

Problem Set 8 Nonlinear Optics (NLO) Due: July 03, 2018, 09:45 AM

1) Electro-optic Mach-Zehnder modulator

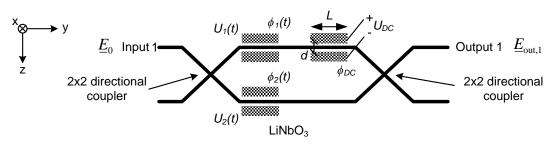


Figure 1: Dual-drive Mach-Zehnder modulator

Figure 1 shows a dual-drive Mach-Zehnder modulator. The device consists of a waveguidebased Mach-Zehnder interferometer having voltage-controlled phase shifters in each arm. For high-speed modulation, time-dependent voltages $U_1(t)$ and $U_2(t)$ are applied to two phaseshifters ($\phi_1(t)$ and $\phi_2(t)$) in the upper and lower arm, respectively, whereas a third phase shifter (ϕ_{DC}) operated by a constant DC bias voltage U_{DC} is used to set the operating point. The device is made of lithium-niobate (LiNbO₃) using *x*-cut geometry. The principal axes¹ are the *x*, *y* and *z* axes shown in Figure 1. The propagating light of wavelength $\lambda = 1.55 \,\mu\text{m}$ is polarized along the *z* axis. The refractive indices are $n_0 = 2.211$ and $n_e = 2.138$. The electrooptic coefficients, measured at a wavelength of 0.5 μm are $r_{13} = 9.6 \,\text{pm/V}$, $r_{22} = 6.8 \,\text{pm/V}$, $r_{33} = 30.9 \,\text{pm/V}$, and $r_{42} = 32.6 \,\text{pm/V}$. Assume that these values are also valid at the wavelength of 1.55 μm .

1. Consider that $U_1(t) = U_2(t) = 0$, and an external voltage U_{DC} is applied to the two parallel metal contacts (length L = 2 mm, distance $d = 5 \mu$ m), inducing a phase shift ϕ_{DC} in the upper arm. What voltage $U_{\pi,DC}$ is needed for a phase shift of π between both arms?

<u>Hint</u>: Start by calculating the change of refractive index as a function of the applied voltage $U_{\rm DC}$ and approximate the modulating electric field along the *z*-direction by the field of a parallel plate capacitor with electrode spacing *d*, i.e., $E_z^{(el)} \approx U_{\rm DC} / d$.

2. Consider the initial complex amplitude \underline{E}_0 at Input 1. Express the general amplitude transfer function for output 1 of the device, $T_{out,1} = \underline{E}_{out,1} / \underline{E}_0$, as a function of the applied phase shifts $\phi_1(t)$, $\phi_2(t)$, and ϕ_{DC} . Next, consider the situation from part 1 $(U_1(t) = U_2(t) = 0)$ and sketch the amplitude transfer function $T_{out,1}$ and the power transfer function $|T_{out,1}|^2$ versus the normalized applied voltage U_{DC} / U_{π} .

¹ The symmetry group of LiNbO₃ is $C_{3v} = 3m$. The convention used here is that the *z*-axis is parallel to the threefold rotational axis of the crystal.

Koos | Marin-Palomo | Trocha

<u>Hint</u>: Assume that the device consists of lumped elements with individual scattering matrices. Using the input and output amplitudes a_i and b_i of a symmetric 2x2 directional coupler as indicated in Figure 2, its scattering matrix \mathbf{S}_{2x2} can be written as

$$\mathbf{S}_{2x2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 & -\mathbf{j} \\ 0 & 0 & -\mathbf{j} & 1 \\ 1 & -\mathbf{j} & 0 & 0 \\ -\mathbf{j} & 1 & 0 & 0 \end{pmatrix}$$

where $b_m = S_{mn} \cdot a_n$.

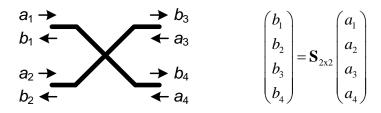
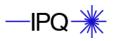


Figure 2: Definition of input and output amplitudes of a 2x2 directional coupler


For operating the modulator in so-called push-pull mode, voltages of equal amplitude but opposite signs are applied to the two arms, $U_1(t) = -U_2(t) = U(t)$. The phase difference between both arms then amounts to $\Delta \phi(t) = \phi_1(t) - \phi_2(t)$.

- 3. Adapt the expression of $T_{out,1}$ from part 2 to the push-pull configuration. Sketch the amplitude transfer function as a function of the voltage U(t) normalized to the π -voltage $U_{\pi,AC}$ of the high-frequency phase-shifters for $\phi_{DC} = 0$. $U_{\pi,AC}$ is the voltage required to generate a phase difference of $\Delta \phi(t) = \pi$ between the two arms.
- 4. In some applications it is important to have a **linear** relationship between small variations $\delta U(t)$ of the **input voltage** and the associated variations $\delta \underline{E}_{out,1}$ of the **optical amplitude** at output 1. This can be achieved by choosing a suitable DC bias, U_{DC} . Which bias voltage would you choose for this case?
- 5. For the case that $\phi_{DC} = 0$, sketch the power transfer function at output 1 as a function of the normalized voltage $U(t) / U_{\pi,AC}$. Which output power is obtained when adjusting the bias voltage according to part 4?
- 6. In other applications it is important to have a **linear** relationship between small variations of the **input voltage** and the associated variations of the **optical power** $P \propto \left|\underline{E}_{out,1}\right|^2$. Which bias voltage would you choose for this case?

Pablo Marin-Palomo Building: 30.10, Room: 2.33 Phone: 0721/608-42487 Philipp Trocha Building: 30.10, Room: 2.32-2 Phone: 0721/608-42480

nlo@ipq.kit.edu

NLO Tutorial 8, Summer Term 2018

