

Problem Set 8 Nonlinear Optics (NLO)

Due: 17. June 2015

1) Electro-optic Mach-Zehnder modulator

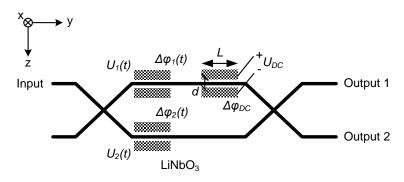
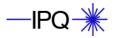


Figure 1: Dual-drive Mach-Zehnder modulator

Figure 1 shows a dual-drive Mach-Zehnder modulator. The device consists of a waveguidebased Mach-Zehnder interferometer having voltage-controlled phase shifters in each arm. For high-speed modulation, time-dependent voltages $U_1(t)$ and $U_2(t)$ are applied to two phaseshifters ($\Delta \phi_1$ and $\Delta \phi_2$) in the upper and lower arm, respectively, whereas a third phase shifter ($\Delta \phi_{DC}$) operated by a constant DC bias voltage U_{DC} is used to set the operating point. The device is made of lithium-niobate (LiNbO₃) using *x*-cut geometry. The principal axes¹ are the *x*, *y* and *z* axes shown in Figure 1. The propagating light of wavelength $\lambda = 1.55 \,\mu\text{m}$ is polarized along the *z* axis. The refractive indices are $n_0 = 2.211$ and $n_e = 2.138$. The electrooptic coefficients, measured at a wavelength of 0.5 μm are $r_{13} = 9.6 \,\text{pm/V}$, $r_{22} = 6.8 \,\text{pm/V}$, $r_{33} = 30.9 \,\text{pm/V}$, and $r_{42} = 32.6 \,\text{pm/V}$. Assume that these values are also valid at the wavelength of 1.55 μm .


1. Consider that $U_1(t) = U_2(t) = 0$ and an external voltage U_{DC} applied to the two parallel metal contacts (length L = 2 mm, distance $d = 5 \mu$ m), inducing a phase shift $\Delta \phi_{DC}$ in the upper arm. What voltage $U_{\pi,DC}$ is needed for a phase shift of π between both arms?

Hint: Start by calculating the change of refractive index as a function of the applied voltage $U_{\rm DC}$ and approximate the modulating electric field along the *z*-direction by $E_z^{(el)} \approx U_{\rm DC} / d$.

2. Calculate amplitude transfer function at the two outputs of the device as a function of the applied phase shifts $\Delta \phi_1$, $\Delta \phi_2$, and $\Delta \phi_{DC}$.

¹ The symmetry group of LiNbO₃ is $C_{3v} = 3m$. The convention used here is that the *z* axis is parallel to the threefold rotational axis of the crystal.

Koos | Dietrich | Marin | Pfeifle

Hint: Assume the device to consist of lumped elements with individual scattering matrices. Using the input and output amplitudes a_i and b_i of a symmetric 2x2 directional coupler as indicated in Figure 2, its scattering matrix \mathbf{S}_{2x2} can be written as

$$\mathbf{S}_{2x2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & -j \\ 0 & 0 & -j & 1 \\ 1 & -j & 0 & 0 \\ -j & 1 & 0 & 0 \end{pmatrix}$$

where $b_m = S_{mn} \cdot a_n$

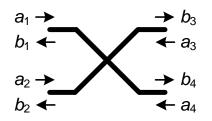


Figure 2: Definition of input and output amplitudes of a 2x2 directional coupler

The modulator is said to be operated in push-pull mode when the voltages applied to both arms have equal magnitude but with opposite sign, $U_1(t) = -U_2(t) = U(t)$ and therefore $\Delta \phi_1 = -\Delta \phi_2 = \Delta \phi$.

- 3. Express the amplitude transfer function for output 1 as a function of the phase shifts $\Delta \phi$ and $\Delta \phi_{DC}$. Sketch the amplitude transfer function as a function of the voltage U(t) normalized to the pi-voltage $U_{\pi,AC}$ of the high-frequency electrodes for $\Delta \phi_{DC} = 0$.
- 4. In some applications it is important to have a linear relationship between small variations of the input voltage and the associated variations of the optical amplitude at the output. This can be achieved by choosing a suitable DC bias, U_{DC} . Which bias voltage would you choose for this case?
- 5. The power transfer function can be obtained simply by squaring the amplitude transfer function. Sketch the power transfer function as a function of the voltage U(t) normalized to $U_{\pi,AC}$ for $\Delta \phi_{DC} = 0$. Which output power is obtained when adjusting the bias voltage according to part 5?

Philipp-Immanuel Dietrich	Pablo Marin	Jörg Pfeifle
Building: 30.10, Room: 1.23	Room 2.33	Room: 2.33
Phone: 0721/608-47173	42487	42487
p-i.dietrich@kit.edu	pablo.marin@kit.edu	joerg.pfeifle@kit.edu