

Problem Set 2 Nonlinear Optics (NLO)

Due: 29. April 2015

1) Typical electric field strengths in nonlinear optics, typical nonlinear susceptibilities

For an order-of-magnitude estimation of the nonlinear susceptibilities $\chi^{(2)}$ and $\chi^{(3)}$, let us consider a simple model of a Hydrogen atom, in which the electron is bound to the nucleus by an electric field with the radial component that corresponds to a characteristic atomic field strength

$$E_{\rm at} = \frac{e}{\epsilon_0 4\pi a_0^2},\tag{1.1}$$

where $e=1.60\times10^{-19}\,\mathrm{C}$ is the elementary charge, $\epsilon_0=8.85\times10^{-12}\,\mathrm{F/m}$ is the vacuum permittivity and $a_0=4\pi\epsilon_0\,\hbar^2/m_e e^2=0.053\,\mathrm{nm}$ is the Bohr radius, i.e. the expectation value of the distance between the nucleus and the electron. The quantity $\hbar=6.626\times10^{-34}\,\mathrm{Js}$ denotes the reduced Planck constant, and $m_e=9.1\times10^{-31}\,\mathrm{kg}$ is the electron mass. Externally applied electric fields lead to a displacement of the electron with respect to the core and hence to an electric dipole moment, i.e., a non-zero electric polarization P. Usually external fields (E_{ext}) are much smaller than E_{at} and the dependence between E_{ext} and P can be approximated by the linear relationship $P=\epsilon_0\chi^{(1)}E_{\mathrm{ext}}$. For most solid-state materials, $\chi^{(1)}$ is in the order of unity.

A common argument [1] says that the nonlinear contributions to the polarization $P_{\rm NL}^{(m)} = \epsilon_0 \chi^{(m)} E^m$ (m > 1) become comparable to the linear contribution $P_{\rm L} = \epsilon_0 \chi^{(1)} E$ when the applied electric field $E_{\rm ext}$ is of the order of $E_{\rm at}$.

1. Calculate the characteristic atomic field strength $E_{\rm at}$. Then, set $\chi^{(1)}=1$ and assume for the radial component of the polarization that $P_{\rm L}=P_{\rm NL}^{(m)}$ for $E_{\rm ext}=E_{\rm at}$. Use these relations to estimate the order of magnitude of $\chi^{(2)}$ and $\chi^{(3)}$.

A typical femtosecond laser system produces pulses with a repetition rate of 80 MHz, a pulse duration of 100 fs, and an average power of 1 W at a wavelength of 800 nm. Imagine that the beam is focused on a spot having diameter equal to the wavelength.

- 2. What is the optical power averaged on one pulse, assuming that the pulse has rectangular shape?
- 3. What is the maximum electric field strength in the focus assuming that the field is uniform within the given diameter? Compare the magnitude of this field with E_{at} .

[1] Boyd, R.W., Nonlinear Optics (San Diego: Academic Press, 2003).

NLO Tutorial 2 - 1 -

2) Third-order nonlinear polarization

Consider a linearly polarized plane wave $\mathbf{E}(z,t) = E(z,t)\mathbf{e}_x$ propagating in z-direction in a homogeneous medium, in which third-order nonlinear effects dominate over second and higher-order contributions, $\chi^{(3)} \neq 0$, $\chi^{(m)} = 0$ for m = 2 or m > 3. Assuming an instantaneous response of the polarization $P_{\rm NL}$ to the applied electric field, we can express $P_{\rm NL}$ as

$$P_{\text{NL}}(z,t) = P^{(3)}(z,t)\mathbf{e}_{x}$$
, with $P^{(3)}(z,t) = \varepsilon_{0}\chi^{(3)}E(z,t)^{3}$. (2.1)

Calculate $P^{(3)}(z,t)$ considering a field E(z,t) composed of two distinct frequency components ω_1 and ω_2 with their complex amplitudes \underline{E}_1 and \underline{E}_2

$$E(z,t) = \operatorname{Re}\left\{\underline{E}_{1}e^{\mathrm{j}(\omega_{1}t-k_{1}z)} + \underline{E}_{2}e^{\mathrm{j}(\omega_{2}t-k_{2}z)}\right\}. \tag{2.2}$$

Group the resulting terms with appropriate degeneracy factors according to their frequency and assign them to the following effects:

- Third-Harmonic Generation (THG)
- Third-order Sum-Frequency Generation (TSFG)
- Self-Phase Modulation (SPM)
- Cross-Phase Modulation (XPM)
- (Degenerate) Four-Wave Mixing (FWM)

Questions and Comments:

Philipp-Immanuel Dietrich Pablo Marin Jörg Pfeifle Building: 30.10, Room: 1.23 Room 2.23 Room: 2.33 Phone: 0721/608-47173 42487 42487

<u>p-i.dietrich@kit.edu</u> <u>pablo.marin@kit.edu</u> <u>joerg.pfeifle@kit.edu</u>

NLO Tutorial 2 - 2 -