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Solution to Problem Set 4 
Nonlinear Optics (NLO) 

1) Nonlinear polarization of n-th order 

In Eq. (2.30) in the lecture notes we have used the following expansion for the electric field in 

the time domain: 
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where ,j k  is the Kronecker delta, i.e. , 0j k   for j k  and , 1j k   for j k , l l    , 

*
( ) ( )l l  E E , 0 0  , and 0( ) E . Based on this relation, the complex time-domain 

amplitude of the n-th order polarization at a frequency 
1

...
np l l     can be written 

according to Eq. (2.32) in the lecture notes,  
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where     
11, , |

np n l l pl l       . Every frequency 
1
, ,

nl l   can take the 

positive or negative value of a frequency 1, , n   that appears in the input signals. The 

frequency-dependent susceptibility tensor  
1

( ) : , ,
n

n

p l l     describes the nonlinear 

interaction between different electric field vectors.   

1. Explain the meaning of the “ ” sign in Eq. (1.2). 

2. Apply Eq. (1.2) to the case of the nonlinear processes listed below and write down the 

complex time-domain amplitude of the nonlinear polarization as a function of the 

complex electric field amplitudes. Sketch the energy-level diagram involving all 

possible virtual electronic transitions of the input frequencies. 

a. Self-phase modulation (SPM): 1 1 1 1p         

b. Cross-phase modulation (XPM): 1 2 2 1p         

c. Non-degenerate four-wave mixing (non-deg. FWM): 1 2 3 4p         

d. Sum-frequency generation (SFG): 3 1 2     

e. Optical rectification (OR): 2 1 1     

f. Electro-optic Kerr effect: 3 1 2 2 1 2, 0           

3. For the case of SFG express the x-component of the complex time-domain amplitude 

of the nonlinear polarization 1

(2)

3 2( )   P , without using the short form notation, 

i.e. using the tensor components 
(2)

: ,q r s , where q x .   
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Solution: 

1. In the general case the short form tensor notation can be written as 
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The “ ” sign therefore denotes the component-by-component multiplication and 

summation of a n-th rank tensor and n electric field vectors. 

2.   

a.  (3) *(3)
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b.  (3) *(3)
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c.  (3) *(3)
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(2) (2)
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e.  (2) *(2)
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f.  (3) (3)
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2) Lorentz oscillator model for the linear case 

In a classical picture, an electron bound to an atom can be considered as a harmonic oscillator 

in analogy to a mass connected to a spring. This oscillator, when driven by an external electric 

field 
xE , follows the classical equation of motion 

 
2

2

e x e r e r2

( ) ( )
( ) ( )

d x t dx t
m eE t m x t m

dt dt
     , (2.1) 

where ( )x t  is the dislocation of the electron, em  denotes the electronic mass, x ( )eE t  is the 

driving force by the external electric field, 2

e rm x  is the restoring force of the oscillator and 

e r

dx
m

dt
  is a damping term. The parameter r  will turn out to be the resonance frequency of 

the oscillator. 

1. Solve the differential equation (2.1) for a time-harmonic electric field of the form 

 
1

( ) ( )exp( ) . .
2

E t E j t c c    by using a similar ansatz for the dislocation. Derive an 

expression for ( )x  . 

2. The electric polarization is the dipole moment per volume,  

 (1)

x 0 x( ) ( ) ( ) ( )
N

P E e x
V

         , (2.2) 

where 
N

V
 is the number density of atoms in the medium and ( )e x    is the induced 

dipole moment per atom. Show that the susceptibility is given by 

  
2

(1)
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  (2.3) 

 and separate the susceptibility into real and imaginary part. 

3. Sketch the real and imaginary part of the susceptibility (1)  around the resonance 

frequency r . What is the consequence of this result for the real and imaginary part of 

the refractive index at very large, e.g. X-ray frequencies. 

Solution 

1. We insert the ansatz for the electric field  
1

( ) ( )exp( ) . .
2

E t E j t c c    and the 

dislocation  
1

( ) ( )exp( ) . .
2

x t x j t c c    into the differential equation (2.1). We only 

take into account the terms oscillating at the same angular frequency and obtain:   

 2 2

e e r e r( ) ( ) ( ) ( )m x eE m x j m x             

We solve for ( )x   and get the frequency dependent dislocation of the oscillator: 



Institute of Photonics and Quantum Electronics 

Koos | Dietrich | Marin | Pfeifle  

 

NLO Tutorial 4 - 4 - 

 

 
2 2

e r r

( )
( )

( )

eE
x

m j




  




 
 

2. The polarization of the charged system (atom and electron) is given by ( )e x   . As 

the total electric polarization of the medium is given by all of its atomic dipoles, we 

multiply with the number density 
N

V
 of atoms in the medium. We then use Eq. (2.2) to 

relate the result to the 1
st
 order susceptibility: 
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 We separate the susceptibility into real and imaginary part by expanding the fraction:  
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3. Sketch of the susceptibility around the resonance frequency: 
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As derived in Problem Set 1, the real part of the refractive index (1)1n   . Sketching this, 

it can be seen that the refractive index is smaller than one for frequencies above the resonance 

frequency (e.g. X-ray). Hence for building lenses for X-ray frequencies one has to use 

concave instead of convex structures.  
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