Problem Set 4 Nonlinear Optics (NLO)

Due: May 31, 2017, 08:00 AM

1) Typical Electric Field Strengths in Nonlinear Optics, Typical Nonlinear Susceptibilities

For an order-of-magnitude estimation of the nonlinear susceptibilities $\chi^{(2)}$ and $\chi^{(3)}$, let us consider a simplistic model of an atom, in which the electron is bound to the nucleus by a characteristic atomic field strength

$$E_{\rm at} = \frac{e}{\epsilon_0 4\pi a_0^2} , \qquad (1.1)$$

where $e = 1.60 \times 10^{-19}$ C is the elementary charge, $\epsilon_0 = 8.85 \times 10^{-12}$ F/m is the vacuum permittivity and $a_0 = 4\pi\epsilon_0 \hbar^2/m_e e^2 = 0.053$ nm is the Bohr radius, i.e. the most probable distance between nucleus and electron in a hydrogen atom ($\hbar = 6.626 \times 10^{-34}$ Js is the reduced Planck constant, $m_e = 9.1 \times 10^{-31}$ kg is the electron mass). Externally applied electric fields lead to a displacement of the electron with respect to the core and hence to an electric dipole moment, i.e., a nonzero electric polarization *P*. Usually external fields E_{ext} are much smaller than E_{at} and the dependence between E_{ext} and *P* can be approximated by the linear relationship $P = \epsilon_0 \chi^{(1)} E_{\text{ext}}$. For most solid-state materials, $\chi^{(1)}$ is in the order of unity.

A common argument [1] says that the nonlinear contributions to the polarization $P^{(m)} = \epsilon_0 \chi^{(m)} E^m$ (m>1) become comparable to the linear contribution $P_{\rm L} = \epsilon_0 \chi^{(1)} E$ when the applied electric field $E_{\rm ext}$ is in the order of $E_{\rm at}$.

1. Calculate the characteristic atomic field strength E_{at} . Then, setting $\chi^{(1)} = 1$ and $P_{\rm L} = P^{(m)}$ estimate the order of magnitude of $\chi^{(2)}$ and $\chi^{(3)}$ under the given assumptions.

A typical femtosecond laser system produces pulses with a repetition rate of 80 MHz, pulse duration 100 fs, and an average power of 1 W at a wavelength of 1 μ m. Imagine that the beam is focused on a spot having diameter equal to the wavelength.

- 2. What is the optical power averaged on one pulse, assuming that the pulse has rectangular shape?
- 3. What is the maximum electric field strength in the focus assuming that the field is uniform within the given diameter? Compare with the result obtained at point 1.

Koos | Nesic | Blaicher

2) Nonlinear polarization of *n*-th order

In Eq. (2.30) in the lecture notes we have used the following expansion for the electric field in the time domain:

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{2} \left(\sum_{l=-N}^{N} \left(1 + \delta_{l,0} \right) \underline{\mathbf{E}}(\mathbf{r}, \boldsymbol{\omega}_{l}) e^{j \boldsymbol{\omega}_{l} t} \right),$$
(1.2)

-IPQ-

where $\delta_{j,k}$ is the Kronecker delta, i.e., $\delta_{j,k} = 0$ for $j \neq k$ and $\delta_{j,k} = 1$ for j = k, $\omega_{-l} = -\omega_l$, $\underline{\mathbf{E}}(\omega_l) = \underline{\mathbf{E}}^*(-\omega_l)$, $\omega_0 = 0$, and $\underline{\mathbf{E}}(\omega_0) \in \mathbb{R}$. Based on this relation, the complex time-domain amplitude of the *n*-th order polarization at a frequency $\omega_p = \omega_{l_1} + ... + \omega_{l_n}$ can be written according to Eq. (2.32) in the lecture notes,

$$\underline{\mathbf{P}}^{(n)}(\boldsymbol{\omega}_{p}) = \frac{1}{2^{n-1}} \epsilon_{0} \sum_{\mathbb{S}(\boldsymbol{\omega}_{p})} \frac{\left(1 + \delta_{l_{1},0}\right) \dots \left(1 + \delta_{l_{n},0}\right)}{1 + \delta_{p,0}} \underline{\chi}^{(n)} \left(\boldsymbol{\omega}_{p} : \boldsymbol{\omega}_{l_{1}}, \dots, \boldsymbol{\omega}_{l_{n}}\right) \vdots \underline{\mathbf{E}}(\boldsymbol{\omega}_{l_{1}}) \dots \underline{\mathbf{E}}(\boldsymbol{\omega}_{l_{n}}), \quad (1.3)$$

where $\mathbb{S}(\omega_p) = \{(l_1,...,l_n) | \omega_{l_1} + ... + \omega_{l_n} = \omega_p\}$. Every frequency $\omega_{l_1},...,\omega_{l_n}$ can take the positive or negative value of a frequency $\omega_1,...,\omega_n$ that appears in the input signal. The frequency-dependent susceptibility tensor $\underline{\chi}^{(n)}(\omega_p : \omega_{l_1},...,\omega_{l_n})$ describes the nonlinear interaction between different electric field vectors.

- 1. Explain the meaning of the " \vdots " sign in Eq. (1.3).
- 2. Apply Eq. (1.3) to the case of the nonlinear processes listed below and write down the complex time-domain amplitude $\underline{\mathbf{P}}^{(n)}$ of the nonlinear polarization as a function of the complex electric field amplitudes $\underline{\mathbf{E}}$. Sketch the energy-level diagrams involving all relevant virtual energy levels of the input frequencies.
 - a. Self-phase modulation (SPM): $\omega_p = \omega_1 + \omega_1 \omega_1 = \omega_1$
 - b. Cross-phase modulation (XPM): $\omega_p = \omega_1 + \omega_2 \omega_2 = \omega_1$
 - c. Non-degenerate four-wave mixing (non-deg. FWM): $\omega_p = \omega_1 + \omega_2 \omega_3 = \omega_4$
 - d. Sum-frequency generation (SFG): $\omega_3 = \omega_1 + \omega_2$
 - e. Optical rectification (OR): $\omega_2 = \omega_1 \omega_1$
 - f. Electro-optic Kerr effect: $\omega_3 = \omega_1 + \omega_2 + \omega_2 = \omega_1$, $\omega_2 = 0$
- 3. For the case of SFG, express the *x*-component of the complex time-domain amplitude of the nonlinear polarization $\underline{\mathbf{P}}^{(2)}(\boldsymbol{\omega}_3 = \boldsymbol{\omega}_1 + \boldsymbol{\omega}_2)$. Consider the contributions of all vector components of the electric field and write down the fully expanded expression without using the tensor short form notation.

Questions and Comments:

Aleksandar Nesic Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480 Matthias Blaicher Building: 30.10, Room: 2.22 Phone: 0721/608-41934 (26824)

nlo@ipq.kit.edu

NLO Tutorial 4, Summer Term 2017