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Problem Set 6 

Nonlinear Optics (NLO) 
Due: June 06, 2018, 08:00 AM 

1) Crystal Symmetry Classes and Susceptibility 

In crystallography, by means of group theory, all crystals can be classified according to their point 

group. A crystallographic point group is a set of symmetry operations, such as rotations or reflections, 

that leave a central point fixed while moving atoms into position previously occupied by another atom 

of the same kind, therefore leaving the crystal unchanged. 

For crystals in 3-dimensional space, there are 32 possible point groups. Each of them corresponds to 

one of the 32 “crystal classes”. An example of a point group is the so-called tetragonal-trapezoidal 

group, also called D4 in the Schoenflies notation, or 422 in the international (Hermann–Mauguin) 

notation. This point group belongs to the tetragonal crystal system and therefore the crystal’s Bravais 
lattice is a cuboid with two equal dimensions whereas the third dimension is shorter or longer than the 

other two. The D4 point group of symmetry operations comprises rotation by 2π/4 about one axis (z) 

and rotations by 2π/2 about the other two axes (x and y), see Fig. 1.  
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In this problem set, we are going to look at the restrictions that the D4 point group imposes on the form 

of the second-order nonlinear susceptibility tensor. For simplicity, we are going to analyze the case of 

second-harmonic generation (SHG).  

Let us consider a material with a second-order nonlinear susceptibility tensor qrs , where the 

subscripts  , , 1,2,3q r s denote the vector component of the polarization and the electric field. The 

component q of the polarization is then given by 
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where the Einstein summation convention is used so that index repetition on the right hand side of the 

equation indicates sum over these indices.  

Now apply a symmetry operation T to the entire configuration (E, P, and the material), for example a 

π/2 rotation. In general, the tensor describing the new material has now changed. However, because of 

crystal symmetry, T leaves the material physically unchanged. The susceptibility tensor can therefore 

be replaced by the original susceptibility tensor elements: 

Figure 1: Schematic representation of the 

D4 symmetry class with its three angles and 

two- and four-fold axes of rotation (C2, C4). 
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Equation (2) can be further simplified by using the contracted notation,
(2) (2) / 2qrs ql qrsd  , with 

the matrix components dij instead of the susceptibility tensor components: 
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For finding the implications of the symmetry on the form of the matrix dij proceed as follows: 

1. Complete the following tables that describe how the elements in Eq. (3) change for each of the 

three rotations described above. In the table, “2π/2, x” denotes a rotation by 2π/2 about the x-

axis. The second column of the first table has been already completed. (Hint: Use the matrix 

expression for the rotation operations). 
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Use Eq. (3), (4) and (5) to derive expressions for the ,2'xP   , y,2'P   and z,2'P   components of the 

polarization after the various rotations and compare them to the original expressions before rotation. 

Use the concept expressed by Eq. (2) to compare the coefficients associated with the various products 

of the electric fields and find the constraints on the matrix components dij. Identify the non-zero 

elements of the matrix. 
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