but it also depends on the history of the interaction. For a linear 

time-invariant medium, this can be expressed as a convolution with the impulse response 

  (t)  in the time domain. In the frequency domain this corresponds to a multiplication with 

the frequency dependent complex susceptibility  ( ) ( )F t   : 

 0( ) ( ) ( )t t d    




 P E  (0.11) 

 
0( ) ( ) ( ).    P E  (0.12) 

1. The reaction of a medium to an electric field is causal, as there cannot be any 

polarization prior to the application of the electric field to the medium. Explain why 

for this case the following identity holds, where H(t) is the Heaviside function. 

 ( ) ( ) ( )t t H t      with    
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2. Causality in time domain corresponds to an equivalent relation in frequency domain. 

Transform (0.13) to the frequency domain. Use the Fourier transform of the Heaviside 

function: 
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Note: In this course the following definitions of the Fourier transform are used: 
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In order to calculate the convolution of ( )f x  and 
1

x
, the Cauchy principal value has to be 

introduced: 
1 ( ')

( ) '
'

f x
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x x x
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
 

 . 

3. The susceptibility is complex, ( ) ( ) j ( )i       . Use the previous result to derive 

a general relation between the real part ( )   and the imaginary part ( )i   of the 

susceptibility. This relation is known as the “Kramers-Kronig relation” (after the 
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discoverers H. A. Kramers und R. de Laer Kronig.). Note that ( )   is an even, ( )i   

an odd function, since ( )t  is a real function. 

4. Sketch the frequency dependence of the real and imaginary part of the susceptibility if 

the medium has a sharp, symmetric absorption line at a frequency 0 . To do so, 

assume that ( )in   is affected mostly by ( )i  . 

Solution 

1. If we demand, that the polarization is causal, this means that only values of the electric 

field ( )E t   may enter after a certain point of time t, that means for 0   , where 

  t  . As a conclusion, the susceptibility for previous times must be identically 

zero:  

 ( ) ( ) ( )H       . 

2. In order to transform (0.14) to frequency domain, we need to know the individual 

Fourier transformed values as well as the rule that multiplications in time domain 

become convolutions in frequency domain. 
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 (0.15) 

The principal value  can be interpreted as the value of a ‘symmetric’ integration, the 
sum of the right and left limit values of the divergent integral.  

This result shows that the value of the susceptibility at one frequency  is given by an 

infinite integral over all other values of the susceptibility, weighted by the frequency 

difference. 

3. We consider real and imaginary part of the complex susceptibility independently: 
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This result is known as the Kramers-Kronig (KK) relations that relate real and 

imaginary part of the complex linear susceptibility: 
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Note that in order to derive this result, only causality was required. In fact, the same 

result can be obtained for all analytic functions that are linear and causal! 

By using the parity of real and imaginary parts of the real susceptibility the KK-

relations can be rewritten to only use positive frequencies in the so called second form: 
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Note that the sign of our Kramer Kronig relation is different from other resources as 

e.g. Boyd. This is due to the different definition of the Fourier transform. With Boyd’s 
definition the Fourier transformation of the Heaviside function would be the complex 

conjugate and hence result in opposite signs for Eq. (0.16) and (0.17). 



Institute of Photonics and Quantum Electronics 

Koos | Marin | Trocha  

 

NLO Tutorial 1 - 6 - 

 

4. As shown in the first part of this problem set, the power extinction coefficient, which 

is responsible for losses, is proportional to the imaginary part of the refractive index. 

This in turn can be related to the imaginary part of the susceptibility devided by the 

real part of the refractive index: 

 
0 loss

/ (2 )
0 gain

i i
n n


  

 (0.18) 

That means, the imaginary part ( )i   is always negative and exhibits a peak at 0. 

In order to derive the behavior of    around the resonance, various cases of the 

relative position of   with respect to 0  are analyzed by comparing the left and the 

right side of the Cauchy principal value of the integral in equation (0.17):   
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0  : The overlap of the 

imaginary part of the susceptibility 

( ')i   with the remaining part of 

the integral ( ')f   is located mostly 

on the right of  . This means, that 

the right integral dominates over the 

left one, leading to a positive real 

part of the susceptibility ( ) 0   . 

0  : The imaginary part of the 

susceptibility now contributes 

equally to both integrals. As a result, 

the two integrals have the same 

value, however opposite signs. This 

leads overall to ( ) 0   . 

 

0  : Now ( ')i   is contributing 

mostly to the left integral such that 

the sum of both, ( )  , becomes 

smaller than 0. 
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, 0   : For very large values of  as well as for approaching 0, the overlap 

between the two functions ( ')i   and ( ')f   in the two respective integrals vanishes. 

This leads to decreasing values of the integrals and overall decreasing values of ( )  . 

For 0  , this means ( )   is approaching 0 from positive values, for 0   

( )  approaches 0 from negative values.  

Sketch: 

 

 

 

Bonus Program: 

At three randomly chosen tutorials we will collect your solutions before the session starts. The 

solutions will be marked. If you have 70% or more of each collected problem set completed 

correctly, your oral examination grade will be upgraded by 0.3 or 0.4 (except grades of 1.0 

and 4.7 or worse). If you cannot join a tutorial, you may also hand in your solutions by email 

to the teaching assistants (see contact details below) before the respective session. Please 

attach all pages in one pdf-file with white background. Students, who handed in a problem 

set, will be chosen randomly to present their solution. 

 

Questions and Comments: 

Pablo Marin  Philipp Trocha 

Building: 30.10, Room: 2.23  Room: 2.32/2 

Phone: 0721/608-42487  42480 

pablo.marin@kit.edu  philipp.trocha@kit.edu 
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Figure 1. Real and imaginary part of the first order 

susceptibility. 
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