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Preface

This lecture is an introduction to the field of nonlinear optics. The lecture notes are in parts based
on lectures held by Prof. Franz X. Kértner, Prof. Uwe Morgner, and Prof. Juerg Leuthold at the
University of Karlsruhe and at Karlsruhe Institute of Technology (KIT) between 1999 and 2012.
The lectures of Prof. Kértner are in turn based on the lectures of Prof. Herman A. Haus, Prof
Erich Ippen and Prof Jim Fujimoto at Massachusetts Institute of Technology (MIT), on a lecture
of Dr. Christian Bosshard at Swiss Federal Institute of Technology (ETH) Zurich, and on a series
of textbooks [10] 3, 11, 28| 27 [7].

Understanding of the of the lecture contents requires mathematical skills along with basic
knowledge of electromagnetic wave theory and photonics. The lecture aims at providing a self-
contained introduction into the field on nonlinear optics. Nevertheless, the lecture notes cannot
reproduce the wealth of educational material that can be found in various textbooks and that
is referenced in the following chapters. The following books are recommended as accompanying
literature:

e R. W. Boyd. Nonlinear Optics. Academic Press, San Diego, 2003.

o G. P. Agrawal. Nonlinear Fiber Optics. Academic Press, 2013.

e B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. John Wiley and Sons, 2007.
e Y. R. Shen. Nonlinear Optics. John Wiley and Sons, New York, 1984.

Christian Koos, April 2018



Chapter 1

Linear and nonlinear optics

Nonlinear optics describes the behavior of light in nonlinear media, that feature a nonlinear re-
lationship between the electric polarization P and the electric field E. In this chapter, we will
shortly review the fundamentals of linear optics and wave propagation in linear media. Based on
this, we will introduce basic concepts of wave propagation in nonlinear media and discuss selected
nonlinear-optical phenomena of second and third order. A formal and more general definition of
the nonlinear optical susceptibility will be given in Chapter[2}

1.1 Maxwell’s equations and nonlinear optics

1.1.1 Maxwell’s equations

In the absence of any free carriers and currents, Maxwell’s equations take the following form [19]:

V.D(r,1) = 0 (L.1)
V x E(r,t) = —‘9B§;’t) (1.2)

V~B(I‘7t) =0 (1.3)
V x H(r,t) = 8D5§Z’t) (1.4)

Note that in this lecture we use SI units rather than, e.g., Gaussian units that may be found in
some older textbooks [I0]. The vector r = (z,y, z)T defines a point in three-dimensional space.
In optics, media are generally assumed to be nonmagnetic. The magnetic flux density B is then
related to the magnetic field H by

B(I‘,t) = :U'OH(rvt)a (15)

where o = 1.25664 x 107% Vs /(Am) is the magnetic permeability of vacuum. The relation
between the electric field E and the electric displacement D can be expressed as

D(r,t) = ¢oE(r,t) + P(r,t), (1.6)
where ¢p = 8.85419x 10712 A's /(V m) is the electric permittivity of vacuum, and where P denotes
the electric polarization. These equations are also referred to as constitutive relations.

1.1.2 Electric polarization and nonlinear optics

The presence of an electric field E within an optical medium leads to a displacement of positive and
negative charges, thereby inducing an electric polarization P. The optical properties of the medium
depend on the relationship between E and P, and optical media are often classified by the nature of



this relationship. In linear media, P depends linearly on E, i.e., a linear superposition a1 E; +asEs
of different electric fields E; and E, leads to a polarization profile P = a1 P1+asP5 that is given by
the corresponding linear superposition of the polarizations P; and P5 invoked individually by the
respective electric fields. In many cases of practical interest, a linear relationship is a sufficiently
good approximation, and it is therefore used throughout classical optics. For high field strengths,
however, the relationship becomes nonlinear. In this case, the superposition principle no longer
holds, and novel optical phenomena can occur, such as the formation of new spectral components
within the nonlinear medium. We may hence define the field of nonlinear optics as follows:

Nonlinear Optics: The field of nonlinear optics (often abbreviated as NLO) comprises the branch
of optics that describes the behavior of light in nonlinear media, in which the electric polar-
ization P responds nonlinearly to the electric field E of the light.

The nonlinearity in the relationship between E and P is typically only observed at very high light
intensities, featuring electric fields that are comparable to interatomic electric fields (typically of
the order of 108 V/m). Such field strengths can be generated by using pulsed lasers and/or fo-
cussing the light to a very small cross section. The nonlinear relationship between polarization and
electric field can also be interpreted by means of intensity-dependent optical material properties.
A less formal definition of nonlinear optics is therefore based on the statement that nonlinear op-
tical materials change their optical properties by the presence of light. In many cases of practical
interest, these definitions are equivalent.

1.1.3 Phenomena and applications of nonlinear optics

An illustration of different nonlinear optical phenomena is given in Figure[l.]] Launching a
monchromatic wave with angular frequency w into a nonlinear optical material can produce new
waves oscillating at, e.g., 2w or 3w, Fig.(a). These processes are referred to as second-harmonic
generation (SHG) and third-harmonic generation (THG). In a similar way, launching a superpo-
sition of two plane waves at frequencies w; and ws into a nonlinear material will lead to the
formation of intermodulation products of the two frequencies. In another class of materials, the
absorption can be subject to nonlinear effects, Fig.(b). In this context, absorption bleeching
refers to the case where the absorption coefficient decreases with intensity and hence the trans-
mission increases. Conversely, a decrease of transmission with increasing intensity is referred to
by the term “saturation”. Moreover, nonlinear effects can lead to an intensity-dependent refractive
index. In interference experiments, this can lead to intensity-dependent shifts of the interference
patterns, (c) The underlying nonlinear-optic phenomenon is referred to as self-phase modu-
lation (SPM): The intensity of the beam changes the refractive index and hence modulates the
phase. SPM can also lead to intensity-dependent beam profiles, (d): If a focussed beam of
light propagates through a nonlinear optic medium, the high-intensity center of the beam will
experience a different (usually higher) refractive index than the low-intensity periphery. At high
intensities, this can lead to so-called self-focussing of the beam. Inset (1) of [[.1(d) depicts the
beam profile at low intensities, and Inset (2) indicates self-focussing at higher intensities. At very
high intensity, the beam profile becomes unstable and breaks up in multiple filaments, Inset (3).

Nonlinear optical phenomena can be exploited for a wide range of applications. SHG, THG
or related processes such as parametric amplification can be used to realize optical sources and
amplifiers that can be tuned over a wide range of wavelengths, see Chapter[3]for a more detailed
discussion. Second-order nonlinearities lend themselves to electro-optic modulators, which are key
elements of high-speed optical communications. Nonlinear absorption can be used for multi-photon
microscopy and lithography. Phonon-assisted nonlinear interactions are the basis of acousto-
optic modulators and broadband Raman amplifiers, see Chapterd]l SPM and related third-order
nonlinear processes such as cross-phase modulation (XPM) and four-wave mixing (FWM) allow
for ultra-fast all-optical signal processing or supercontinuum generation, see Chapter [5] With the
availability of low-cost pulsed laser sources with high peak powers, the importance of nonlinear
optics is steadily increasing.



(a) (b) .bleeching®

@ /
i output //

20 y ,saturation”

(c)

+I]]<§ %

Low High

Input Output
s,
(1) (2) 3)

Figure 1.1: Tllustration of nonlinear optical phenomena. (a) Generation of new frequency compo-
nents: A monchromatic wave oscillating at angular frequency w can produce new waves oscillating
at, e.g., 2w (second-harmonic generation, SHG) or 3w (third-harmonic generation, THG). (b)
Power-dependent transmission, e.g., nonlinear absorption or absorption bleaching. (c) Intensity-
dependent interference patterns, caused by, e.g., self-phase modulation (SPM). (d) Intensity-
dependent beam profiles caused by, e.g., self-focussing. (Figure adapted from [29])

(d)

1.2 Linear media and wave propagation

In the following sections we will first review the mathematical description of a linear relationship
between E and P and derive the respective wave equation for the case of homogeneous media.
This will then serve as a starting point for the analysis of wave propagation in nonlinear media,
where the effect of nonlinear optical interaction can be considered as a small perturbation of
linear wave propagation in the framework of the so-called slowly varying envelope approximation,
see Section[[.4] Using this approach, we will derive a simplified differential equation for wave
propagation in nonlinear media that allows to study a wide range of nonlinear optical effects.

1.2.1 The linear optical susceptibility for different types of media
The linear optical susceptibility in the general case

In the case of linear media, the electric polarization P (rg,tg) at time ¢y and position ry depends
linearly on the electric field E (r,¢) in the vicinity of ro as well as on the history of this field for
t < tp. In the most general case, this can be represented as

Py(r,t) = ¢ / ///x(l)(r,r',t,t’)E(r’,t’)dr'dt’, (1.7)

—0o0 —Oo0



where x (P (r,r',t,t') represents the linear influence function that is non-local both in space and
time. The linear influence function can also be considered as a first-order approximation of the
more general nonlinear case and is therefore labeled with a superscript (1). Similarly, nonlinear
second- or third-order contributions will later be denoted with superscripts (2) and (3). Note
that in the general case, x(M)(r,r’,t,t') corresponds to a (3 x 3)-matrix that links a (3 x 1)-vector
E(r',t’) to the (3 x 1)-vector Py, (r,t). The subscript “L” relates to the fact we consider the linear
contribution of the electric field to the electric polarization.

Classification of linear optical media

In many cases of practical interest, the general relation according to Eq. (1.7) may be simplified if
we can assume certain properties of the material and the associated influence function. This leads
to the following classification of linear optical materials:

Time-invariant media: If the optical properties of the material do not explicitly depend on
time ¢, we may simplify Eq. (1.7) by replacing the explicit dependence on ¢ and ¢’ by a single
parameter 7 =t — t/,

Pr(r,t) = € 7/]./0x(1)(r,r’,r)E(r',t —7)dr'dr. (1.8)

—0o0 —0o0

This is generally true for materials that are not subject to a time-dependent external influence
that changes their optical properties.

Media that are local in space: The electric field E and the optical polarization P are mostly
considered mean quantities, averaged over a length scale smaller than the optical wavelength,
but much larger than the interatomic distance of the optical medium. In most cases of
practical interest, the local polarization Py, (r,¢) at position r depends only on contributions
from dipoles that are in direct vicinity and that are induced by electric fields E(r’,¢) at
positions r’ very are close to r. In this case, we may assume that the relationship between E
and P depends only on the local optical properties of the material. The influence function
can then be considered to be local in space. A linear time-invariant material that is local in
space can be represented by

o0

PL(r,t)=eo/x(l)(r,T)E(r,t—T)dT. (1.9)

— 0o

For the remainder of these lecture notes, we will assume that media are local in space, unless
explicitly otherwise stated.

Isotropic materials: For isotropic materials, the optical properties are independent of the di-
rection along which the electric field is oriented. In this case, the (3 x 3)-matrix x(*) can
be replaced by a scalar x"). For an isotropic linear time-invariant material that is local in
space, we obtain the relation

PL(r,t) = € [ h X, 7)E(r, t — 1) dr. (1.10)

Homogeneous materials: In homogeneous materials, the optical properties are completely in-
dependent of location r, and we may drop the explicit dependence of x(*)(r,7) on r. A linear
homogeneous material that is time-invariant and local in space can be described by

o0

PL(r,t):eo/x(l)(T)E(nt—T)dT. (1.11)

— 00



1.2.2 Frequency-domain representation of Maxwell’s equations and com-
plex dielectric

In the case of a linear time-invariant optical medium, Maxwell’s equations and the constitutive
relations, Egs. (1.1]) to (1.6, can be conveniently expressed in the frequency domain along with the
linear relations Eqs. li to . In this lecture, we use Fourier transforms @(w) with respect
to the angular frequency w,

“+o0

U (w) = /W(t)exp(fjwt)dt (1.12)
_T B

() =5 / ¥ (w) exp (jwt) dw (1.13)

When applying this transformation to Maxwell’s equations, Egs. (L.1)) to (1.4), we obtain

V.-D(r,w) =0 (1.14)
V x E(r,w) = — jwB(r,w) (1.15)
V- B(r,w) =0 (1.16)
V x H(r,w) = jwD(r,w), (1.17)

where the tilde (7) denotes a Fourier transform with respect to time ¢. The constitutive relations
are given by
B(r,w) = poH(r,w), (1.18)
D(r,w) = eoE(r,w) + P(r,w). (1.19)

For linear time-invariant media, the general relation between the electric polarization P and the
electric field E according to Eq. (1.8) can be written as

PL(r,w) = eo/].]g(”(r, ', w)E(r',w)dr’, (1.20)

where we have exploited the fact that the time-domain convolution in Eq. (1.8]) translates into a
simple multiplication in the Fourier domain. For the case of a linear time-invariant material that
is local in space, Eq.[1.20| simplifies to

PL(r,w) = coxV (r,w)E(r,w). (1.21)

In these relations, )Z(l)(r,w) represents the Fourier transform of the influence function x(r,7)
with respect to the time argument 7. The complex quantity jcv(l)(r,w) is also referred to as the
electric susceptibility and often denoted as xM(r,w) without the tilde. We will adhere to this
simplified notation whenever it is clear from the context that the (complex) frequency-domain
quantity is meant rather than the (real) time-domain influence function.

1.2.3 Kramers-Kronig relation

One important restriction to the frequency dependence of the electric susceptibility i(l)(r,w)
results from the fact that it represents the Fourier transform of a causal real-valued influence



function. For simplicity of notation, we assume a scalar, space-invariant complex susceptibilities
X(w) and influence functions x(¢) in the remainder of this section. The influence function x(¢) can
be interpreted as the impulse response of the medium upon a Dirac-like electric-field excitation
at t = 0. Due to causality of the dielectric responseﬂ the corresponding time-domain influence
function must vanish for negative times, i.e., x(¢t < 0) = 0, since no electric polarization can be
induced before the electric field penetrates the medium.

We may decompose X(w) into its real and its imaginary part and write it as a complex function
of frequency f = w/ (27),

X(w) = x(w) +ixi(w). (1.22)

Due to causality of the time-domain influence function, the real and the imaginary part of x(w)
are related by the Hilbert transform,

x(w) = —lP/oo deo (1.23)

0—0.)

79/ oo o (1.24)

In these relations, Pffooo ...dwg denotes the Cauchy principal value of the integral, i.e., the
integral must be interpreted as a limiting value for which the integration limits approach the pole
at wy = w symmetrically from both sides,

P/ ~ lim (/ xwo) g, +/ deo). (1.25)
wO - €0 —c0 Wo — W wte WO — W

Note that x(t) is real and hence x(w) = x(—w) and x;(w) = —x;(—w). Inserting these relations

in Eqgs. (1.23) and (|1.24), the so-called Kramers-Kronig relations can be derived:

_ _fp / woxilwo) 4,0 (1.26)
2 > WX(WO)

These relations allow us to calculate either the imaginary or the real part of the complex suscep-
tibility if the respective other quantity is known. This implies that the absorption or the gain
spectrum of a medium, which is related to the imaginary part of the electric susceptibility, is
linked to its frequency-dependent refractive index and vice versa. Absorption and dispersion are
intimately related.

Kramers-Kronig relations have a few important consequences: For instance, assuming a disper-
sionlessﬂ medium, the frequency-independent real part x(w) = const,, of the complex susceptibility
is constant, we find y;(w) = 0 from Eq. , which implies x(w) = 0, Eq. . There is hence
no dispersionless medium with y # 0! Real media with y # 0 always have loss (or gain) in some
frequency ranges, and the electric susceptibility is always frequency-dependent. x(w) = const,,
and x; =~ 0 is only possible in certain frequency ranges.

LA causal system is a system where the output depends on past and current inputs but not future inputs.
Causality is a fundamental principle that applies to any physical system.

2In photonics, the term “dispersion” relates to the frequency dependence of the refractive index and hence of the
real part of the electric susceptibility. In a “dispersionless” medium, these quantities do not depend on frequency -
at least for a certain range of wavelengths. As a consequence, all spectral components of an optical signal propagate
with the same velocity.



1.2.4 Maxwell’s equations for analytic time-domain signals of monochro-
matic waves

As an alternative to the Fourier-domain analysis of Maxwell’s equations according to Section ,
we may use analytic time-domain signals of monochromatic waves, i.e., complex amplitudes
P(t) = Aexp (j (wot + ¢)) with single-sided power spectra, the real part of which corresponds
to the physical time-domain signal +(r,t) = A cos (wot + ¢). For linear optics, the two approaches
result in mathematically identical relations and are therefore often not clearly distinguished in the
literature. For the case of nonlinear optics, however, an understanding of the difference between
Fourier transforms and complex time-domain amplitudes of monochromatic signals is important.
We will therefore shortly recall the relationships between the Fourier transform and the analytic
time-domain representation of a signal.

Analytic time-domain signal

For a real time-domain signal ¥(¢) € R, the Fourier spectrum J(w) has Hermitian symmetry,

P(w) = ¢*(~w), (1.28)
i.e., the spectrum for w < 0 does not contain any new information and can be completely recon-

structed from the spectrum for w > 0. We may hence discard the negative-frequency components
without any loss of information by constructing a function ¢(w) with a single-sided spectrum,

b(w) = d(w) + sgn(w)d (W), (1.29)

where the sign function sgn(w) is given by

1 forw >0
sgn(w)=4¢ 0 forw=0. (1.30)
—1 forw <0

@ (w) hence contains only the non-negative frequency components of @Z(w) Note that the operation
is reversible,

~ 1/~ e

) = 5 (2w + ¥ (-w)) - (1.31)
The time-domain analogon of Eq. is given by

wl=vie) +i (w0 + 7). (1.32)

where 9(t) denotes the analytic time-domain signal of v (¢). Note that the convolution of (t)
with 1/ (nt) on the right-hand side of Eq. corresponds to a Hilbert transform. For a given
real time-domain signal ¥ (¢) , the corresponding analytic signal ¥(¢) can hence be obtained by
constructing the imaginary part by means of the Hilbert transformation. The real time-domain
signal ¥ (t) can be easily retrieved by just taking the real part,

P(t) =Re {9(t)}, (1.33)
which corresponds to the time-domain analogon of Eq. (1.31]).

Example: Representation of harmonic oscillations by complex time-domain ampli-
tudes As an example, let us consider analytic time-domain signals which are commonly used
to describe monochromatic oscillations. The time-domain representation of such an oscillation is
given by ¥ (t) = Acos (wot + @), and the Hilbert transform of ¢ (t) is given by Asin (wot + ). As
an analytic signal, we hence obtain the commonly used complex exponential ¢)(t) = A exp (j (wot + ¢))
with a single-sided spectrum. The real part of 1(t) corresponds to the original signal. Note, how-
ever, that the concept of analytic time-domain signals is much more general and goes far beyond
the description of monochromatic oscillations.



Maxwell’s equations for complex time-domain amplitudes

Let us now consider a monochromatic electromagnetic wave, oscillating at an angular frequency wg
and propagating through a linear time-invariant medium. All real electromagnetic field quantities
P(r,t) = Re {g (r, t)} can then be represented as the real parts of equivalent analytic time-domain
signals )(r, t) having the form

P(r,t)=P(r,wo) exp (jwot) - (1.34)

The quantity ¥ (r,wp) represents a complex time-domain amplitude of the analytical time-domain
signal 9(r,t). The Fourier spectrum of the real time-domain function is then given by

Y(r,w) = ¥(r,wp) % (0 (w—wp) + 0 (w+wp)), (1.35)

i.e., there are only nonzero spectral components at w = Fwg. Inserting these relations into
Egs. (1.14) to (1.21), we obtain Maxwell’s equations for the complex time-domain amplitudes
¥(r,wo),

V - D(r,wp) =0, (1.36)
V x E(r,wp) = —jwoB(r,wop), (1.37)
V- B(r,wy) =0, (1.38)
V X E(I‘7 UJO) = J LUQD(I‘, QJO). (139)

The corresponding constitutive relations are given by
B(r,wp) = poH(r,wp), (1.40)
D(I‘,WO) = EoE(I',W()) —|—E(r,w0). (].4].)

For linear time-invariant media, the complex time-domain amplitude Pj (r,wp) of the electric
polarization and the complex amplitude E (r,wg) of the electric field are related by

Py (r,wo) =€ ///X(l) (r,r’,wo) E (r',wp) dr’, (1.42)

which simplifies to
Py (r,wo) = eox'” (r,wo) E(r, wo) (1.43)

for the case of a linear time-invariant material that is local in space. The quantities x*) (r, ', wp)

and X(l) (r,wp) are equal to the corresponding Fourier-domain representations of the electric sus-
ceptibilities,

xW (r,r,wo) = X (r, 17, wo) (1.44)
x® (r,w0) = X (r,w0) (1.45)

The electric susceptibility x(!) links two vectorial quantities P and E and is therefore a matrix in
the general case.

Note that Egs. to are mathematically identical to Egs. (1.14) to , i.e., the
complex time-domain amplitudes of a monochromatic analytic signal with oscillation frequency
wo obey the Fourier-domain representation of Maxwell’s equations at frequency w = wg. This
is a direct consequence of the linearity of Maxwell’s equations. In linear optics, there is hence
no need to distinguish between Fourier transforms ¥(r,w) and complex space-dependent time-
domain amplitudes ¥(r,wp). For nonlinear optics, this discrimination is important: Products of
field quantities, that often occur in nonlinear optics, simply correspond to the product of the
corresponding time-domain amplitude, whereas the corresponding Fourier transforms would have
to be combined by means of more complicated convolutions.



1.2.5 Wave propagation in linear isotropic media
Complex electric susceptibility, dielectric permeability, and complex refractive index

In the following, we assume a linear isotropic time-invariant material that is local in space. Using
Egs. (1.41) and (1.43), we can state a simple linear relationship between the electric field and the
electric displacement,

D(r,w) = ¢E(r,w) + P(r,w)
= ¢ (1 + X(l)(r,w)) E(r,w) (1.46)
= o€, (r,w)E(r, w)
= eon?(r,w)E(r,w).

The complex relative dielectric constant ¢, and the complex refractive index n are related to the
complex electric susceptibility X(l) by

e (r,w) = 1+ xW(r,w) = n(r,w). (1.47)

From this relation, we can derive various relationships of the real and imaginary parts of ¢, and n,

I3
|
3

S

€ = € — J €,
€r =" 7”127 €ri = 2n1;,
n® = 36 (1 V1t E%z/eg) ) n; = €ri/(2n), (1.48)
nR e (for ] < er)  ni = e/ (24/6),
nalenl2 (for el > ) i~ sgalens)/Jenl 2.
Note the somewhat unusual negative signs for the imaginary parts in Eq. result from the

convention to assign positive values of n; to lossy media, whereas negative values of n; correspond
to media with gain.

Wave equations in the general form

By reshaping Eqgs. (1.36) to (1.41) and using Eq. (1.46]), we obtain the vector wave equations for
the electric and the magnetic fields,

V2E(r,w) + V (m E(r, w)) + k2, (r,w)E(r,w) = 0 (1.49)
V2H(r,w) + m x (V x H(r,w)) + kggr(r,w)ﬂ(r,w) =0, (1.50)

where kg = w/c represents the free-space wavenumber. For arbitrary media with strong spatial
variations of €, (r,w), these equations cannot be solved analytically, since all vector components of
the electric and the magentic fields are coupled by the expression (Ve, /e,) on the left-hand sides
of Eqs. and (1.50). For homogeneous or weakly inhomogeneous media, however, we may
simplify these relations considerably. If the dielectric constant €, (r, w) does not change significantly
over an optical wavelength, we find that|Ve, /¢,| < |nko|, and we can neglect the second expressions
on the left-hand sides of Eqs. and in comparison to the first ones. This leads to the
so-called Helmholtz equations for the electric and magnetic fields,

V2E(r,w) + kje, (r,w)E(r,w) = 0 (1.51)
V2H(r,w) + kie, (r,w)H(r,w) =0 (1.52)

Note that, in contrast to Egs. (1.49) and (1.50), the vector components of the magnetic and
electric fields are now decoupled, i.e., Egs. (1.51) and (1.52)) can each be decomposed into three
scalar differential equations for three vector components.

10



Plane waves in homogeneous media

For homogenous media, €,.(r,w) = ¢,(w) is constant throughout space, and Egs. (1.51]) and (1.52)
are solved by so-called plane waves of the form

E(r,t) =Re {E(r,w)e!“'} = Re {EO ej(“’t_k‘")} , (1.53)

H(r,t) = Re {H(r,w)e!“"} = Re {ﬂo ej(“’t*g)} , (1.54)

where the wave vector k defines the direction of propagation and obeys the relation

k? = kie (w). (1.55)

The surfaces of equal phase (“phase fronts”) are planes that are normal to k. Phase fronts travel
with the phase velocity v, = ¢/n (w).

For a plane wave, the magnetic field can be derived from the electric field and vice versa.
Introducing the plane-wave solution for the electric field, Eq. , into Maxwell’s curl equations

(1.2) and (1.4), we find

1
H, = —kxE,, 1.56
Hy = -k xE (1.56)
1
E,=— k x H,. 1.57
- WEQE, 20 ( )

Maxwell’s divergence equations (1.1)) and (1.3]) lead to
k-E, =0 (1.58)
k-H, =0. (1.59)

In other words: The vectors (k, Eq, Hy) are mutually orthogonal and form a right-handed system.
Note that the wave vector k is in general a complex number,

k =k — jk; = koney (1.60)

where e denotes the unit vector in the direction of propagation. The time-averaged energy flux
carried by the wave is obtained from the real part of the complex Poynting vector S [19],

1 . k ok
Re{S} = R‘*{QE@aw) x H*(r, w>} = w0 [Eq|* e~k (1.61)

If we assume a plane wave propagating into positive z-direction, then k = kgne, and the power
decays as e”®**, where the power attenuation coefficient « is linked to the imaginary part of the
refractive index by

Due to the convention to use negative signs for the imaginary parts in Eq. (1.48), a positive value
of n; corresponds to a positive attenuation coeflicient o and therefore to optical loss, whereas
negative values of n; and « occur for media that show optical gain.

1.3 Harmonic and anharmonic oscillator model of optical
media

In many cases of practical interest, the electric polarization P is dominated by the contributions
of electrons that are bound to atomic nuclei. Under the influence of an external electric field, the

11



center of each electron cloud is displaced from the center of the corresponding nucleus, which leads
to a microscopic electric dipole moment p and hence to a macroscopic electric polarization P of the
material. For small electric fields, the displacement increases linearly with the applied field. This
corresponds to an harmonic oscillator, for which the restoring force depends linearly and the stored
energy depends quadratically on the displacement, thereby leading to a linear relationship between
electric field and polarizationP. Conversely, for large electric fields, the relationship between
electric field and displacement becomes nonlinear, corresponding to an anharmonic oscillator,
which leads to a nonlinear relationship between electric field and polarization. The following
sections are dedicated to a more detailed study of these phenomena.

1.3.1 The Lorentz oscillator model of linear dielectric media

Let us first consider a simple model for the interaction of an electric field E with a linear dielectric
medium. The external electric field E leads to a displacement of charges within the individ-
ual atoms and molecules, thereby inducing an electric dipole moment p, Fig.[1.2] The electric
polarization P is then given by the dipole moment that is induced per unit volume,

P =Np, (1.63)

where N is the number of charges per unit volume. Assuming E =F,e,, and denoting the dis-

(@) E } (b)

."' -
‘e,

<
=~
txyy

b gi L éi & f d= xe,

Figure 1.2: Lorentz model of electrons that are bound to a positively charged nucleus. (a) An
external electric field F leads to a displacement of a bound electron and hence to a shift d of the
center of negative charges away from the positively charged nucleus. This causes an electric dipole
moment that oscillates with the frequency of the external field. (b) For an electric field oriented
along the x-direction, the problem can be simplified to a one-dimensional equation of motion for
the electron. (Figure adapted from [26]).

placement of a single bound electron with x, the dipole moment p = p,e, is given by p, = —ze.
The dynamic displacement of the electron obeys Newton’s second law, which states that the sum
of forces (driving plus restoring force) equals electron mass m, times acceleration,

d’z 9 dx
me@ = —elly — Mew, T — me’yra,

(1.64)
where 7, < w,.. In this relation, a linear increase of the restoring force m.w?2x with displacement
x was assumed.

Solving Eq. (1.64) for a monochromatic excitation E, = Re {E, exp (jwt)}, the complex electric
polarization is obtained, and the electric susceptibility can be derived,

w?
U A 1.65
X(w) = xo I 1 gy (1.65)
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Figure 1.3: (a) Absorption coefficient «, and (b) refractive index n of a dielectric medium near
resonance frequency wy. The absorption spectrum assumes the shape of a narrow line, whereas
the refractive index undergoes a typical pattern which shows an increased refractive index for
frequencies below resonance and a decreased refractive index for frequencies above resonance
(Figure adapted from [26]).

where
Ne?
=—. 1.66
Xo €0Mew? ( )
The real and the imaginary parts of the complex electric susceptibility hence read
w2 — w?) w?
x(w) = 2( Y ) S5 X0 (1.67)
(wr —w ) +w Yr
2
WYpw
Xi(w) = — o Xo- (1.68)

(2 — )+ w2

2
From these relations, we may deduce some very general properties of dielectric media:

e Well below resonance, i.e., for w < w, we find x ~ xo and x; ~ 0. In the low-frequency
limit, dielectric media hence exhibit only refraction, but no absorption.

e Well above resonance, i.e., for w > w, we find x =~ x; ~ 0. The medium hence behaves
essentially like free space; electrons cannot any more “follow” the electric field because it
changes too fast. As a consequence, most materials appear transparent at X-ray frequencies
and have a refractive index close to unity.

e Right at resonance, i.e., for w = w, we find x =~ 0 and x; =~ Qxo, where Q = w,./7,. This
implies strong absorption and a strongly frequency-dependent refractive index.

Equations ((1.67) and lead to a characteristic behavior of the refractive index near a resonance
line, see F. For real media, different electrons exhibit different resonance frequencies,
Fig. , and the real and imaginary parts of the susceptibility are given by a sum over the
various contributions,

2 2

(w”, - w2) wy.
X(w)=>" ) r Xov (1.69)

v

2
_ WYrvWp,,
Xilw)==>" (2 )t Xov- (1.70)

v
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Figure 1.4: In real media, the real and imaginary parts of the susceptibility are given by a sum
over the contributions of various electrons (Figure adapted from [14]).

Example: Lenses for X-ray radiation At X-ray frequencies, w > w,, we find x = x; =~ 0
and x < 0. Hence, materials are in essence transparent for these wavelengths, and X-rays are
widely used for tomographic analysis of the interior structures of biological and technical samples.
At the same time, the refractive indices at X-ray frequencies are close to unity, and it is therefore
challenging to produce refractive optical components. X-ray lenses are therefore composed of
arrays of single lens elements, Fig. . In contrast to normal optics, focusing X-ray lenses must
have concave cross sections, since the refractive index is smaller than unity.

1.3.2 Anharmonic oscillator model of electronic nonlinearities

In Eq. , a linear relationship between the restoring force and the displacement was assumed.
This can be represented by a quadratic potential of a harmonic oscillator, see Fig.[I.6] and repre-
sents a very good first-order approximation for small electric fields E. For strong fields, however,
the nonlinearity of the relationship between electric polarization and electric field becomes no-
ticeable, and anharmonic correction terms have to be considered. The solid red line in Fig.[1.6]
represents an anharmonic potential with a cubic contribution, which leads to a quadratic term
—ax? in the restoring force. Similarly to Eq. , the equation of motion can now be written as

2

me((iin = —¢eF, — me%i—f — mewfac — ax?, (1.71)
Inserting a monochromatic electric field £, = Re {E, exp (jwot)} = cos (wot — ¢) as an excitation,
the displacement x now features frequency components at w = 0, w = wp, and w = 2wy, and the
same applies to the polarization, see [29] for a more detailed analysis. This leads to formation of
new spectral components at w = 0, w = wp, and w = 2wy - a typical phenomenon of second-order
nonlinearities. Similarly, third-order nonlinearities are associated with a fourth-order term in the
potential and a cubic term in the restoring force, thereby generating new spectral components at,
e.g., w = 3wp.

1.4 Wave propagation in nonlinear media
In Section [1.2] we have studied wave propagation in homogeneous media that are linear and

isotropic. We will now consider nonlinear media and investigate the impact of optical nonlinearities
on wave propagation. To this end, we will first derive the wave equation in homogeneous nonlinear
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Figure 1.5: To obtain sufficient refractive power despite refractive indices n that are close to
unity, X-ray lenses are composed of an array of individual lens elements. Since n < 1 for X-ray
frequencies, focussing lenses must have concave shapes. (Source: A. Last, KIT-IMT)

> X

Figure 1.6: Harmonic potential (dashed black line) and anharmonic potential (solid red line)
experienced by a bound electron. The harmonic potential has a parabolic shape, and the restor-
ing force is hence propotional to the displacement x. The anharmonic potential contains a cubic
component, which contributes quadratically to the restoring force. This leads to a nonlinear rela-
tionship between the electric field and the electric polarization and hence to optical nonlinearities.

If a sinusoidal excitation field is applied, we observe higher harmonics in the electric polarization.
(Figure adapted from [29]).
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media, and then solve it by a first-order perturbation approach using the so-called slowly varying
envelope approximation (SVEA).

1.4.1 Nonlinear wave equation

Consider a superposition of plane waves, where all electromagnetic field quantities can be repre-
sented by an expression of the form

E(r,t) = % (Z E(r,w;) exp (juit) + c.c.) . (1.72)
l

In this relation, “c.c.” denotes the complex conjugate of the preceding expression. The linear
polarization is then given by

1
Py(r,t) = 3 (Zl: P(r,w;) exp (jwit) + c.c.) , (1.73)
where the complex amplitudes of the polarization P(r,w;) are linked to the corresponding complex
amplitudes of the field E(r,w;) by Eq. (1.43),
P (r,w) = eox(l) (r,w;) E(r,w;) (1.74)

If the medium is operated far away from any electronic resonances, then the first-order suscepti-
bilities X(l) (r,w;) can be assumed to be real and independent of frequency wy,

X(l) (r,w) =~ xW (r) e R. (1.75)

In this case, we can relate the instantaneous linear polarization Py (r,t) directly to the electric
field, neglecting any memory of the medium,

Pr(r,t) = eoxV (r) E(r, ) (1.76)

In a nonlinear medium, the total polarization is given by the sum of the linear and the nonlinear
contributions,

P(I‘,t) :PL(I‘,t) + PNL(I‘,t), (177)
where the nonlinear contribution is usually much smaller than the linear one,
‘PNL(I‘, t)] < |Pp(r,t)]. (1.78)

Inserting Eq. (1.77) in Maxwell’s equations, Eqs. (1.36) to (1.43), we can derive the wave equation
for nonlinear media,

O%E(r,t 0?Pnr(r,t
V x V x E(I‘,t) + [}J()Eoer% = 7#0% (179)

For small nonlinearities, we may simplify this relation to
n? 9?°E(r,t)
2 o2

For linear media, the right-hand side vanishes, and the relation is solved by plane waves. For
nonlinear media, we may assume that the solutions are similar to plane waves, but with amplitudes

that vary slowly in time and space. This approach is also referred to as the slowly varying envelope
approximation (SVEA) and shall be considered further in the next section.

0*Pnr (r,t)
0T o2

V2E(r,t) — = . (1.80)
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1.4.2 Representation of the nonlinear polarization

For the sake of simplicity, we assume a homogeneous isotropic medium and reduce the represen-
tation to plane waves that are polarized along the x—direction,

E(r,t) = E(z,t) e, (1.81)
P(r,t) = P(z,t) ey, (1.82)

where e, denotes the unit vector along the x-direction, and where the scalar electric field F(z,t)
is given by

E(z,t) = % (ZE(wl) exp (j (wit — ki2)) + c.c.) . (1.83)
1

In this relation, k; = nw;/c denotes the propagation constant of the plane wave. For representation
of the nonlinear polarization, we also assume a memory-less instantaneous response to the electric
field. We can then expand P (z,t) into a power series of F (z,t),

P(z,t) = eox"WE (z,t) + coX P E? (2,t) + eox P E® (2,t) + ... (1.84)

As explained in the last section, we can now decompose the polarization into a linear contribution
P, (z,t) and a nonlinear contribution Pyr, (2, 1),

P(z,t) = P, (z,t) + Px1 (2,1) (1.85)
P (z,t) = eoxVE (2, 1) (1.86)
Pxt (z,t) = eox P E? (z,t) + eox P E? (2,8) + ... (1.87)

As an example, let us consider the second-order nonlinear polarization for a superposition of two
plane waves, oscillating at frequencies w; and ws,

E(z,t) = = (E(w1) exp (j (w1t — k12)) + E(w2) exp (j (wet — k22)) +c.c.). (1.88)

[N

Using the abbreviation E; = E(w;), the corresponding second-order nonlinear polarization can be
written as

1 ) .
P, (2,t) =7 eox™? (E?Gﬂ(“”"“z) + B3tk 4 9| B P 42| B,y

+2E1£2€j((w1+w2)t_(kl+k2)z) + 2E1E§€j((wl_w2)t_(kl_k2)z) + C.C.) (189)

Note that |E,|* € R, i.e., |E,|* + c.c. = 2|E,|* on the right-hand side of Eq. (1.89). The physical
meaning of the various contributions are discussed in more detail in Section[l.5] Note that the
individual expressions exhibit a plane wave-like space and time dependence such that the nonlinear
polarization can be written as

1 .
Py, (2,t) = 3 (Z Py, (wr) exp (§ (wit — kpy2)) + c.c.> , (1.90)
1
where w; € {2w1, 2ws, w1 + w2, w1 —wa, 0} and ky; € {2ky, 2ka, k1 + k2, k1 — ko, 0}

1.4.3 Plane waves and slowly-varying envelope approximation (SVEA)

The nonlinear polarization on the right-hand side of Eq. (1.80) acts as a source for new frequency
components. For a simplified analysis, let us again consider a superposition of plane waves that
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are polarized along the z-direction and propagate along the z-direction. The effects of optical
nonlinearities shall be taken into account by allowing for a weak space and time dependence of
the scalar plane-wave amplitudes E(z,t,w;),

1
E(z,t) = 3 (ZE(z,t,wl) exp (j (wit — ki2)) + c.c.) . (1.91)
l
We use the same set of frequencies w; to expand the second-order nonlinear polarization,
1 .
Pur, (z,1) = 3 ZBNL(z, t,wy) exp (j (wit — kpz)) +cc. | . (1.92)
1

We insert Eq. (1.91) and (1.92)) into Eq. (1.80), and consider the various frequency components
individually. We further exploit the fact that E(z,t,w;) varies only slowly with space and time

and hence

O2E(z,t,w)) OE(z,t,w)
’8752 YT ] (1.93)
0*E(z,t,w OE(z,t,w
’ 75’322 J <k 7(82 : ' (1.94)
This leads to a relation of the form
8E(z t wl) naE(z t wl) . Wy K _
Lz, 1, noz\st, - P t i(kpo kl)z. 1.95
0z + c ot J2eocn*NL(Z’ e ( )

The expression on the left-hand side can be simplified by introducing a retarded time frame,

f=t— % (1.96)
2 =z, (1.97)
E(z,t,w) = E'(2,t — %,wz). (1.98)

This leads finally to the relation

OE' (2 ', w) LW

57 g P (1w il RO (1.99)
z €ocn

Note that the primes are sometimes omitted in the literature without explicit mentioning that the
time dependence refers to a retarded reference frame.

By using the SVEA, we could hence reduce the second-order differential equation (|1.80) to a
first-order equation which describes the evolution of the complex field amplitudes during
propagation through a nonlinear medium. The nonlinear polarization Py (2',t',w;) on the right-
hand side of Eq. can be interpreted as a source for the electric field component E'(2',#',w;)
that is oscillating at the same frequency w;. Depending of the relative phase between Py (2',t',w;)
and E'(2',t,w;), the nonlinear polarization can cause amplification, absorption or phase shifts.
Proper phase matching is an aspect of prime importance for efficient nonlinear interaction: If
(kpi — ki) # 0 and if the evolution according to Eq. is considered over a length L for which
(kpi — ki) L > 1, then the effects of optical nonlinearities average out due to a constantly changing
phase relation between the existing electric field E'(z’, ¢, w;) and the newly generated contribution
OE'(#' ', w;) /0.
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Figure 1.7: Second-harmonic generation (SHG). (a) Interaction scheme. (b) Energy-level descrip-
tion (Figure adapted from [9]).

1.5 Survey of nonlinear optical processes

In this section we give a short overview on the nonlinear optical processes that occur as a con-
sequence of Eq. (1.99). For better understanding let us recall that Eq. only describes the
evolution of a single frequency component centered at w; as a consequence of nonlinear interaction.
If we launch a superposition of monochromatic waves with different frequencies into a nonlinear
medium, we will generate a multitude of new frequency components, see, e.g., Eq. for the
case of a superposition of two waves in a second-order nonlinear medium. Eq. has then to be
applied to each of these frequency components separately. In general, for a nonlinearity of order n,
we will see newly generated frequency components that correspond to the sum of any n positive or
negative frequency components of the incident wave. Each combination of input frequencies that
leads to a certain new frequency component can be associated with a specific nonlinear optical
process. We will give an overview on these processes in the following sections. To simplify the
analysis, we will operate in the retarded time frame defined by Egs. - (1.98), but we will
omit the primes for the sake of readability.

1.5.1 Second-order nonlinearities

For a superposition of monochromatic plane waves at frequencies w; and ws in a second-order
nonlinear medium, the nonlinear optical polarization is given by Eq. . Comparing Eqs.
and (L.90), we can identify the complex amplitude of the nonlinear polarization at frequency wy,
which is associated with a wave vector k,. These amplitudes can be associated with the following
second-order nonlinear processes:

Second-harmonic generation (SHG)

The second harmonic of a monochromatic wave at frequency w; oscillates at w, = 2w; and features
a wave vector k, = 2k;. The nonlinear polarization leading to this process is given by

1
BSHG (Za tv 2(*‘)1) = §€0X(2)E2 (Za tv UJl) (1100)

The interaction scheme and the energy-level diagram of second-harmonic generation are shown in
Fig.[I.7] In SHG, two photons interact to generate a new photon with twice the energy.

Optical rectification (OR)

For optical rectification, nonlinear interaction of a monochromatic wave with itself leads to a DC
field at w, = 0, which is associated with a wave vector of k, = 0. Note that the amplitude for
wp = 0 is real and hence identical to the corresponding “+-cc”-term. Taking this into account, the
nonlinear polarization responsible for optical rectification is given by
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Figure 1.8: Sum-frequency generation (SFQ). (a) Interaction scheme. (b) Energy-level description
(Figure adapted from [9]).

1
Por (2,t,0) = §eox(2)ﬂ(z,t,w1)ﬂ(z,t, —wy) (1.101)
Note that E (z,t, —w1) = —E* (z,t,w1), ensuring that P, (2,t,0) is a real-valued quantity.

Sum-frequency generation (SFG)

For sum frequency generation, the frequency of the newly generated wave is given by w, = w3 =
w1 + we. Accordingly, the wave vector associated with the nonlinear optical polarization corre-
sponds to k, = k1 + ko. Taking into account the degeneracy factor of 2 in Eq. (1.89), the nonlinear
optical polarization can be written as

Pspa (2,t,w1 +wa) = €X' P E (2,t,w1) E (2, t,ws) (1.102)

The geometry and the energy-level diagram of sum-frequency generation is shown in Fig.[I.8] In
SFG, a new photon of energy hws is generated by interaction of two photons with energies hw,
and hwg.

Difference-frequency generation (DFG)

Likewise, we have w, = w3 = w1 — w2 and k, = ki — ko for difference-frequency generation, and
the nonlinear optical polarization is given by

Pprpc (2,t,w01 — ws) = eoX D E (2, t,w1) E (2,1, —wy) (1.103)

The geometry and the energy-level diagram of difference-frequency generation is shown in Fig.[I.9}
A photon of energy fuws and a photon of energy fws are generated from a photon with energy hw;.

Note that in the simplified consideration that we use here, the nonlinear optical element y (2
is the same in all relations - . This is a direct consequence of assuming an instan-
taneous response of the polarization to the electric field in the time-domain Taylor expansion,

in Eq. (1.84). We will later introduce frequency-dependent susceptibilities to account for a non-
instantaneous time-domain response.

1.5.2 Third-order nonlinearities

To understand the various nonlinear processes that can occur in a third-order nonlinear medium,
let us consider a superposition of three plane waves, oscillating at frequencies wy, wy and ws,

1 . i .
E(Z,t) = 5 <E16.](Wlt*klz) _'_EQQJ(Wzt*kzZ) +E36J(w3t*k3z) + C.C.) , (1_104)
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Figure 1.9: Difference-frequency generation (DFG). (a) Interaction scheme. (b) Energy-level
description (Figure adapted from [9]).

where £, = E(z,t,w;) denotes the slowly varying envelope of the wave oscillating frequency w;.
Assuming again an instantaneous response of the nonlinear polarization to the electric field, we
can follow Eq. (1.84)), and write the corresponding third-order nonlinear polarization as

Pyt (2, 1) zeox(g)EB(z,t)

:éeox(?’) <Elej(w1t—k12) +Ezej(wzt—kzz) +E3€j(w3t_k3z) (1105)
+ ETefj(wltflﬁZ) +E;e*j(w2t7kgz) —|—E§€‘J‘(UJ3t*k3z)>3

When expanding the cubic expression on the right-hand side, we obtain terms of the form exp (j (wpt — kp2)),
where w, = wp, + Wy + wo, kp = kym + kn + ko, and where for each of the variables wy, , wy,, and

w,we can assume any of the values +w;, tws, or +w3. Each term features a degeneracy factor

D that corresponds to the number of distinct permutations of the frequency triad (wy,ws,ws),

leading to a relation of the form

1 1. 4.
Py, (2,1) = Seox® [ J BI85 4o e

THG

n ZE?EQeJ((2“1“’2”*(2’“*’“2)2) 4o tee

degenerate FWM/ third-order SFG

+ 2E1E2E36i((w1+w2+w3)t*(k1+k2+k3)z) + C.C./

non-degenerate FWM / third-order SFG

+ % |E,|? E étR2) 4oy ce (1.106)

SPM

6 .
1B Byt e

XPM

3 .
+ ZE?E;Q]((ZAH_W2)t_(2k1_k2)2) + ...+

degenerate FWM

+2E1E2E§ei((wl+w2*ws)t*(lierfkg)z)_|__.'_|_C'C'

non-degenerate FWM
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] Process \ Abbreviation [Involved frequencies[Degeneracy factorD]

Third-harmonic generation THG (+wi, +w1, +wi) 1
Self-phase modulation SPM
Cross-phase modulation XPM

Non-degenerate four-wave mixing|(non-degenerate) FWM

Degenerate four-wave mixing (degenerate) FWM +w1, +wi, +ws

+W13 +W1; —Ww2

)
)
+w1, +wa, +ws)
)
)
)

W W| O O O W

Table 1.1: Summary of third-order nonlinear processes. Non-degenerate four-wave mixing with
frequencies (wq,ws,ws) is also referred to as third-order sum frequency generation.

In this equation, “+4c.c.” denotes the complex conjugate of the preceding expression in the same
line, and “+...” represents the ensemble of all expressions that are obtained from the first expres-
sion in the line by considering all distinct combinations of subscripts, i.e.,

§E§E26j((2wl+m)t—(2kl+k2)z) ‘... :§E§E26j((2w1+w2)t—(2k1+k2)z)

3 j w2 1 - 2 1
+ ZE%EleJ((2 “Gw )t (Qk +k )Z)

+ %E%E?)ej((2w1+w3)t_(2k1+k3)z) (1107)

+ %EEEBe‘j((2w2+w3)t—(2k2+k3)z)

n zﬁgﬂlej((mug—&-wl)t—(2k3+k1)z)

n %Eggzej(ﬂwg%»wg)t7(2k3+k2)z)

The different expressions in Eq. can be associated with distinct third-order nonlinear pro-
cesses, the abbreviations of which are indicated under the underbraces. A summary of third-order
nonlinear processes is given in Table (|1.1)). These processes shall be investigated in more detail in
the following sections. Note that the individual frequency components of Eq. exhibit again
a space and time dependence that corresponds to that of a plane wave. The nonlinear polarization
can hence be written as

Pxr, (2,1) (Z Py (2, t,wy) exp (§ (wit — kpy2)) + c.c.> , (1.108)

By comparing Egs. (1.106) and (1.108), we can identify the complex amplitude of the nonlinear
polarization Py, (z,t,w;) that is associated with a certain third-order nonlinear process.

Third-harmonic generation (THG)

The third harmonic of a monochromatic wave at frequency w; oscillates at w, = 3w; and features
a wave vector k, = 3k;. The nonlinear polarization leading to this process is given by

1
Pryc (z,t,3w1) = ZEOX(P’)ES (2,t,w1) (1.109)

The energy-level diagram of third-harmonic generation is shown in Fig.[1.10/(a). In THG, three
photons interact to generate a new photon with three times the energy.
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Figure 1.10:  Third-order nonlinear processes. (a) Energy-level description of third-harmonic
generation (THG): Three photons interact and generate a new photon having three times the
energy. (b) Energy-level description and (c¢) interaction scheme of self-phase modulation (SPM):
The presence of a strong wave leads to an increase in refractive index and hence to a negative
nonlinear phase shift ¢gpy < 0 that the wave imposes on itself. (d) Energy-level description and
(e) interaction scheme of cross-phase modulation (XPM): A strong wave at frequency w; imposes
a nonlinear phase shift ¢xpy < 0 on a co-propagating wave at frequency wo. Note that for a given
intensity of the strong wave, the phase shift for XPM is twice as high as the phase shift for SPM,
oxpm = 2¢spm. (Figures adapted from [9]).

Self-phase modulation (SPM)

Self-phase modulation (SPM) describes a third-order nonlinear optical process by which the field
of the incident wave modulates its own phase. The nonlinear polarization of SPM oscillates at the
same frequency w, = w; as the incident wave and is given by

3
Pspu (2, t,w1) = Jeox @ |E (2,8, 01)[" E (2, t,01) (1.110)

Inserting Eq. (1.110) into Eq. , omitting the primes, and assuming a real-value third-order
susceptibility x®) € R, we find that the change of the complex electric field amplitude OE(z,t,w;)/0z
(left-hand side) features a phase shift of —7/2 compared to the electric field E(z,t,w;). As a con-
sequence, the superposition of the nonlinear and linear polarization at frequency w; results in a
phase shift that can be represented by an intensity-dependent refractive index, see Section[I.5.3|for
a more detailed description. The energy-level diagram and interaction scheme of SPM is depicted

in Fig.[1.10|(b) and (c).

Cross-phase modulation (XPM)

In cross-phase modulation (XPM), the presence of a strong wave oscillating at frequency wy
imposes a phase onto a second wave, oscillating at ws. The nonlinear polarization of XPM oscillates
at the same frequency w, = w, as the modulated wave and is given by

Pxpum (2,t,we) = geox(?’) |E (z,t,w1)|2E(z,t,wQ) . (1.111)
Also here, the superposition of the nonlinear and the linear polarization at frequency w; results
in a phase shift that can again be represented by an intensity-dependent refractive index. Note
that for a given intensity of the strong wave at frequency wi, the phase shift for XPM (multiplier
6/4) is twice as high as the phase shift for SPM (multiplier 3/4). The energy-level diagram and
the interaction scheme of XPM are shown in Fig.[1.10|(d) and (e). Note that for SPM and XPM,
the phase factor ed(*»1=%)=" on the right-hand side of Eq. vanishes, i.e., these processes are
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intrinsically phase-matched. All other processes rely on dedicated phase matching techniques for
efficient nonlinear interaction.

Four-wave mixing (FWM)

In four-wave mixing (FWM), new frequency components are generated by third-order nonlinear
interaction of two or three waves. In the case of non-degenerate four-wave mixing, three waves
oscillating at frequencies w1, w2, and w3 interact and generate a fourth wave at frequency w, =
w1 +ws +ws Or wp = w1 +wz —ws. Non-degenerate four-wave mixing with frequencies (w1, wsa,ws)
is also referred to as third-order sum frequency generation. In theory, both frequency components
can be generated simultaneously, but phase matching is usually fulfilled for only one of these
processes in practice. For non-degenerate FWM, the nonlinear polarization is given by

6
Prwwum (2,t,wy, = w1 +wo +w3) = feox(?’)ﬂ z,t,w) E(z,t,we) E(2,t,ws) . 1.112
P 4
6
BFWM z,t,w =w1 twy —ws)= 760X(3)E thvwl E Z7t,0.)2 E* th7w3 1.113
P 4
In the case of degenerate four-wave mixing, two of the three frequencies are identical, and the
degeneracy factor is reduced by a factor of 2,
3 B p2
Prww (2, t,wp = 2w1 +ws) = 760X E*(z,t,w1) E (2, t,wa). (1.114)
3
Prwum (2, t,wp = 2wy —wsy) = ZGOX@)EQ (z,t,w1) E* (2,t, w2) (1.115)

The interaction schemes and energy-level diagrams of degenerate and non-degenerate FWM is

shown in Fig. (1.11)).

(2) (b) -5~

O —> 0, =0 +0,+0,
(3) :
Oy ——— X —_—> @, @,

(c) (C)

wl N (l)4 =w] +(02‘—CU3 0)2 w3
3 —_—
0, 5 P ool Y.
_—
(03 > ) 601 (04
3

Figure 1.11: Interaction schemes and energy-level descriptions of non-degenerate third-order
nonlinear interactions (“four-wave mixing”). (a) Interaction scheme and (b) energy-level description
of four-wave mixing that generates one photon, also referred to as third-order sum frequency
generation. (c) Interaction scheme and (d) energy-level description of non-degenerate four-wave
mixing that generates two photons. For degenerate four-wave maxing, at least two of the involved
frequency components are identical (Figure adapted from [9]).
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1.5.3 Intensity-dependent refractive index and Kerr effect

For the case of a single wave of frequency wy, only third-harmonic generation (THG) and self-phase
modulation (SPM) remain as third-order nonlinear effects. Inserting Egs. (1.109) and (1.110)) in
Eq. (1.99), we obtain two partial differential equation describing the evolution of the field ampli-
tudes at wy and 3wy,

8E(z,t, 3&)1) - 3w1X(3)

_ BB (o1 ) e 3@ —k(3n) 1.116
Oz ‘]SCn (Bwi)™ (2:80n) € , | )
OE(z,t,w 3w @
(az o o oy [E G b E e ton). (1.117)

where the frequency-dependent propagation constant is given by k(w) = “n (w). Note that the
refractive indices n (wq) and n (3w; ) usually differ strongly due to unavoidable material dispersion,
see Section m For this reason, 3k (w1) — k (3wy) # 0, i.e., THG is generally impaired by phase
mismatch unless special phase matching techniques are used. Hence, for many cases of practical
interest, only SPM remains as the dominant third-order nonlinear effect. According to Eq.
SPM causes a negative phase shift that is proportional to the square of the field magnitude,
i.e., proportional to the intensity. This corresponds to an intensity-dependent increase An of

the refractive index. To understand this, let us use Egs. (1.85) — (1.87) and (1.110) to find an

expression for the complex time-domain amplitude of the electric displacement D (z,t,w) for a
material that features only linear refraction and third-order nonlinearities,

3
D (z,t,wi) = € (1 +xM + ix@ |E (z, t,w1)|2) E(z,t,w) (1.118)

From the right-hand side of Eq. (1.118)), we can derive the relation (ng + An)2 =14+ xM +
3O |E (=, t,w1)|?, where ng denotes the linear refractive index of the device. For An < ng, we
find

An :ix(i’») E (2, t,w1)]? (1.119)
8”0

For a plane wave propagating along the z-direction, the intensity is related to the electric field by
|E (Z7t7w1)|2
27y

where Zy = /(10/€0) = 376.73 Q2 denotes the free-space wave impedance. We can hence introduce
the intensity-dependent refractive index n = ng + An,

I(z,t,w1) =ng , (1.120)

n(z,t,w1) =ng (w1) + n2l (z,t,w1), (1.121)
where the so-called Kerr coefficient ns is given by

_3%0 3

Ng =
2
4ng

(1.122)
For a superposition of two waves oscillating at frequencies wy and ws, the refractive index seen by
wave 2 will also be influenced by cross-phase modulation (XPM) due to wave 1. Note that XPM
has twice the degeneracy factor of SPM. Equation (1.121) can then be rewritten as

n(z,t,wa) =ng (w2) +n2 (I (2,t,ws) + 21 (z,t,w1)) . (1.123)

A table with third-order nonlinear optical coefficients of various materials is also given in Fig.[1.12]
Note that there are different conventions on how to define complex electromagnetic field ampli-
tudes, and hence the definition of the nonlinear optical susceptibility x(*) and the Kerr coefficient
ny differ. The table in Fig.[1.12]is based on the definition according to Eq. and is consistent
with the deﬁnitiorﬁ used in Boyd’s textbook [9].

3Note that the definition of complex electromagnetic field amplitudes used by Boyd (Eq.1.2.1 in [9]) differs by a
factor of 2 from the convention we use in this lecture, Eq. {1.72)). As a consequence, the corresponding relationships
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Material no x® @?/V3)  ny em?/W) Material no £ m2/V3) oy (em?/W)
Crystals

Polymers

ALO3 1.8 31x1072  29x1071¢ A —
CdS 2.34 9.8x10~20 5.1x10-14 PTS 8.4x10-18 3.0x 1012
Diamond 242 25x10721  13x10713 PTS —56x10-16  _20x10-10
GaAs 347 14x1071%  33x10713 OBCMU 27x10-18
s 40 56x1071  9.9x10”14 4BCMU 156 —13x1071  —15x10713
LiF 1.4 6.2x10-23 9.0x10-17 . L
Si 34 28x10°18 27x10"14 Liquids
TiOs 2.48 21x10720 94x10715 Acetone 1.36 1.5x 1072 24x10715
ZnSe 2.7 6.2x10720 30x10714 Benzene 1.5 9.5x10~22 12x 1015
Glasses Carbon disulfide  1.63 3.1x10-20 32x10-14
Fused silica 1.47 25x1072 32x10"16 CCly 1.45 1.1x1072! 1.5% 1015
As)S3 glass 24 41x10719 20x10713 Diiodomethane 1.69 1.5x10~20 1.5x 10714
BK-7 1.52 28x1072 34x10716 Ethanol 1.36 5.0x 102 7.7x10-16
BSC 1.51 50x 1072 6.4x10716 Methanol 1.33 43x10722 6.9x 1016
Pb Bi gallate 23 22x10720 13x10714 Nitrobenzene 1.56 57x10720  67x10~14
SF-55 1.73 2.1x1072! 20x 1015 Water 1.33 25x1072 4.1x10716
SF-59 1.953 43%1072! 33x10-15 Other materials
Nanoparticles Air 1.0003 1.7x10~5 50x10719
CdSSe in glass 1.5 14x10-20 1.8x 1014 Ag 2.8x10~19
CS 3-68 glass 1.5 1.8x 1016 23x10-10 Au 76x10719
Gold in glass 1.5 2.1x10716 2.6x1010

Figure 1.12: Third-order nonlinear coefficients of various materials. (Figure adapted from [9]).
The numbers are based on the definition of the nonlinear optical susceptibility x® according to
Eq. and are consistent with the definition used in Boyd’s textbook [9]. The differences in the
relationships for the complex amplitude of the third-order nonlinear polarization, Eq. and
Eq. (1.3.20) in Boyd, are due to different definitions of the underlying complex field amplitudes.
The numbers provided by [9] can be safely used with the relations given in this lecture notes.

1.6 Parametric versus nonparametric processes

The processes described so far in this section are examples of so-called parametric processes. The
origin of the terminology is obscure, but the term “parametric process” refers to interactions of
light with matter in which the quantum state of the material remains unchanged. That means
that there can be no transfer of energy, momentum, or angular momentum between the optical
field and the material. As a consequence, momentum and energy conservation have to be fulfilled
for the initial and the final photon population in parametric processes,

Zwi :%:wf, (1.124)
> k=Y kg, (1.125)
i !

where >, (3_;) denotes the sum over all photons in the initial (final) state. In a parametric
process, the quantum system can hence be removed from the ground state only for those brief
intervals of time when it resides in a so-called virtual energy level. According to Heisenberg’s
uncertainty principle, a quantum system can reside in a virtual energy level for a time interval
of the order of At = h/AE, where AFE is the energy difference between the virtual level and
the nearest real level. Virtual levels are depicted as dotted lines in the energy-level diagrams for

between the complex amplitudes of the third-order nonlinear polarization and of the electric field take different
forms when comparing Eq. of the lecture notes to Eq.(1.3.20) in Boyd, even though they rely on the very
same definition of the nonlinear optical susceptibility x(3), according to Eq. in this lecture notes a Eq. (1.3.20)
in [9]. The numbers provided by and listed in Fig. can hence be safely used with the relations given in
this lecture notes. When using numbers from other sources, it is important to check for the consistency of the
underlying definitions of electromagnetic field quantities.
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second- and third-order nonlinearities, Figs.[I.7] T.10] and Since the “lifetime” At

of the virtual state is small, parametric processes are among the fastest interaction mechanisms
between light and matter.

Conversely, processes that do involve the transfer of a quantum system from one real level to
another are known as non-parametric processes. Usually the material relaxes to its initial state,
but the process is linked with a time constant that is much larger than for parametric processes. In
non-parametric processes photon energy is not, constant. The energy transfer between matter and
light can happen via phonons (oscillations of the material’s lattice) or via electronic transitions.
Non-parametric processes are described by a complex susceptibility, see Section [2] As an example
of a non-parametric process, let us consider two-photon absorption.

Two-photon absorption

Two-photon absorption is associated with the imaginary part of the complex third-order nonlinear
susceptibility X(3)' Note that in the previous sections, we have assumed a purely real third-order
nonlinear susceptibility x©®), Eq. , to enable a simplified model of an instantaneous response
in the time domain and hence a Taylor expansion of the relationship between the electric field and
the polarization, Eq. (1.84). The formal definition of the complex electric susceptibility will be
given in the next section along with its tensor properties. For now, let us consider the simplified
case of third-order nonlinear susceptibility, which is represented by a complex scalar ). We
consider the interaction of two waves oscillating at frequencies w; and ws. Inserting Eqs.
and in Eq. (1.99), we can state two relations that govern the influence of the waves 1 and
2 on wave 1,

6E(z,t, wl) _3w1 (3) 2

—_— = —j— E E 1.12
9z chnx |7(z,t,w1)| 7(2725,0.)1), ( 6)

OE(z,t,w1) Bwi (g 2

—_— = —j— E E . 1.12
02 .]4ch |7(z,t,w2)| 7(z,t,w1) ( 7)

Note that ¢ corresponds to a retarded time frame even though the primes have been omitted for the
sake of readability. The real part of the nonlinear susceptibility x(*) causes a change dE(z, t,w;)/0z
that is perpendicular to the phasor of the complex amplitude E(z, t,w1) in the complex plane and
oriented to the negative azimuthal direction. This corresponds to an intensity-dependent phase
shift and is therefore referred to as self-phase modulation and cross-phase modulation. Like-
wise, the imaginary part of x(®) changes the magnitude of E(z,t,w;) and hence corresponds to
intensity-dependent loss or gain. In most practical cases, the imaginary part of x(® is negative,
and Eq. leads to a decrease of the optical amplitude E(z,t,w;). This corresponds to the
case of two-photon absorption (TPA), where two photons of the same frequency are absorbed si-
multaneously, thereby causing a transition of the absorbing quantum system between two energy
states that are separated by twice the photon energy, see Fig.(a). Similarly, for a negative
imaginary part of x(3), Eq. describes a process, in which two photons at frequencies w; and
ws are absorbed simultaneously, leading to a transition between quantum states that are separated
by the energy fiw; + hwo, see Fig.[1.13|(b). This is also referred to as cross-two-photon absorp-
tion (XTPA). Similarly to the cases of cross-phase modulation (XPM) and self-phase modulation
(SPM), XTPA, Eq. has an additional degeneracy factor of 2 compared to regular TPA,
Eq. In analogy to negative imaginary parts of x(®) leading to (X)TPA, positive imaginary
parts of Y can lead to two-photon emission (TPE). However, evidence of TPE has so far only
been observed under specific experimental conditions [I3].
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Figure 1.13: Energy-level diagrams of two-photon absorption (TPA). (a) Regular TPA, where two
photons of the same frequency are absorbed simultaneously, thereby causing a transition of the
absorbing system between two energy states that are separated by twice the photon energy. Note
that the energy states here are depicted by solid lines and hence represent real energy eigenstates
of the absorbing systems. In contrast to that, the dashed energy levels used in Figs.[I.7] [I.8] [L.9]
[I.I0] and [I.11] represent so-called virtual energy levels, in which the quantum system can reside
for very short time intervals only, as postulated by Heisenberg’s uncertainty principle. (b) Cross
two-photon absorption (XTPA), in which two photons at frequencies w; and ws are absorbed
simultaneously, leading to an energetic transition between quantum states that are separated by
fwq + hws. After excitation by TPA or XTPA, the quantum system usually relaxes to its initial
state by a non-radiative transition, thereby dissipating the absorbed energy. This is illustrated by
the wiggled array.
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Chapter 2

The nonlinear optical susceptibility

In the previous chapter, we have considered optical nonlinearities for linearly polarized plane
waves that can be represented by a single scalar field quantity, see Egs. and . In
addition, we have assumed that the polarization reacts instantaneously to the electric field and
hence treated optical nonlinearities by a Taylor expansion in the time domain with the nonlinear
optical susceptibility as expansion coefficients, see Eq. . We will now extend this model,
taking into account both the vectorial nature of the electric field E(r,¢) and the polarization
P(r,t) as well as the non-instantaneous time-domain response of the material.

2.1 Formal definition of the nonlinear optical susceptibility
tensor

2.1.1 Time-domain representation

Assuming a dielectric material which is local in space, the polarization P(r,t) at time ¢ depends
only on the history of the local value of the electric field E(r,7) for 7 < ¢t. To take into account
the 'memory’ of the nonlinear material, the time-domain multiplications and ascending powers of
E are replaced by a series of convolutions. This results in a so-called Volterra series. In general,
Volterra series represent an extension of Taylor series for the case of non-linear relationships that
are affected by memory effects. In Volterra series, the output of the nonlinear system depends
on the input to the system at all other times, which is mathematically expressed by a series of
convolutions rather than simple multiplications. As an example, a nonlinear relationship between
scalar quantities P (t) and E (t) can be expressed by a Volterra series of the form

P(t) =¢ /XU) () E(t—m)dn + //X@) (11, 72) E(t — 1) E (t — 75) dridmy

71 71,72

+ /// X(S)(Tl,TQ,Tg)E(t—Tl)E(t—TQ)E(t—Tg)dTldTQdTg-I—... s
T1,72,73

(2.1)

where X(”) (11, T2,...7Ty) is called the n-th order Volterra kernel and can be regarded as a higher-
order impulse response of the system. The space argument r has been omitted in Eq. for the
sake of readability.

Additionally, we have to take into account the vectorial nature of both the electric field E(r, t)
and the polarization P(r,t¢). Let us consider a single component of the n-th order nonlinear po-

larization Pq(gl ) (t) ,where qo € {x,y, 2z} denotes the vector component under consideration. In the
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most general case, this vector component is influenced by the history of all n-th order products
that can be constructed from any set of n electric field components E,, (t — 1), Ey, (t — T2),.. .,

E,, (t — ), where ¢i1,¢2,...,qn € {2,y, 2} denote the various vector components under consid-
eration. This can be described by replacing the scalar n-th order Volterra kernel in Eq. (2.1) by
a tensor xégz)qlqz___qn (11, 72,...,7,) of rank n + 1, the elements of which represent the n-th order

impulse response to the product E, (t — 1) Ey, (t —72) ... Eq, (t — Tn),

P (t) = € Z/ /quql o) By (t=T1) .. By, (t—7,)d7y ... d7y. (2.2)

an

The sum on the right-hand side of Eq. extends over all ordered n-tuples (q1,¢2...qy,) that
can be constructed from the involved electric fields. For the simple case of linear polarization, the
tensor X%qu is of rank 2 and can be written as a matrix.

Note that in some cases, the sum ), . is not explicitly stated on the right-hand side of
Eq. for the sake of notation brevity. In this case, the relationship has to be interpreted in
the sense of the Einstein summation convention or “Einstein notation”, that implies summation
over all index variables that appear twice in a single term. Since the polarization response of
the medium is causal, the tensor component Xgﬁ?qlq%qn (11,72 ..., Tn) vanishes if any of the time
arguments (71,72 ..., 7,) becomes negative.

2.1.2 Short-form tensor notation

To express the nonlinear relationship between the vectorial quantities E(¢) and P(¢), we hence have
to go back to the level of individual vector components, which are linked by a scalar relationship
according to Eq. . In some cases, however, it is useful to state the fully vectorial relationship
in a single expression. To this end, we use a short-form tensor notation that relates vectorial
quantities and implies summation over all involved vector components without explicit notation.
Let us first consider the simple case of second order nonlinearities,

P(2 —GOZ//XQTQ T1, T2 Er(thl)ES(thQ)dTldTQ, (23)
Tl T2

where q,r,s € {z,y, z}. In short-form notation, this relation is written as

PP (1) = ¢ // (r1,72) :E(t — 1) E (t — 172) dr1d2, (2.4)
71,72
where the double multiplication sign “:” comprises the component-by-component multiplication

and summation according to Eq. (2.3)), i.e.,

X?EE =" e EE, (2.5)

q,7,8

where e, denotes the unit vector along the g-direction. This notation can be extended to higher-
order nonlinear susceptibilities,

XEME(M) . Em) = > ewXi e g Ea (1) Eq, (12) ... Eqg, (7)), (2.6)

q0,491--+,9n

where qo,q1, - .. qn € {x,y, 2}, and where the triple multiplication sign “:” denotes the component-
by-component multiplication and summation according to Eq. (2.2).
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2.1.3 Frequency-domain representation

The time-domain relationship according to Eq. (2.2) can be transformed to the frequency domain.
For simplicity, let us first consider the simplified case of second-order nonlinear polarization,

P(2 = GOZ // ers 71,72) By (t — 71) Es (t — 72) dridra, (2.7)

™S T1,T2

where ¢, 7, s € {x,y, z}. By using Egs. (1.12)) and (1.13)), we can derive the corresponding frequency-
domain relationship,

P(2 = 7502/ers wi,w —w1) B (w1) Es (w —w1) dws (2.8)

where the frequency-dependent nonlinear optical susceptibility 22225 (w1,ws) is given by the two-

stage Fourier transform of the corresponding time-domain Volterra kernel X,(f,),,s (11, 72),

X((fr) s (W1, we) = // Xfﬁg’s (11, 72) e IWTLe I T2 1 7y (2.9)

71,72

The basic meaning of Eq. can be stated in words: The nonlinear polarization 13,1(2) (w) at fre-
quency w is given by an integral which extends over all combined contributions
)?((12,)6 (w1,w —w1) By (w1) Es (w — wy) from components at frequencies wy and w — wy, which sum
up to w. Note that w and w; can have both positive and negative signs and that Eq. can
hence describe the full range of second-order nonlinear processes such as sum-frequency generation,
difference-frequency generation, second-harmonic generation and optical rectification.

Eq. can be extended to the general case of n-th order nonlinear polarization. The polar-
ization at frequency w is then given by an (n — 1)- fold integral that comprises contributions from
components at all frequencies which sum up to w, i.e., from frequency components at wy, ws, ...
Wp—1 and w — Z:il_:ll Wins

n—1
PR T o £ (RPRSE, >
m=1

N

n—1
X Eq (w1)...Ey, | (wn—1) Ey, (w - Z wm> dws ... dw,_1. (2.10)
m=1

The components )Zég?qlqz__qn of the n-th order susceptibility tensor Y are given by the n-stage
Fourier transform of the corresponding time-domain Volterra kernel,

n

) : —jwiTi —JjwnT

Xaola1..an Wi P W, e e, W quqh o (T1,...Th)e€ Lo.e 39T dr L dT,.
m=1

(2.11)

2.1.4 Representation by complex time-domain amplitudes for positive
nonzero frequencies

The frequency-domain representation of the nonlinear optical susceptibility according to Egs. ([2.8)
and (2.10) involves evaluation of (multiple) convolution integrals in the Fourier domain. This is
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a rather complex operation, which complicates the use of the frequency-domain formalism in the
general case. In addition, for monochromatic waves, the spectra E,, (w,) contain Dirac delta
functions, for which products and convolutions are not defined. For this reason, complex time-
domain amplitudes or slowly varying envelope approximations (SVEA) are often used in nonlinear
optics rather than Fourier transforms.

To illustrate the use of complex time-domain amplitudes, let us consider second-order nonlin-
earity in short-form notation,

P (t) = € // X (11, 72) :E(t — 1) E (t — 1) dridmy (2.12)

71,72

where the electric field is given by a superposition of monochromatic waves at positive nonzero
frequencies w; that are represented by their complex time-domain amplitudes E(w;),

M
E(t) = % (Z E(w,,)emt + c.c.) (2.13)

In this relation, the frequencies w,,, m = 1... M, are non-negative. Negative-frequency com-
ponents are contained by the somewhat sloppy “+cc” expression. It is therefore useful to define
the relationships between complex time-domain amplitudes in a slightly more rigorous way by
including negative-frequency terms explicitly into the sum on the right-hand side of Eq. .
For simplicity, we associate negative frequencies with negative integer subscripts m using the
convention

Wy = —Wn, (2.14)
wy =0 (2.15)
E(w_m) =E"(wn). (2.16)
and extend the index range of the sum tom=—-M ... M,
LM
_ jwmt
E(t) = ;ME(wm)eJ . (2.17)

Special attention has to be devoted to DC fields, which are represented by subscript m = 0 and
frequency wy = 0. This will be discussed in more details on p.[33] at the end of this section. For
now, let us assume that E(wg) = 0, i.e., the signals under consideration do not feature any DC
part.

Inserting Eq. (2.17) in Eq. (2.12)), we can express the second-order nonlinear polarization as a
superposition of monochromatic waves that oscillate at all possible sum (and difference) frequencies
wy + Wy, where [,m = —M ... M and I, m # 0,

1 M
PO =0 > xP (s wiwm) : Blw)E(wn)d ), (2.18)
l,)m=—M

where we have written the nonlinear optical susceptibility as a function of three arguments. The
first argument is redundant and corresponds to the sum of the other two, wy = w; +w,,. It is only
introduced to explicitly specify the sum frequency wy that is generated by nonlinear interaction
of monochromatic waves at w; and w,,. The frequency-dependent nonlinear optical susceptibility
X@) (wy : wy,wy,) is again given by the two-stage Fourier transform of the corresponding time-
domain Volterra kernel x() (11, 7), see Eq. .

In analogy to Eq. , the second-order nonlinear polarization can be expressed by complex
time-domain amplitudes P (w,) that are associated with the various sum frequencies w, = wy,

M
P® (t):% > PO (w,)ert, (2.19)
p=—M
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Comparing this relation to Eq. , we have to take into account that several expressions from
the sum on the right-hand side of Eq. can lead to the same sum frequency w, = w; + wp,
e.g., E(w))E(wnm) exp ((w; + wi,) t) and E(wy,)E(w;) exp ((wm, + wi) t). To express the time-domain
amplitudes 2(2) (wp) by the complex time-domain amplitudes of the electric fields, we have to sum
up all contributions for which the sum frequency corresponds to wy,

1
E(Q)(wp) = 3¢ Z X(Q) (wp : wi,wm,) + E(w)E(wn), (2.20)
S(‘*’p)

where the summation on the right-hand side extends over the set S (w,) of all pairs (I,m) which
lead to the sum frequency w, = w; + W,

S(wp) ={,m) |w + W, = wp} . (2.21)

This sum leads to distinct degeneracy factors for the various nonlinear optical processes, see
Section[L.5l
This analysis can be extended to third-order nonlinearities, resulting in

1
PO(wy) = 260 D X (wp : wiywm,wo)  B(wn) Ewnm ) E(wo) (2.22)
S(wp)
where
S (wp) = {(lv m, ’I”L) |Wl + wm W = Wp} . (2.23)

For n-th order nonlinearities, the corresponding relations read

P (wp) = g0 D x ™ (wp rwnoyw,) tE(wn) - Blwr,), (2.24)
S(wp)
where
S(wp) ={1,..., 1) Jwi, + - +wi, =wp}. (2.25)

Remark on zero frequencies and DC fields

As arepresentation of the electric field E(t) and the polarization P(t), we have chosen the relations

1 & .

E(t)=5 > E(wn)d, (2.26)
m=—M
1 & .

P(t)=5 > Plwm)dn", (2.27)

In these relations, DC fields are associated with frequency subscript m = 0, wg = 0, see explanation
in the context of Eq. (2.17). As a matter of fact, E(wy = 0) and P(wy = 0) must be real numbers,

wo = 0, (2.28)
E(wo) € R. (2.29)

Using this definition in conjunction with Eq. (2.26]) would lead to the strange situation that a DC
field with constant field strength E(¢) = const. is associated with a zero-frequency time-domain
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amplitude of E(wg = 0) = 2E(¢). To avoid this, the time-domain amplitudes at wy = 0 in the sums
of Egs. (2.26) and (2.27)) are doubled by including a correction factor (1 + d;,9) into the relations,

1 N
E(r,t) = 3 Z (14 61.0) E(r,w)e!, (2.30)
1 lfj\—[N
P(r,t) = 5 > (14 6,0) Plr,w)el. (2.31)
l=—N

In these relations, ;9 denotes the Kronecker delta, d; o = 1 for [ = 0 and ;0 = 0 for [ # 0. The

correction factors for zero-frequency components show up in the time-domain amplitude P ”)( )
of the n-th order nonlinear polarization, which can then be written as

n (L401,,0) - (L4 61,0) (n :
P (wp) = 5o—eo Z I X (wp wiys - w,) (B(wy) - Elwy,).
S(wp) P

(2.32)

2.1.5 Examples for second and third-order nonlinerities

To understand the use of Eq. (2.32)), let us consider a few examples for the cases of second- and
third-order nonlinearities:

Sum-frequency generation (SFG): For SFG, we consider interaction of waves at frequencies
wi and we in a second-order nonlinear medium, thereby producing a third wave at frequency
w3 = w1 + wa. None of the involved frequencies is zero, and taking into account the distinct
permutations (w1, ws) and (wa,w7), we obtain a the complex time-domain amplitude of the
second-order nonlinear polarization at ws,

PP (w3) = cox? (w3 : wi,w2) : E(w1)E(ws). (2.33)

Optical rectification (OR): For OR, we consider interaction of waves with frequency compo-
nents w; and —w; in a second-order nonlinear medium, thereby producing DC field at zero
output frequency w, = wp = 0. We hence find an additional factor of 1/ (1 + d,,0) =1/2 on
the right-hand side of Eq. (2.32). Taking into account the distinct permutations (wy, —w1)
and (—wy,w1), we obtain the DC time-domain amplitude of the second-order nonlinear po-
larization,

PP (w 70)71 20wy, —wi) :E(w)E* 2.34
r 3 = = 260X ( W1, wl) .7((.«)1)7 (wl). ( .3 )

Electro-optic Kerr effect: The electro-optic Kerr effect, also referred to as the quadratic electro-
optic effect, denotes a third-order nonlinear interaction between a wave at w; and a DC-
field E(0) € R at wg = 0. This results in a phase shift of the wave at w; which depends
quadratically on the external DC field. Formally, the quadratic electro-optic effect can
be described as an interaction of the frequencies (w1,wp,wp) two of which are zero. This
results in an additional factor of (14 8;,,0) (1 + &;,) = 4 on the right-hand side of Eq. (2:32).
Taking into account the three distinct permutations of the triple (w1,wq,wq), we find the
time-domain amplitude of the third-order nonlinear polarization at w; to be,

P (w1) = SEOX(B) (w1 :w1,0,0) : E(w)E(0)E(0). (2.35)

For cases where only nonzero frequency components play a role, Egs. (2.20), (2.22), and (2.24) are
valid and can directly be used. If DC fields are involved, the definitions according to Egs. (2.30)

and (2.31)) should be used along with Eq. (2.32).
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2.2 Properties of the nonlinear optical susceptibility tensor

In this section we investigate some formal properties of the nonlinear optical susceptibility. This
comprises causality of the time-domain response as well as a number of symmetry relations that
mutually relate the various frequency-domain tensor elements.

2.2.1 Causality

In linear optics, the causality of the dielectric impulse response can be translated to the frequency
domain, resulting in a relation between the real and the imaginary part of the complex optical
susceptibility, which is commonly referred to as the Kramers Kronig relation, see Section|l.2.3
Similarly, the time-domain formulation of the nonlinear optical susceptibility must also obey the
causality principle, i.e.

X((IZ:)QIQQ_“% (t1,72,...,7) =0 for 71 <0 Vm<0---VT1, <0. (2.36)
The corresponding frequency-domain formulation is somewhat intricate. For some nonlinear pro-
cesses, Kramers-Kronig relations similar to the linear case are valid. For some processes such as
self-phase modulation, however, it is not possible to formulate a Kramers-Kronig relation. More
details on Kramers-Kronig relations in nonlinear optics can be found in [9].

2.2.2 Intrinsic symmetries

Symmetry properties of the nonlinear susceptibility tensor allow to considerably reduce the number
of coefficients that are needed to specify nonlinear optical interactions. As an example, let us
consider the mutual interaction of three waves of frequencies wi, ws, and w3 = wy; + ws. To
describe this interaction, we first need to know the nonlinear polarization at the three frequencies,
which are given by twelve complex tensors, namely

X(Q) (ws : wr,wa), X(Q) (w1 : w3, —wa), X(z) (wo : w3, —w1), (2.37)

X@) (ws : wa,w1), K(Q) (w1 : —wo,ws), X(Q) (we : —wi,ws), (2.38)

and six additional tensors in which each of the above-mentioned frequency elements is replaced by
its negative counterpart. Moreover, each of these third-rank tensors comprises 27 tensor elements
Xf;?r) o As a consequence, 12 x 27 = 324 complex numbers are needed to specify the interaction of
the three waves at frequencies w1, wo, and w3 = wy + wsy. Fortunately, the different components of
the nonlinear optical susceptibility are not independent from each other, and even without further
assumptions, they possess certain symmetry properties that lead to a number of symmetry relations
between the various components of x(?). These relations allow to reduce complexity considerably.
These relations will be explained in the next sections. In the following ws = > wm denotes
the sum of the input frequencies.

Reality of fields

Time-domain field quantities have to be real. From Eq. we can conclude that complex time-
domain amplitudes at positive frequencies are the complex conjugate of their negative-frequency
counterparts, E(w;) = E*(—w;) and P(w;) = P*(—w;) . As a consequence, the positive- and
negative-frequency components of the complex susceptibility tensor are the complex conjugate of
each other,

(n) . _ [y et i o
Xonrar g (wg.wl,wg,...,wn)—[ququq?”qn( Wy =W, —Wa, . .., wn)} . (2.39)
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Intrinsic permutation symmetry

To understand intrinsic permutation symmetry, let us consider the simplified case of a second-order
nonlinearity in tensor notation,

P(2 (wp) *60 Z Z x? L (wp rwi,wm) T B (W) E g (w). (2.40)

2eqer,
rs (1,m)€S(wy)

The sum on the right-hand side of this expression contains both the term Xfﬁzs (wp : Wi, W) -

E (w)E, (wn) and X(z) L (wp twm,wi) + E(wm)E,(wr). Since both terms relate to the same phys-
ical quantities, the corresponding tensor elements must be identical as well,
L(122 , (wp rwpywm) = X((fz,r (Wp : Wiy wy) - (2.41)

That means that the nonlinear susceptibility tensor element remains unchanged if we simultane-
ously swap two frequency arguments along with the corresponding Cartesian indices. Note that
the intrinsic permutation symmetry is the consequence of a somewhat arbitrary definition. For
example, we could have set one of the tensor elements X(2) (wp Wi, W) and X(z) (wp Win s W)
to zero while doubling the value of the other one. The result of the physically meaningful sum in
Eq. (2.40) would have remained unchanged.

The intrinsic permutation symmetry can be generalized to the elements of the n-th order
nonlinear susceptibility tensor,

X

240:q1---9iqj---qn (WE Wy, W W, 7wn) = X(n) (LUZ PWny e, Wy Wiy e vwl) (242)

—qo0‘qn---959i---91

Note that the intrinsic permutation symmetry holds for all pairs of frequencies and the correspond-
ing Cartesian indices except for the resulting frequency wy and the resulting vector component
index qo.

Symmetries for lossless media

For lossless media, or, more precisely, for media that are lossless within a certain range of frequen-
cies, two more symmetry properties apply. First, all components of the nonlinear susceptibility
tensor are real,

ngz)ql...qiqj...qn (Wy i Wi, .., Wi Wy, ... wy) €R (2.43)
This is clear for the case of the linear susceptibility, where a nonzero imaginary part of x(!) leads
to attenuation of a propagating plane wave and hence to optical loss, see Section . For
higher-order nonlinear susceptibilities, the general proof that y(!) is real for lossless media can be
obtained by a quantum-mechanical consideration of the nonlinear optical susceptibility, see, e.g.,
[9] and the references therein.

Second, for lossless media, the permutation symmetry according to Eq. also holds for
the resulting frequency wy. Since this frequency is always the sum of all other frequency argu-
ments, signs must be changed appropriately when interchanging the first argument with any other
argument,

(n) : , — (™) A _
X oo i (We Wiy ey Wiy e ey Wh) Xt oo (Wit Wi,y Wy ooy —Wh) (2.44)

The general proof of this relation is again based on a a quantum-mechanical consideration of the
nonlinear optical susceptibility [9].
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Kleinman’s symmetry

In many cases of practical interest, optical media are operated at frequencies far below their lowest
resonance frequency. The medium can then not only assumed to be lossless, but the nonlinear
susceptibility is essentially independent of frequency within the considered wavelength range. The
frequency arguments can then be permuted without permuting the indices, i.e.,

x™)

Xoooas-asds.-an (We t Wiy, Wiy Wy ey W) = x™ (W Wiy, W), Wiy .y wy) , (2.45)

—qo0:91---9iqj---dn

for any two frequencies w; and w;. This symmetry property is referred to as Kleinman’s symmetry.
Note that frequency-independent tensor elements correspond to an instantaneous response of the
polarization as was assumed in Eq. (1.84).

Reduction of second-order nonlinear susceptibility tensor elements by symmetry re-
lations

At the beginning of this section, we have stated that 324 complex numbers are needed to fully
specify the second-order nonlinear susceptibility tensor Xfﬁ . (w3 : w1, ws). Systematic exploitation
of the aforementioned symmetry relations allows to greatly reduce this number:

e Because of reality of electromagnetic fields, only half, i.e., 162, of these these elements
are independent.

e Intrinsic permutation symmetry allows to simultaneously swap the latter two frequen-
cies and vector indices, leading to another reduction of the number of elements of a factor
of 2. This results in 81 independent complex numbers.

e For lossless media, all elements are real, and we may freely permute also the resulting
frequency. This leads to a reduction of the independent elements by a factor of 3. The entire
tensor is then specified by 27 independent real numbers.

e If Kleinman’s symmetry can be applied, only 10 of these elements are independent. In
this case, we may use a contracted notation of the tensor in a (3 x 6)-matrix, see Section
23] for more details.

Further reduction of the number of independent nonlinear susceptibility tensor is possible by
exploiting spatial symmetries of the medium’s crystal lattice, see next section.

2.2.3 Spatial symmetry of the nonlinear medium

The number of independent components of the susceptibility tensor can be further reduced if the
material features spatial crystal symmetries. This is a direct consequence of Neumann’s principle,
which states that, if a crystal is invariant with respect to certain geometric transformations, any of
its physical properties must also be invariant with respect to the same transformations. Otherwise
stated, the symmetry elements of any physical property of a crystal must include the symmetry
elements of the point group of the crystal.

Influence of spatial symmetry on susceptibility tensor elements

To understand this principle let us consider a coordinate transformation from a coordinate system
(z,y, 2) to a coordinate system (z’,%/, 2'),

" Tz Tury T E,
" = Tyl Ty Ty | | By | (2.46)
E;/ Tz’:p Tz’y Tz’z Ez
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Using Einstein summation convention, we can rewrite this relation in a more compact form,
[
Ey =Ty.Eq, (2.47)

where ¢ € {z,y,2} and ¢ € {2/,y',2'} denote the various vector components, and where the
summation over ¢ on the right-hand side implied in the Einstein summation convention. The
inverse transformation is then given by

By=(T7"),, By (2.48)

For orthogonal transformations such as reflections, inversions, or rotations, the transformation
operator corresponds to a unitary matrix,

T =T" (T, =Ty (2.49)

To understand how the tensor elements are transformed, we will now apply this coordinate trans-
form to the relationship between the n-th order nonlinear polarization and the electric field. For
notational brevity, we again assume an instantaneous time-domain response, making the multiple
convolution integrals in the Volterra series of Eq. obsolete. Skipping the time arguments and
using Einstein notation, the relationship in the original coordinate system can be written as

P = eox\. . 0 Eq .. Eq,. (2.50)

q0:91---dn

We introduce B, =T, q/qE;, on the right-hand side and apply the coordinate transformation Ty g0
to the resulting equation to obtain an expression for the nonlinear optical susceptibility in the
transformed coordinate system,

X (,TL) = T ’ T ’

qb:qy--ql, 99049191 * **

T

(n)
QZ,%,XqO:ql...qn .

(2.51)

As expected, the nonlinear susceptibility tensor of rank n+1 transforms as the (n + 1)-fold product
of the coordinates. We may now apply Neumann’s principle by exploiting the fact that crystal
lattices remain unchanged under certain geometric transformations, and that this invariance has
to hold for the nonlinear susceptibility tensor as well. In general, if a crystal lattice remains
unchanged under a symmetry operation T, then the n-th order nonlinear susceptibility must
fulfill the relation
X =T,

’
qb:q)--qh, dp90

T,

dhar -

T,

(n)
q§1Qan01Q1---qn'

(2.52)

Example: Centro-symmetric media and second-order nonlinear effects

As an example, let us consider a crystal lattice with inversion symmetry, i.e., a lattice which
remains unchanged if all coordinates are replaced by their negative counterparts. This inversion
transformation is given by

Torq = —0qq (2.53)

where 4/ denotes the Kronecker delta, i.e., ¢ = 0 for ¢’ # q and 644 = 1 for ¢’ = ¢. Since the
inversion operation leaves the crystal lattice essentially unchanged, the nonlinear susceptibility
tensor must remain unchanged as well,

(n) = (71)"+1X(n) (2.54)

X(IOI(I1~--qn q0:q1---qn°

For even orders n this requires all susceptibility tensor elements to vanish. Centro-symmetric media
do hence not exhibit any second-order nonlinearity. Note that the same applies to amorphous
materials with randomly oriented molecules such as fuse silica glass: Even though the microscopic
structure of the material is not centro-symmetric, the macroscopic optical properties are defined
by an average over all possible random orientations of molecules and do hence not change upon
inversion of coordinates.

38



Schoenflies

International
notation

(m3)

Figure 2.1: Tlustration of the five cubic crystallographic point groups. The symmetry groups can
be indicated by the so-called Schoenflies notation, indicated on the left of each object, or by the
international notation, indicated on the right. (Figure adapted from [6])

Crystal classes, point groups and symmetry operations

To determine the form of the nonlinear susceptibility tensor in the general case, it is important to
know the coordinate transformations with respect to which the crystal lattice remains unchanged.
In general, crystals can be categorized in 32 crystal classes according to their symmetry properties.
Each crystal class is associated with a so-called point group, i.e., a group of symmetry operations
with respect to which the crystal lattice is invariant. The 32 crystallographic point groups can be
subdivided in 5 cubic point groups and 27 non-cubic point groups, see Figs.[2.T]and 2.2]for graphical
illustrations of the symmetry properties. Two nomenclatural conventions, the Schoenflies and the
international system, are in use to describe the various point groups, both of which are indicated in
the figures. As an example, the point group C,, in Schoenflies notation refers to an n-fold rotation
axis and is simply denoted by n in the international system, see first row of Fig.[2.2] Similarly,
the point group C,,, in Schoenflies notation refers to an object that has an n-fold rotation axis,
a mirror plane that contains this axis, plus additional mirror planes as required by the n-fold
rotation axis, second row of Fig.2:2] The point group C,; in Schoenflies notation contains the
n-fold rotation axis and a single mirror plane that is perpendicular to this axis, third row of
Fig.2.2] The complete systematic of these nomenclatures goes beyond the scope of this lecture;
more information can be found in [6]. In the next sections, we will investigate in more detail which
form the second- and the third-order susceptibility tensors assume for the various crystal classes.
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Figure 2.2: Tllustration of the 27 non-cubic crystallographic point groups. The symmetry groups
can be indicated by the so-called Schoenflies notation, indicated on the left of each object, or by
the international notation, indicated on the right. Note that the Schoenflies categories, indicated
on the left of each row, are not identical to the categories derived from the international notation,
indicated on the right. (Figure adapted from [6])
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2.3 Influence of spatial symmetry on the second-order non-
linear susceptibility

2.3.1 Contracted notation for second-order nonlinear susceptibility

In many cases of practical interest, optical media are operated at frequencies far below their lowest
resonance frequency such that Kleinman symmetry applies and the frequency arguments can be
permuted without permuting the corresponding indices. We may hence assume that the second-
order nonlinear susceptibility tensor x( )S is symmetric in its last two vector component indices,

ie. X((ZQ’I)‘ .= Xé;g,r' We may then s1mphfy the representation by introducing a contracted notation
(2) (2)
XQ:r,s = dql 2Xq s (255)

where the pair (r, s) is mapped to a single index ! according to the following assignment:

rS XX Yy 22 YZ,2Y TZ,ZT TY,YT

[ 1 2 3 4 5 6 (2.56)

The second-order nonlinear susceptibility tensor can then be represented in contracted notation
a (3 x 6)- matrix,

dwl dx2 dw3 dx4 dw5 dxﬁ
d= | dy dys dys dys dys dys (2.57)
dzl d22 sz dz4 sz d26

Note that this notation can even be used when Kleinman symmetry is not valid: For second-order
susceptibility tensor elements Xfﬂ , (wp Wi, W), for which the last two frequency arguments are
nearly identical, w; =~ w,,, we may also freely exchange the vector indices r and s, thereby fulfilling
the conditions for using contracted notation. This applies, e.g., to second-harmonic generation or
sum-frequency generation with nearly identical input frequencies.

So far, we have only made use of Kleinman symmetry for the last two indices. Taking into
account permutability of all indices, we find that, e.g., dyo = 2)(552; , =3 X(;; = dys. Exploiting
all similar identities, we find that d has only 10 independent elements,

d:z:l dzZ d:z:3 dz4 d:r:5 da:G
d = | dg dy2 dys dya dga dxo (2.58)
dw5 dy4 dz3 dy3 dac3 dx4

Using the contracted notation, we can express the various second-order nonlinear effects by a
matrix equation. For second-harmonic generation, we obtain

E2 (w1)
2
Bg) (2&)1) dml d:cQ de d:c4 dm5 d:cG %ﬂ <W1;
PP (2w1) | =€ | dus dy2 dys dya des dao E; (@ (2.59)
P (2w) dys dys dys dys dys dya 2B, (w1) E, (w1)
e w0 Tut s T s A 1\ 2B, (wn) B, (wn)

QE"c (wl) Ey (wl)

Similarly, we can describe sum-frequency generation taking into account the additional degeneracy
factor of 2 due to the distinct permutations of (wy,ws),

E, (w1)E, (w2)
E E
Py ot o o o s E e G
B%; (WS) = 260 dmﬁ dy2 d y3 dy4 dz4 d£2 E (wl) Eiz(w2) _’_7;7 (Wl) E (UJ2)
P:Y (ws) o i s s das das ]\ B (0 E () + B (w1) o (w2)
E, (wn)E, (w2) + E, (w1) E, (w2)

(2.60)
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2.3.2 Nonlinear susceptibility tensors for different spatial symmetries

As a result of Section[2:2.3] we have found that spatial symmetries of various crystal classes may
reduce the number of independent susceptibility tensor elements. In particular, the second-order
susceptibility vanishes completely for materials that feature inversion symmetry. This applies to
11 out of the 32 crystal classes, see Fig.[2.3] By explicit investigation of the symmetry properties of
the remaining 21 crystal classes, one can derive the form of the tensor, i.e., the number of nonzero
elements and the relationships among these elements as indicated in Fig.2.3] For cases where
contracted notation can be used, the nonzero tensor elements and the relationships between these
elements can be represented graphically, see Fig.[2.:4 Numerical values for some of the nonzero
tensor elements of selected second-order nonlinear crystals are also given in Fig.[2.5]

Example: Second-order nonlinear susceptibility of silicon (Si) and of gallium arsenide
(GaAs) Silicon (Si) and gallium arsenide (GaAs) both possess cubic lattices, see Fig.[2.6 The
diamond lattice of silicon belongs to point group m3m = Oj, and is centrosymmetric, Fi(a).
This leads to zero second-order susceptibility, see Fig.2.3] In contrast to that, the zincblende
lattice of GaAs belongs to point group 43m = Ty and does not possess centrosymmetry. GaAs
hence exhibits nonzero second-order susceptibility tensor elements, see Figs.[2.3 and

2.4 Influence of spatial symmetry on the third-order nonlin-
ear susceptibility

As for the second-order nonlinearity, the spatial symmetry of the medium also restricts the form
of the third-order nonlinear optical susceptibility. The nonzero tensor elements and the mutual
interdependence are specified in Figures2.7] 2.8 and 2:9] for each of the 32 crystal classes and for
isotropic materials.
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Crystal System  Crystal Class Nonvanishing Tensor Elements

Triclinic | =€) All elements are independent and nonzero
=5 Each element vanishes
Monoclinic 2=0> X¥Z,XZY, XX¥, X¥X, VXX, ¥¥Y¥, Y22, ¥2X, ¥XZ, Z¥2,
zzy. zxy. zyx (twofold axis parallel to ¥)
m=Clk XXX, XYY, X2Z, XIX,XXZ, ¥¥Z, YTV, YX¥, ¥Y¥X, 2XX,
Zyy, 22z, zzx, zxz (mirror plane perpendicular to ¥)
2/m = Cyy, Each element vanishes
Orthorhombic 222 =D, XyZ,XZy, ¥ZX, ¥XZ,ZXY¥, I¥X
mm2=Cy, XZX,XXZ, ¥¥YZ, YT, 2XX, 2¥Y, 222
mmm = D2y, Each element vanishes
Tetragonal 4=0Cy XyZ=—YyXZ, Xy = —¥ZX,XZX = ¥IV, XX =Y¥Z,
XX =ZYY, 222, 2Xy = —2)X
i= S4 X¥ZI= YyXZ,XIV¥ = YIX,XIX = —YIV,XXI=—YYyZ,
XX = =YY, Xy =2¥X
422 =Dy X¥I=—YXZ,XIV=—Y¥IX,IXy=—ZI¥X
dmm = Cy, XIX = VIV, XXI=Y¥¥I,TXX =YYy, 112
2m = Dy XYZ = YXZ,XZy = YZX,ZXY = ZyX
4/m=Cy, Each element vanishes
4/mmm = Dy, Each element vanishes
Cubic 432=0 X¥I=—XI¥ = YIX = —yXZ =Xy = —ZI¥X
3m = Ty XYI=XIY=YIX=YXI=ZXy =I)X
23=T XYI=yZX =ZXY,XIy =yXI=2)X

m3=T,.m3m = O Each element vanishes
Trigonal 3=C3 XXX = =XyY = —=y¥YI = —YyXY¥,X¥I = —YyXZ,XI¥ = —YyIX,

XZX = YI¥,XXI=Y¥I,¥YY = —¥XX = —XXy = —X¥X,
ZXX = IYY, 222, 2Xy = —2)X

32=D3 XXX = —XYy = —YyX = —yXV.XY¥I = —VXZ,
XY = —YyZX,2Xy = —2)X

3m=Csy XIX = ¥I¥, XXZ = Y¥Z, IXX = V¥, 222, VY = —=yXX =
—xxy = —xyx (mirror plane perpendicular to X)

3= Sé. Im=D d Each element vanishes

Hexagonal 6=Cg XyI=—YyXZ,XIy = —YyIX,XZX = yI¥, XXZ = YY¥Z,

ZXX = TVY, 222, 2Xy = —2Z)yX

6=Csy, XXX = —XVY = —¥X¥ = —yV¥X,
FYY = —¥XX = —XVX = —XX¥

622 = D¢ XyZI=—yXZ,XIy = —YyXZ,2Xy = —2I¥X

6mm = Cg,, XZX = yZ¥,XXZ=Y¥Z,ZXX = 2)¥, 222

6m?2 = Dy, YVY = —VXX = —XX¥ = —X¥X

6/m = Cgj Each element vanishes

6/mmm = Dy, Each element vanishes

Figure 2.3: Form of the second-order susceptibility tensor for each of the 32 crystal classes. For the
11 crystal classes that feature inversion symmetry, the tensor elements vanish. The non-vanishing

tensor elements of the remaining 21 crystal classes are denoted by their Cartesian indices. (Figure
adapted from [9])
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(a) Biaxial crystal classes
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(c) Isotropic crystal classes
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Figure 2.4: Form of the second-order susceptibility tensor in contracted notation for each of the
21 crystal classes that do not feature inversion symmetry. Depending on the symmetry properties
of the linear susceptibility tensor, these crystal classes can be subdivided in (a) biaxial crystal
classes, (b) uniaxial crystal classes, and (c) isotropic crystal classes, see Section for a more
detailed discussion. Small dots indicate zero coefficients, large dots represent nonzero coefficient.
Coeflicients indicated by squares are zero if Kleinman symmetry applies. Connected symbols
represent numerically equal coefficients; open-symbol coefficients are opposite in sign with respect
to the connected closed-symbol coefficient. Dashed connections are valid for the case of Kleinman
symmetry only (Figure adapted from [9])
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Material Point Group d;; (pm/V)

Ag3AsS3 3m=C3y dn =18
(proustite) dis=11
AgCaSc: i2m B DZd d_‘;() =33
AgSbSs 3Im=0Cs, di5=8
(pyrargyrite) dn=9
beta-BaB,0Oy4 (BBO) Im=0Cy, dy =22
(beta barium borate)
CdGeAs; 2m =Dy dyg =235
CdS 6mm = Cg, dy3 =178
d3) =—40
GaAs 43m dzg =370
KH2PO4 2m di =043
(KDP)
KD2PO4 2m dzs =0.42
(KD*P)
LilO3 6=Cg di5=-5.5
dy =-7
LiNbO3 3Im=0Cs, dy =3 pm/V
ds; =-5 pm/V;
d33 ==23 pII]/V
Quartz 32=D;3 d) =03
dy4 =0.008

Figure 2.5: Second-order nonlinear optical susceptibility for several crystals. Additional tensor
components may be derived by using the relationships illustrated in Fig. (Figure adapted from

9)

(a) Inversion

m3m = Oy, Si Z

Figure 2.6: Examples of two cubic crystal structures and the associated point groups. (a)
Diamond structure of silicon (Si), belonging to point group m3m = Oy,. This point group features
inversion symmetry with inversion points being located in the middle between two neighouring
atoms. As a consequence, all elements of the second-order nonlinear susceptibility must vanish.
(b) Zincblende structure of gallium arsenide (GaAs), belonging to point group 43m = T,. The
structures is non-centrosymmetric and hence features nonzero second-order susceptibility tensor
elements (ryz = xzy = yzo = yrz = zay = zyz) (Figure adapted from [9])
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Isotropic
There are 21 nonzero elements. of which only 3 are independent. They are:

Y¥IZ = ZIYY = IZXX = XX2Z = XXYVY = YV¥XX,
YZYZ = ZYZY = IXIX = XIXI = XYXY = yXYX,

¥ZZY = ZYYZ = IXXI = XIZX = XYYX = YXX)Y;

and
XXXX = ¥YY¥ = ZZIZ=XXYY + X¥XY + X¥¥X.
Cubic
For the two classes 23 and m3. there are 21 nonzero elements. of which only 7 are independent.
They are:
XXXX = YYY¥ =ZIIIZ,

yYZ = ZZXX = XXYyY,
)Y = XX = YyXX,
YI¥T = IXIX = XYXY,
I¥IY = XIXI = yXYX,
YIIy = ZXXI =XYVyX,
I¥YI = XIIX = yXX).
For the three classes 432, 33m. and m3m. there are 21 nonzero elements. of which only 4 are indepen-
dent. They are:
XXXX = Y¥¥¥ =222,
Y¥ZZ = ZIVY = ZIXX = XXZZ = XXYY = YYXX,
NI =Y =XIX = XIXI = XYXY = VXYY,
YITY = I¥VI = IXXI = XIIX = XYyX = YXXY.
Hexagonal

For the three classes 6. 6. and 6/m. there are 41 nonzero elements. of which only 19 are independent.
They are:

XXYY = VVXX,

XYYX = VXXV,
XXXX = YYYY = XXVY + XVY¥X + X¥XY,

XYXY = ¥XVX,

Y¥II = XXIZ, XYII = —¥XIL,
Yy = 1IXX, IIXy = —IIYX,
I¥V¥I = IXXZ, ZXYI = —IyXZ.

yzzy = XX, XTy = —Yyizx,
YIVI = XIXI, XIYI = —yIXg,

I¥IY = XX,  IXIY = —I)IX,

XXXY = —YY¥¥X = Y¥XY + YX¥¥ + X¥¥Y¥, yXyy = —Xyxx,

(continued)

Figure 2.7: Form of the third-order nonlinear susceptibility tensor for various crystal classes and
for isotropic materials. The elements are denoted by their Cartesian coordinates. (Figure adapted

from [9])
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For the four classes 622, 6mm. 6/ mmm. and 6m2, there are 21 nonzero elements, of which only 10
are independent. They are:

XXVY = VVXX,
XYYX = YXXV,

s

XXXX = ¥YYYY = XXYY + XYYX + XYXY,

XYXY = ¥X¥X,
y¥Z = XX22,
IIyy = I2xx,

= IXXxZI.

yIzy = xizx,

YI¥Z = XIXZ,

Trigonal
For the two classes 3 and 3. there are 73 nonzero elements. of which only 27 are independent. They

are:
XXYY = YVXX,

XYYX = VXXV,
XXXX = ¥YYYY = XXYVY + X¥YX + XYY,

XYXY = YX¥X,

¥VZZ = XX2Z, XYyZZ = —yX2Z,
Yy = XX, XY = —IYX,
¥yl = IxxZ. IXyI = —IyxZ,

YIIy = XIIX,  XIIY = —YIZX,
YIVZ = XZXZ, XI¥Z = —yIXZ,
YLy = XX, IXIY = —IYIX,
YYXY = —XXY¥X,
XXXY = —Y¥¥X = ¥YXY + YXYY + X¥YY, VXYY = —XYXX,
XYYy = —¥XXX.
YV¥ZI = —YXXI = —XY¥XI=—XXVZI,
YVI¥ = —YXIX = —XY¥IX = —XXZIV,
YIVY = —¥IXX = —XI¥X = —XIXY,

ZVYY = —I¥XX = —ZXY¥X = —ZXXY,

XXXI = —XY¥VI = —Y¥X¥I=—)VXZI,

XXZX = —XYyI¥y = —YXIy = —)VIX,
XIXX = —YIXY = —YIVX = —XI)V,
IXXX = —IXYY = —I¥XY = —ZIVYX.

For the three classes 3m. 3m. and 32. there are 37 nonzero elements, of which only 14 are independent.
They are:
XXVY = ¥VXX,

s

XYYX = YXXV.
XXXX = ¥YYYY = XXYVY + X¥YX + XYY,

XVXY = YX¥X,

Figure 2.8: Continued: Form of the third-order nonlinear susceptibility tensor for various crystal
classes. The elements are denoted by their Cartesian coordinates. (Figure adapted from [9])
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¥¥II =XXZZ, XXXI = —XYYI=—YXVI=—YV¥XZ,

ZIVY = ZIXX, XXIX = —XYIY¥ = —VXIY¥ = —VVIX,
IYYI = ZXXZ, XZXX = —XZIYY = —YIXy = —YI)X,
YIIY = XZIX, XXX = —IZXYY = —I¥Xy = —ZIy)X,

¥I¥Z = X2X2,

Yy = IXZX.

Tetragonal
For the three classes 4. 4. and 4/m. there are 41 nonzero elements, of which only 21 are independent.
They are:
XXXX=YYyy, 22I2,

2ZXX=2ZI¥Y, XYIT=-—YXIZ, XXYY=YYXX, XXX¥=-—Y¥)X,

XXIZT=2ZIIYY, IXY=—II¥X, XYXYy=YXIX, XXIX=—YyyX)y,

XX =2yZy, XIYT=-—Y2XZ, XYYX=YyXXYy, XYXX=—YyXyY,

XIXI=YI¥Z, IXIY=—I¥IX, YXXX = —XYVY.

IXXZ=2Iy¥Z, IXYI=-—2IyXZ,

XIZX =YyITy, XIZy=—YyIIX.

For the four classes 422, 4mm. 4/mmm. and 32m. there are 21 nonzero elements, of which only 11
are independent. They are:
XXXX = ¥YYY, 22I%,

Y¥IZ=XXII, YIIY=XIIX XXYY=)YYyXX,

IIYYy =2ZIXX, YVIVI=XIXI XYXYy = YyXVX,

I¥YI=2XXZ, YIY=IXIX  XYYX = yXXy.
Monoclinic
For the three classes 2. m. and 2/m. there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal,

18 elements with indices equal in pairs,

12 elements with indices having two ¥'s one x. and one z,
4 elements with indices having three x’s and one z,

4 elements with indices having three z's and one x.

Orthorhombic
For all three classes, 222, mm?2, and mmm. there are 2| independent nonzero elements, consisting of:

3 elements with indices all equal,

18 elements with indices equal in pairs.
Triclinic
For both classes. 1 and 1. there are 81 independent nonzero elements.

Figure 2.9: Continued: Form of the third-order nonlinear susceptibility tensor for various crystal
classes. The elements are denoted by their Cartesian coordinates. (Figure adapted from [9])
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Chapter 3

Second-order nonlinear effects

In this chapter, we will give a more detailed explanation of second-order nonlinear phenomena
such as the the linear electro-optic effect (also referred to as Pockels effect), sum and difference
frequency generation, and parametric amplification. Second-order nonlinearities can only exist in
non-centrosymmetric materials, which often feature an anisotropic linear susceptibility. We will
therefore first introduce a formalism which describes wave propagation in linear anisotropic media.
Based on this, we will then investigate the influence of second-order nonlinearities.

3.1 Wave propagation in linear anisotropic media

3.1.1 Permeability and impermeability tensors of anisotropic media

A linear anisotropic medium is characterized by linear permeability tensor €,
D = eoe, E, (3.1)

where both D and E denote complex time-domain amplitudes, Egs. (1.36) to (1.41), and where
the arguments (r,wp) have been omitted for better readability. The permeability tensor e, is
represented by a symmetric (3 x 3)-matrix and can be related to the the susceptibility tensor by

e, =I+x, (3.2)
where I denotes the identity matrix. The dielectric tensor is Hermitian such that ¢;; = €j;.
In a lossless material, all elements of €, are real and the corresponding matrix is symmetric,

€; = €;; € R. The tensor can conveniently be represented in diagonal form by means of a
principal axis transformation, i.e., by appropriate rotation of the coordinate axes,

D, e 0 0\ [E, n2 0 0\ [E,
D, | =c| 0 ¢y 0 E,|=e]| 0 n3 0 E, |, (3.3)
D. 0 0ec.)\E. 00n2) \E.

where n1, ny, and n3 denote the refractive indices that are associated with a plane wave that is
entirely polarized along the z, y, or z-direction. The coordinate system in which the dielectric
tensor assumes diagonal form, defines the principal axes of the of the anisotropic crystal. In many
cases, it is convenient to consider the inverse operation, which is represented by the so-called
dielectric impermeability tensor 7 = (eoe,) ",

1
E=—nD. (3.4)

€0
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When using the principal-axes coordinate system, the impermeability tensor can conveniently be
represented in diagonal form,

1
E,\ 4 e 0 0\ (D,\ ,(m? %)\ /D,
1
Ey :: 0 Nyy 0 Qy :: 0 nZ 0 Qy . (35)
E, SN0 0 m D, VYoo D,

2
7L3

Note that for arbitrary coordinate systems, Eq. (3.5)) has to be transformed accordingly. Then the
impermeability tensor cannot be represented by a diagonal matrix any more.

Biaxial, uniaxial, and isotropic crystals

Crystals can be classified according to the refractive indices that they exhibit for light polarized
along the principal axes.

Biaxial crystals exhibit three different principal refractive indices, n1 # ns # ng in Eq. (3.3).

Uniaxial crystals feature two orthogonal directions along which refractive indices are equal.
These two indices are usually referred to as ordinary indices n, = n; = ng, whereas the
third index is called the extraordinary index n. = n3. Uniaxial crystals exhibit a single
axis with threefold, four-fold, or six-fold symmetry. The z-axis (axis along the extraordinary
index) of an uniaxial crystal is called the optical axis. A crystal is said to be positive uniaxial
for n, > n, and negative uniaxial for n, < n,.

Isotropic crystals feature higher symmetry, e.g., due to a cubic unit cell. As a consequence, all
three indices are equal and the medium is optically isotropic.

The form of the linear permeability tensor for each of the seven crystal classes is depicted in
Fig.[3.1]
Index ellipsoid

Optical properties of an anisotropic medium can be described by a mathematical construct called
the index ellipsoid or the optical indicatrix. The index ellipsoid is the quadratic representation of
the dielectric impermeability tensor n = (co€,)” " and is defined by the relationship

Zninin =1, (3.6)
,J

where 4,5 € {1,2,3} and where X;, X5, and X3 are associated with the z, y, and z-direction.
When represented with respect to the principal axes of the crystal, the indicatrix assumes the
simple representation

X3 X3 X2
=1, 3.7
2ttt (3.7)

where the main axes of the ellipsoid are oriented along the coordinate axes, and where the principal
refractive indices n1, no, and ng represent the length of the main axes, see Fig.|3.2]

3.1.2 Wave propagation along a principal axis

Propagation of light in anisotropic crystals is complex to describe in the general case. However,
things become relatively simple when considering a plane wave propagating along one of the
principal axes of the crystal. We will first consider this case and then give an explanation on how
to treat the general case in the next section. A more in-depth analysis of wave propagation in
anisotropic crystals can be found in [26] and [§].
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Figure 3.1: (a) General forms of linear permeability tensor €, for each of the seven crystal classes.
Note that a representation of €, with respect to the coordinates of the unit cell has been chosen.
For triclinic and monoclinic crystals, this leads to a non-diagonal representation of the permeability
matrix, which can be brought to diagonal form by an appropriate coordinate transformation. (b)
Hierarchy and general form of unit cells for the seven crystal classes. (Figure adapted from [6])

Figure 3.2: The index ellipsoid, also referred to as optical indicatrix of an anisotropic medium
is the quadratic representation of the electric impermeability tensor with respect to the principal
axes X7, X, and X3 of the crystal. The quantities nq, no, and ng represent the principal refractive
indices of the medium, i.e., the refractive index that is experienced by a plane wave which is linearly
polarized along the respective principal axis and which propagates along another principal axis.
(Figure adapted from [26])
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Normal modes

If the light propagates along a principal axis X; and if the electric field is oriented along another
principal axis X;, then the wave will propagate like a plane wave in an isotropic medium and
experience the refractive index n; that is associated with the second axis, k; = n;ko. These waves
are also referred to as normal modes; they maintain their optical polarizations and wavenumbers
during propagation. Propagation of normal modes in an anisotropic medium is illustrated in

Fig.|3.3|(a).

Polarization along arbitrary direction

Conversely, if a wave propagates along one principal axis, e.g., the z-axis, but is linearly polarized
along an arbitrary direction in the (z,y)-plane, then we have to take into account that differ-
ent components of the wave experience different refractive indices and hence travel at different
propagation constants. In particular, the wave can be decomposed into a superposition of two
linearly polarized waves, for each of which the electric field is oriented along a principal axis of the
crystal. These waves can be considered as normal modes and preserve their optical polarizations
and wavenumbers during propagation. However, they will propagate with different wavenumbers
k1 = koni and ke = kgns, thereby accumulating a steadily increasing phase difference during
propagation along z,

AP = —ko (712 — Tll) z. (38)

This so-called phase retardation will lead to a continuous change of the state of polarization during
propagation along z, converting the wave from linear polarization state to an elliptical, circular or
another linear polarization state, see illustration in Fig.[3.3|(b).

3.1.3 'Wave propagation in arbitrary direction

We now consider the case of a plane wave traveling in an anisotropic crystal in an arbitrary
direction defined by the wave vector k. In the following, the notion “plane wave” denotes an
electromagnetic field configuration, for which the phase fronts are planes. In anisotropic media,
that does not imply that the electric field vector lies completely within this plane. To understand
this better, let us first revisit some fundamental properties of plane waves in isotropic materials
and see how they change due to the anisotropy of the material.

Wavefronts and energy transport vector

In isotropic materials, the vectorial amplitudes of the electric displacement D and the electric field
E are parallel, and the same applies to the magnetic flux density B and the magnetic field H.
The wave vector k is parallel to the Poynting vector S = % (E x H"), which denotes the direction
of power flux. Moreover, the wave vector k, the electric field amplitude E, and the magnetic field
amplitude H are mutually orthogonal and form a right-handed system.

In contrast to that, D and E are related by a matrix equation D = ¢p€, E, and are therefore
not parallel in the general case of anisotropic media. As a consequence, the wave vector k is only
orthogonal to the electric displacement D, but generally not to the electric field E. Moreover, k
is not anymore parallel to the Poynting vector S = 3 (E x H*). In other words: Only the electric
displacement D is parallel to the phase fronts of the wave while the electric field E is not, and
only the wave vector k is orthogonal to the phase fronts of the wave, while power flux S is not,
see Fig.[3.4] The quantities (k, D, H) are mutually orthogonal and form a right-handed set.

Determining normal modes from the index ellipsoid

To describe propagation of waves with arbitrary polarization in an arbitrary direction, we must
again decompose the incoming wave into two normal modes, each of which propagates without
changing the associated field amplitudes. The normal modes can be constructed by using the
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Figure 3.3: Wave propagation in anisotropic crystals. The x-, y-, and z-axis of the laboratory
coordinate system are oriented along the main axes X7, Xs, and X3 of the crystal, respectively.
(a) Propagation of normal modes along a principal axis X; while being linearly polarized along a
different principal axis X;. The waves behave like a plane wave in an isotropic medium and expe-
rience the refractive index n; that is associated with the polarization direction. (b) Propagation
along a principal axis that is associated with the z-direction, while initially being linearly polarized
along an arbitrary direction in the (x,y)-plane. The wave can be decomposed into a superposi-
tion of two linearly polarized normal modes, for each of which the electric field is oriented along
a principal axis of the crystal. The normal modes hence propagate with different wavenumbers
k1 = kony and kg = kgne, thereby accumulating a steadily increasing phase difference which leads
to a continuous change of the polarization state. (Figure adapted from [26])

Figure 3.4: In a general anisotropic medium, the electric displacementD and the electric field E
are not parallel, and the same applies to the wave vector k and the Poynting vector S. The electric
displacement D as well as the magnetic flux density B and the magnetic field H are parallel to the
phase fronts, which are orthogonal to the wave vector k. The quantities (k, D, H) are mutually
orthogonal and form a right-handed set. (Figure adapted from [26])
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index ellipsoid introduced in Section[3.1.1] To understand this, let us have a short look at the
wave equation in anisotropic media.

We start from Maxwell’s curl equations for the complex time-domain amplitudes of the electric
field E, the electric displacement D, and the magnetic field H and use a plane-wave ansatz of the
form

E=E™ H=Hyee™ D=Dg . (3.9)
This leads to

-k xE = —jwuoH, (3.10)
-k x H=jwD. (3.11)

where D and E are linked by

E= ing. (3.12)
€0

Inserting Eq. (3.11]) in (3.10) and using Eq. (3.12) we obtain
~kx (kx (D)) = k3D (3.13)

Using the identity A x B x C =B (ATC) -C (ATB), multiplying the entire relation with DT
from the right, and exploiting the fact that D'k = k”D = 0, we derive the equation

k2
D'nD = =2 D’D. 3.14
D'nD = .7 D'D (3.14)
We now make use of the principal-axis representation of n according to Eq. (3.5) to reformulate
the relation as

X2 vy Zz?

rt et =1 (3.15)

ny Ny N3
where the quantities X, Y, and Z are given by

_EDQJ Y—E& Z_EDZ

X = — — — -z
ko D’ ko D’ ko D’

(3.16)

and where k = vVkTk and D = vDTD denote the magnitude of the corresponding vector quanti-
ties. Equation represents the index ellipsoid and can be interpreted as an implicit equation
that relates the electric displacement vector D to the corresponding propagation constant k = nky,
where n denotes the effective refractive index that is associated with this wave. However, for a
given wave vector k, only distinct directions of the electric displacement D correspond to plane
waves for which definition of an effective refractive index makes sense.

If the direction u = k/ k| of the wave vector k is known, we may construct the electric field
E, the electric displacement D, the effective refractive index n, and the direction of power flux S
from the index ellipsoid, see Fig.[3.5(a). Starting from the propagation direction u, draw a plane
normal to u that contains the origin. The intersection of this plane with the index ellipsoid is called
the index ellipse. The lengths of the major and minor half-axes of the index ellipse correspond to
the effective refractive indices n, and n; of the two normal modes; the direction of the half axes
are the directions of the associated electric displacement vectors D, and D,, respectively. The
displacement vectors D, and D, are orthogonal to each other. The directions of the corresponding
magnetic fields H, and H, can be obtained by exploiting the fact that (k, D, H) are mutually
orthogonal and form a right-handed set even for anisotropic media. More details on the derivation
of this method can be found in [8] and [17].
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Figure 3.5: Propagation of plane waves in a general anisotropic medium. (a) Construction of
the normal modes for a known direction u = k/ |k| of the wave vector k: First we draw a plane
normal to u that contains the origin. The intersection of this plane with the index ellipsoid
defines the index ellipse. The major and minor half-axes of the index ellipse define the effective
refractive indices n, and n; of the two normal modes and the directions of the associated electric
displacement vectors D, and D,. (b) Construction of the electric field vector E of a normal mode:
The direction of the electric field E is given by the surface normal of the index ellipsoid in the
intersection point with the electric displacement D. (Figure adapted from [26])

We may also derive the directions of the electric field E from the index ellipsoid. To understand
this, let us consider again Eq. (3.15)), which represents an implicit equation for the index ellipsoid.
The gradient of the left-hand side of Eq. with respect to X, Y, and Z is hence associated
with the surface-normal direction n of the index ellipsoid. Using Eq. we can show that the
direction of the electric field E is given by the surface normal n,

X Dy
X2 y? 22 7 2% [ M e
= d| =+ —==+=|=2| = |=—| =& | = E. 1
n = gra <n% + 2 + n%) njz 5] g% DL (3.17)
F n2
3 3

In other words: The surface normal of the index ellipsoid is associated with the electric field E,
see Fig.[3.5|(b) for an illustration.

Example: Uniaxial crystal For uniaxial crystals ny = ny = n, and n3 = ne, i.e., the index
ellipsoid is rotationally symmetric with respect to the Z-axis. For n, < n,, the medium is referred
to as a negative uniaxial material, for n. > n,, it is called positive uniaxial. For wave propagation
along the optical axis, which is associated with the Z-direction, the two normal modes experience
identical refractive indices and the material behaves like an isotropic medium, see Fig.[3.6|(a). For
propagation in arbitrary direction, the coordinate system can always be chosen such that the wave
vector k lies in the (Y, Z)-plane and defines an angle 6 with the Z-axis, Fig.[3.6/(b). The index
ellipse has then one half-axis of length n,, which is independent of 6, whereas the length n. (8) of
the other half axis depends on 6 according to the relation

o cos? (0) n sin? (9) (3.18)

nz () g ng

The normal modes hence have effective refractive indices n, = n, and n, = n. (6). The first
mode is referred to as the ordinary wave, whereas that the second mode is often referred to as
the extraordinary wave even though it does not experience the intrinsic extraordinary index n. of
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Figure 3.6: Wave propagation in uniaxial crystals. (a) For uniaxial crystals n; = no = n, and
ng = ne, and the index ellipsoid is rotationally symmetric with respect to the Z-axis (“optical
axis”). For wave propagation along the optical axis, the two normal modes experience identical
refractive indices and the material behaves like an isotropic medium. (b) For propagation in
arbitrary direction, the coordinate system can always be chosen such that the wave vector k lies
in the (Y, Z)-plane and defines an angle § with the optical axis. Wave propagation can then be
described by a superposition of two normal modes, one of which experiences the ordinary refractive
index n,, whereas the other experiences the angle-dependent extraordinary refractive index n, (6).
The angle-dependent extraordinary refractive index n. (6) seen by the wave ranges between the
ordinary and the extraordinary index of the material, i.e., n, < n. (6) < n. for positive uniaxial
crystals. (Figure adapted from [26])

the anisotropic material, but rather the angle-dependent extraordinary index n,. (#), which ranges
between n. and n,. The electric displacement D,=D, of the ordinary mode is parallel to the
corresponding electric field vector E, and perpendicular to the plane that is defined by the optical
axis (Z-axis) and the direction k of propagation, i.e., the (Y, Z)-plane. For the extraordinary
mode, the electric displacement D,=D, is normal to k and lies in the (Y, Z)-plane. Note that the
corresponding electric field E, is not parallel to D,,.

The walk-off angle p between the electric field E, and the electric displacement D, of the
extraordinary mode is identical to the angle between the wave vector k and the Poynting vector
S, = % (E, x H;) of the extraordinary mode and can be calculated from the relation

cos (p) = 5{% _ n2 cos? (0) + n2 sin? (0) . (3.19)
[y | D \/n‘c} cos? () + ndsin® (9)
This relation can be re-written as
2
p = FO £ arctan (Zg tan (9)) , (3.20)

where the upper signs are to be used for negative uniaxial cyrstals and the lower signs for positive
uniaxial crystals.

3.2 Linear electro-optic effect (Pockels effect)

3.2.1 Mathematical description

If an electro-optic material is exposed to a static or low-frequency electric field E (¢), the index
ellipsoid is changed by nonlinear interaction. In an arbitrary coordinate system, the index ellipsoid
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can be expressed in the form

1 1 1 1 1 1
— | X+ (=) Y+ (=) 2242 =) YZ24+2(= ) XZ4+2( =) XY =1,
n?), n?), n? ), n?), n? ). n? )

(3.21)

where the elements of the impermeability tensor i are denoted as 7;; = (1 /n2) ,, according to the
assignment

ij 11 22 33 23,32 13,31 12,21

h 1 2 3 4 5 6 (3.22)

In a general approach, the elements 7;; of the impermeability tensor can be expressed as a power
series in the strength of the components Ej (¢) of the modulating low-frequency electric field,

Mij = 771(?) + Z rijk Bk + Z SiiErEr+ ... (3.23)
k k.l

In this relation, the tensor r;;; describes the coefficient of linear electro-optic effect, whereas s;;x;
represents the coefficient of the so-called quadratic electro-optic effect. For lossless media, the
components 7);; of the impermeability tensor are real and symmetric, and the electro-optic tensor
;5% must hence be symmetric in its first two indices ¢ and j. The third-rank tensor r;;, may then
be expressed as a two-dimensional matrix r,; using contracted notation with the assignment set
forward in Eq. (3.22)). Neglecting second- and higher-order effects in Eq. (3.23), the change of the
impermeability tensor elements can then be written as a matrix equation,

A (1/”2)1 T11 712 T13

A El/nz§2 T21 T22 T'23 E,

A(l/n | r31 732733

A (1/”2)z | ra1 a2 Ta3 gz ' (3:24)
A(1/n?), T51 T52 T'53 ’

A(1/n?), T61 T62 T63

The quantities r,; are hence a measure on how strongly the impermeability tensor elements depend
on the externally applied electric field. In analogy to the nonlinear susceptibility tensor, the form
of the electro-optic tensor 7y, is restricted by the symmetry of the underlying crystal lattice. The
forms of the electro-optic tensors for a few selected crystal classes are given in Fig.[3.7 along with
numerical values for a selection of electro-optic materials[9]. A complete list of tensor forms for
all crystal symmetry classes can be found in [32].

3.2.2 Electro-optic modulators

Electro-optic modulators exploit second-order nonlinearities to modulate a beam of light by means
of an electric signal. A voltage u (¢) applied to the device leads to a modulating electric field
Eoq within the electro-optic material and thereby changes the indicatrix of the medium. For
so-called longitudinal modulators, the electric field E,,q is applied parallel to the direction of
light propagation, whereas in transverse modulators, E,q is perpendicular to the direction of
light propagation, see Fig.[3:8 In the following sections, we will investigate the two types of
modulators in more detail. For simplicity, we consider the modulating electric field to be static
unless otherwise stated. This is a valid approximation for low modulation speeds, i.e., if E,oq does
not change considerably during the time that the light interacts with the electro-optic material. For
high-speed modulators, however, it is necessary to take into vector account the time dependence
of the modulating field.
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|0 0 0 Zinc telluride. ZnTe Bm 31 =4.0 no =299
(at 0.633 pm)

4 From a variety of sources. See. for example. Thompson and Hartfield (1978) and Cook and Jaffe
(1979). The electrooptic coefficients are given in the MKS units of m/V. To convert to the cgs units of
cm/statvolt each entry should be multiplied by 3 x 10%.

b M _ i_
ehe =135}, =3700.

Figure 3.7:  (a) Typical form of the electro-optic tensor rp; for different crystal classes. (b)
Electro-optic coefficients for selected materials. Note that Zinc telluride (ZnTe) posseses a cubic
lattice, which features an isotropic linear permeability tensor, see Fig.[3.1] that corresponds to
a recfractive index of n = 2.99. The corresponding electro-optic tensor has only one degree of
freedom, 741 = r50 = rg3, whereas all other elements vanish [32]. (Figures adapted from [9])

Figure 3.8: Basic concepts of electro-optic modulators (a), (b) Longitudinal modulators: The
modulating electric field Eyoq is applied parallel to the direction of light propagation. (c), (d)
Transverse modulators: Eq is perpendicular to the direction of light propagation (Figures
adapted from [26])
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Longitudinal modulators

As an example for a longitudinal modulator, let us assume that potassium dihydrogen phosphate
(KH2PO,), also referred to as KDP (Kalimudihydrogenphosphat), is used as an electro-optic
material. KDP belongs to point group 42m, and the analysis is formally identical to that of other
materials of the same group, such as potassium dideuterium phosphate (KD>sPOy4; D denotes
deuterium; short name KD*P) or ammonium dihydrogen phosphate (NH4H5POy; short name
ADP). The electro-optic tensor of these materials is given by

0 0 0
0 0 0
0 0 O
r= rap 00 (3.25)
0 T41 0
0 0 T63

These materials are uniaxial and the impermeability tensor can be written as

1

L0 0
n= 07713(1), (3.26)
00 %

where n,, denotes the ordinary and n. the extraordinary refractive index. For an externally applied
modulating field Ey,,q, the optical indicatrix of the material can be written as

X24+v2 72
;2 + 55+ 20 EY Z 4+ 2rp By X Z + 2rg3 B XY =1, (3.27)
nO n(i ‘

where E,, E,, and E, denote the vector components of Ey04,

E,
Emoa = | B, | . (3.28)
E,

In the general case, this indicatrix belongs to a biaxial optical medium, i.e., by applying a modu-
lating field to an uniaxial crystal, we break its symmetry and turn it into a biaxial material.
Let us now consider the case where light propagates in z-direction, and where the modulating
field only has a z-component (E, = E, = 0), Fig. The index ellipsoid can then be written as
2 2 2
% + 2—2 + 2re3 B, XY = 1. (3.29)
nO n@
To analyze light propagation, we seek for a transformation of (X,Y, Z) to the coordinate system
(X',Y’,Z') that corresponds to the principal axes of the index ellipsoid according to Eq. (3.29).
The coordinate system (X', Y’ Z’) is obtained by calculating the eigenvectors of the corresponding

impermeability tensor

% T63Ez 0
n(E:)=|resE: oz 0|, (3.30)
0o 0 %5

and is related to (X,Y, Z) by

1
X=—(X+Y),
\/5( )
1
X=—"—(-X+Y"), 3.31
75 ) (3:31)
Z=27.
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Figure 3.9: Longitudinal modulator, also referred to as Pockels cell: Light propagates in z-
direction, and transparent electrodes are used to apply the modulating field in z-direction as well,
Emoa = E.e,, where E, = U/L and where e, denotes the unit vector in z-direction. For uniaxial
crystals of point group 42m such as KDP, KD*P, and ADP, the index ellipsoid is rotationally
symmetric about the z-axis for zero modulation voltage U. For nozero voltage, the rotational
symmetry is broken and the material behaves like a biaxial crystal with main axes z’ and 3’ that
are rotated by 45° with respect to the axes x and y of the crystal coordinate system.

In other words: (X',Y’,Z’) is obtained from (X,Y, Z) by a rotation of the coordinate system by
45° about the z-axis, see Fig.|3.10|(a). The refractive indices associated with the principal axes

X', Y’, and Z' are obtained by inserting Eq. (3.31) in Eq. (3.29),

1
Ny = Ny <1 + 27“637713Ez> s (332)
1 2
Ny =mne (1 — §r63noEz , (3.33)
Ny = Ne. (3.34)

In the new coordinate system, the normal modes are simply plane waves polarized along the
7'~ and 3/-direction and propagating in the z’-direction. After propagation through a crystal of
length L, the two normal modes experience a relative phase delay of

AD = reaniE koL = rez3nikoU, (3.35)

where U = E. L is the voltage applied to the device along the propagation direction. The crystal
hence acts as a wave plate with a voltage-dependent phase delay. Such a device is also referred to
as a Pockels cell.

Clearly, the voltage-dependent phase delay leads to a voltage-dependent change of the po-
larization state at the output of the device. A figure of particular importance is the so-called
half-wave-voltage or m-voltage, for which a phase shift of A® = 7 is obtained,

A
— 7 3.36
27‘63”2 ( )

U
AP = m1— 3.37
U, (3:37)

For the case of an longitudinal modulator, the m-voltage is independent of the device dimensions.
For KDP with rg3 = 10.5pm/V and for a wavelength of A = 632.8nm, a w-voltage of 8750V
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With external field: Biaxial crystal
= Principal axes X and Y’ inclined by 45°
with respect to the X- and Y-direction
1
Without external field: Uniaxial crystal
= Index ellipsoid rotationally symmetric
with respect to the z-axis

" i
'0" E_\'
-------------- _—

U=0 U=UJ2 U=U.

Figure 3.10: (a) Deformation of the index ellipsoid under the influence of an external electric
field: For zero modulation voltage U, the index ellipsoid is rotationally symmetric about the z-
axis. For nozero voltage, the rotational symmetry is broken and the material behaves like a biaxial
crystal with main axes 2’ and 3y’ that are rotated by 45° with respect to the axes x and y of the
crystal coordinate system. For an incident optical field that is polarized along the y-direction, this
leads to a change of the polarization state while propagating along z.(b) Polarization rotation in a
Pockels cell for different applied voltages. The incident field is polarized along the z-direction and
can be decomposed in two normal modes of equal amplitude, polarized along 2’ and y’. For zero
voltage U = 0, the relative phase between the two modes does not change and the polarization
state is preserved during propagation. For U = U, /2, the two modes accumulate a phase delay of
/2, which transforms the linear polarization into a circular polarization. For U = U, the phase
delay amounts to 7, which corresponds to a change in sign for the E,,-component relative to the
E,/-component and hence to a rotation of the polarization by 90°.
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Figure 3.11: Amplitude modulators based on the Pockels cell. (a) Inserting a polarizer before
and after the Pockels cell translates the polarization rotation into an amplitude modulation with
a sinusoidal dependence of the amplitude transmission on the applied voltage U. (b) Inserting a
quarter-wave plate allows to adjust the operation point of the modulator.

is found. Since it is technically demanding to generate broadband signals at such high voltages,
Pockels-cell modulators are only used for low-frequency applications.

The phase delay A® leads to a change of the polarization state can be translated into an
amplitude modulation, see (b) To understand this, let us consider the case where the incident
wave is linearly polarized along the y-direction of the original coordinate system and hence rotated
by 45° against the principal 2’- and the g’-axes, see figure on slides. The incident field vector
can be decomposed into x’- and 3’- components of equal magnitude and phase. For Ad = 0,
the input polarization state remains unchanged, whereas for A® = 7, the linear polarization is
rotated by 90°, Fig.|3.10|(b). If a polarizer is inserted after the Pockels cell, this rotation can be
translated into an amplitude modulation, see Fig.[3:11] If the voltage is continuously increased
from 0 to U, then the output wave changes its polarization state beginning from linear, to elliptic,
circular, elliptic and finally back to linear. This leads to a sinusoidal dependence of the amplitude
transmission function on the applied voltage U. In the configuration depicted in Fig.[3.11|(a),
U = 0 corresponds to zero transmission, whereas U = U, leads to full transmission. The power
transfer function T (U) = Pyyt/Pin can then be written as

U
TU)=sin?®-—]. 3.38
@) =sin? (57 (3.38)
The operating point of the modulator can be changed by inserting an additional wave plate after
the electro-optic crystal, see Fig.[3.11|(b). For a quarter-wave plate, the power transfer function
can be written as

T (U) = sin? (;gﬁ + Z) . (3.39)

Transverse modulators

In transverse modulators, the electric field Ep,4q is applied perpendicular to the direction of light
propagation, see Fig.|3.12|(a). This allows partially to decouple the interaction length L from the
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Figure 3.12: Transverse electro-optic modulator (a) Light propagating in the z-direction is mod-
ulated by an electric field perpendicular to it (b) Representation of on-chip implementation of a
transverse electro-optic modulator (Figures adapted from [26])

spacing d of the electrodes and hence to decrease the modulation voltage that is needed to generate
a certain electric field within the electro-optic material. Still, for “bulk” devices that consist of
homogeneous electro-optic material, the light propagates through the modulator as a Gaussian
beam, and both the minimum electrode spacing d and the maximum interaction length L are
hence dictated by the beam parameters, in particular its divergence, which is linked to the beam
diameter. To achieve low modulation voltages, it is hence necessary to use a waveguide-based
device, where electrode spacings of the order of a few micrometers and interaction lengths of a few
centimeters in range become possible, see Fig. (b).

One of the most commonly used electro-optic modulator types is based on a lithium niobate
(LiNbO3) substrate and indiffused waveguides, where two fabrication methods are commonly used:
Indiffusion of titanium Ti or proton exchange, see Fig.m For indiffusion of Ti, Fig.[3.13|(a), the
metal is deposited on the surface of the wafer and patterned by lithography and etching. A subse-
quent thermal treatment at around 1000 — 1050°C for several hours leads to indiffusion of Ti into
the LiNbQOj substrate, thereby causing a refractive index increase of around An & 0.002...0.01.
Typical waveguide widths are 10 um. Due to the anisotropy of the lithium niobate crystal, the
behavior of resulting integrated optical components shows a large polarization dependence. For
proton exchange, Fig.[3.13|(b), an Al-mask is patterned on the surface of the substrate, and the
wafer is then immersed in boiling benzoic acid (200 — 240°C) for 2-4 hours. This leads to a sub-
stitution of Li*- by H'-ions. For the extraordinary polarization, the resulting Li;_,H,NbO3 has
a refractive index n. which is higher than that of the surrounding LiNbO3 by An =~ 0.02...0.05,
whereas for the ordinary polarization, the index n, is decreased, An =~ —0.04. As a consequence,
this waveguide is only able to guide modes that are predominantly polarized along the z-direction,
i.e., the direction along which the electric field of the optical mode experiences the extraordinary
refractive index n..

To understand the principle of lithium niobate electro-optic modulators let us first consider
the electro-optic tensor of the material in more detail. LiNbO3 belongs to point group 3m, and
the electro-optic tensor has the form

0 —rap 713
0 722 713

_ 0 0 T33
r= 0 1w 0 | (3.40)
T42 0 0
—To2 0 0
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Figure 3.13: Fabrication of lithium niobate waveguides: (a) Indiffusion of titanium (Ti) under
high temperatures; (b) “Proton-exchange”, substituting Li™ by HT-ions. This leads to a refractive
index increase for one polarization (extraordinary) and to a decrease for the other polarization
(ordinary).

where
r13 = 9.6 %
ras = 6.8 %
ra3 = 30.9 %
raz = 32.6 %

at a wavelength of 0.5 um. If no external voltage is applied, the material is uniaxial and the
impermeability tensor can be written as

%00
n= Onig(l) 7 (3.41)
00 %

where n, = 2.3410 is the ordinary and n. = 2.2457 is the extraordinary refractive index, both
measured at a wavelength of 0.5 um [9]. At 1.55 um, the ordinary and the extraordinary indices
are n, = 2.2111 and n. = 2.13756 respectively [33].

In current devices, efficient electro-optic interaction is achieved by orienting the modulating
electric field and the electric field of the optical mode along the z-direction, thereby exploiting the
large r33 coefficient. This is technically preferred to exploiting the r4o coefficient, which would
change the impermeability tensor element 793 = 730 and hence affect the y- and the z-polarization
simultaneously. For a simplified quantitative analysis, let us consider a schematic device consisting
of a rectangular block of the material, within which both the polarization direction of the optical
wave light and the electric modulating field are applied along the z-direction, whereas light prop-
agation is in y-direction, see Fig.[3.14]l In the presence of the modulating field Enoq = E.e,, the
indicatrix of the material can be written as

1 1 1
(2 + T13Ez> X2 + (2 + 7’13Ez> y? + <2 + T33Ez> Z?=1. (342)
n n n

o o (&
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Figure 3.14:  Simplified analysis of a transverse lithium niobate (LiNbO3) modulator: Light
propagates in y-direction. The electric field of the optical wave (Eqpt) and the electric modulating
field (Epoa) are both oriented along the z-direction, thereby exploiting the rss-coefficient of the
material.

For a plane wave polarized along the z-direction, the field induced index change is then found to
be

1
An = —§n§r33EZ. (3.43)
The corresponding phase shift that a plane wave accumulates along the propagation distance L is

given by

1
AP = §ngr33Ezk0L, (3.44)
where the modulating field E, depends on the externally applied voltage U and the electrode
separation d,

E,=—. (3.45)

This leads to a m-voltage of

d N

Up = ——2_.
T L’I‘gg’ﬂg

(3.46)
In contrast to the longitudinal modulator, the switching voltage can be considerably decreased by
using a large device length L and a small electrode spacing d.

Even though these relationships have been derived for a rectangular block of bulk material, they
can be qualitatively transferred to waveguide-based devices. Two distinct technical realizations
are commonly used for LINbO3s modulators, see figures on slides:

z-cut geometry In the so-called z-cut geometry, the wafer surface is normal to the z-direction
and the modulating field oriented vertically, i.e., along z-direction. The waveguide is ori-
ented along the y-direction and operated in TM-polarization, i.e., the dominant electric field
component of the optical mode is also oriented along z-direction. The phase shift can be
estimated by using Eq. (3.44), where E. denotes the z-component of the modulating field
within the optical waveguide. A buffer layer of Al;O3 or SiO prevents the optical field from
interacting with the metal electrodes which would lead to pronounced optical loss.

x-cut geometry In the x-cut geometry, the wafer surface is normal to the x-direction while the
modulating field is oriented horizontally along the z-direction. The waveguide is oriented
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Figure 3.15: Technical realizations of lithium niobate (LiNbO3) modulators. (a) z-cut geometry:
The wafer surface is perpedicular to the z-direction. Within the waveguide core (depicted in grey),
both the modulating electric field and the dominant electric field component of the optical mode
must be oriented along the z-direction and are hence normal to the wafer surface as well. (b)
z-cut geometry: The wafer surface is perpedicular to the z-direction. The modulating electric
field and the dominant electric field component of the optical mode are still oriented along the
z-direction, which is now parallel to the wafer surface. In both geometries, a buffer layer of AlsO3
or SiO, prevents the optical field from interacting with the metal electrodes which would lead to
pronounced optical loss. (“Wellenleiter mit eindiffundiertem Titan” = Waveguide fabricated by
indiffusion of titanium, see Fig.|3.13)

along the y-direction and operated in TE-polarization, i.e., the dominant electric field com-
ponent of the optical mode is also oriented along the z-direction. The phase shift can again
be estimated by using Eq. , where F, denotes the z-component of the modulating field
within the optical waveguide.

The configurations considered so far can generate a voltage-dependent phase shift in an optical
waveguide and hence act as a phase modulator, Fig.[3.16/(a). This phase modulation can be
transformed into an amplitude modulation by using an interferometric waveguide structure such as
a Mach-Zehnder interferometer, see Fig.[3-16|(b). A Mach-Zehnder Modulator is said to operate in
push-pull mode if the phases in both arms of the interferometer are modulated antisymmetrically,
i.e., while one arm experiences a phase shift of A®, the other arm experiences a phase shift —A®
of the same magnitude and opposite sign. This leads to a pure amplitude modulation without
any voltage-dependent phase change. The generated signal is then said to be chirp-free. Apart
from push-pull devices, there are electro-optic modulators in so-called dual-drive or dual-electrode
configuration, which allow individual control of the phase shift in each arm, see Fig.(c). These
devices allow for more complex signals, which might or might not exhibit a chirp.

Devices in push-pull-configuration can be realized by combining the optical waveguides with
coplanar electric transmission lines, see Fig.[3.17] The crystal cut then affects both the modulator
efficiency and the modulator chirp. In general, the advantage of a z-cut LiNbO3 modulator is the
high field density which results from the close distance between electrical and optical waveguide.
Thus the operation voltages are rather small in comparison to those of z-cut devices. However,
the z-cut modulator features an asymmetric structure: The center eletrode (“hot electrode”) is
placed on top of one waveguide, for which the modulating field is more concentrated, resulting
in an improvement of the overlap between the modulating radio-frequency (RF) and and the
optical field, and hence in a higher modulation efficiency for this waveguide, Fig.[3.17|(a). At
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Figure 3.16: Lithium niobate (LiNbO3) phase and amplitude modulators. (a) Pure phase modu-
lator, consisting of a straight waveguide and two electrodes parallel to the waveguide. The signal at
the output of the waveguide experiences a voltage-dependent phase shit. (b) Mach-Zehnder mod-
ulator in push-pull configuration: The modulating electric fields in the two interferometer arms
are antiparallel, and hence they are modulated antisymmetrically, i.e., while one arm experiences
a phase shift of AP, the other arm experiences a phase shift —A® of the same magnitude and
opposite sign. This leads to a pure amplitude modulation without any voltage-dependent phase
change and hence generates a so-called chirp-free signal. (c) Dual-drive Mach-Zehnder modulator:
Each arm comprises an individual transmission line, allowing for which allow individual control of
the phase shift by two independent signals (Sig. 1, Sig. 2). (Figures adapted from [30])

the same time, the overlap between the modulating field and the optical mode at the ground
electrode is reduced. The different overlap between the two waveguides for the z-cut structure
results in a nonzero chirp, whereas the x-cut has almost zero chirp due to its symmetric structure,
Fig. (b). The asymmetry of z-cut push-pull modulators can be overcome by using dual-drive
electrode configurations, see Fig.(a): For this geometry, the modulating RF field shows very
good overlap with the optical mode field, which leads to a small m-voltage of the device. To achieve
push-pull-operation in this device, two two RF-signals of identical amplitude but opposite sign are
needed. Even though the z-cut device is slightly more complex that the push-pull modulator in
z-cut geometry, Fig. [3.18|(b), the better field overlap leads to operation voltages that lower than
those of z-cut devices.

Modulation voltages can be decreased by using large interaction lengths in the centimeter
range. For high-speed devices, it is then important to ensure that the optical wave and the
modulating RF field co-propagate with the same velocity, resulting in so-called travelling-wave
devices. Generally the effective refractive index of RF mode is bigger than that of the optical
signal due to the large dielectric constant of lithium niobate at microwave frequencies. This can
be overcome by, e.g., using thick coplanar electrodes along with a silicon dioxide buffer layer that
separates the electrodes from the lithium niobate substrate, see [3I] and the references therein for
more details.

3.3 Phase matching for second-order nonlinear processes
In Section we have used the slowly varying envelope approximation (SVEA) to describe

the evolution of weakly time- and space-dependent complex field amplitudes during propagation
through a nonlinear medium, Eq. (1.99). We found that, depending on the relative phase between

67



(a) Hot Electrode Ground electrode

Buffer Layer

—
—
—

(s1xe-d) sixy
sydean) [eysia)

Pylo axis
Cross section of Z-Cut Modulator(Chirped type)

(b) Hot Electrode Ground electrode

Crystal Graphic ‘

i .
L +— O O
I35 m— Vaveguide

Pylo axis

Cross section of X-Cut Modulator(Chirp free type)

Figure 3.17: Lithium niobate (LiNbO3) Mach-Zehnder modulators in push-pull configuration. (a)
z-cut geometry: Electrodes are placed right above the optical waveguides such that the modulating
field is oriented normal to the wafer surface within the waveguide core. For the center electrode
(“hot electrode”), the electric field is concetrated to the optical waveguide, which leads to a strong
overlap between the optical field and the RF field and hence to high modulation efficiency. For the
ground electrodes, the overlap with the optical field is reduced. This leads to a lower modulation
efficiency in the right-hand arm of the modulator and hence to asymmetric modulation. As a
consequence, the output signal is not chirp-free. (b) z-cut geometry: Optical waveguides are
placed in between the electrodes. In comparison with the z-cut geometry, this leads to a slightly
decreased overlap of the modulating electric field and the optical mode, and hence to a smaller
efficiency. However, since the efficiency is decreased in both arms simultaneously, modulation
shows the same amplitude but opposite sign in both arms, thereby leading to perfect push-pull
operation and hence unchirped output signals (Figures adapted from[30])
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Figure 3.18: Two more examples of lithium niobate (LiNbO3) Mach-Zehnder modulators. (a)
Dual-drive modulator in z-cut geometry: The modulating radio-frequency (RF) field shows very
good overlap with the optical mode field, which leads to a small 7-voltage of the device. For push-
pull-operation, two RF-signals of identical amplitude but opposite sign are needed. (b) Push-pull
modulator in z-cut geometry: Due to the symmetry of the device, perfect antisymmetric push-
pull operation is achieved with a single RF signal. However, the overlap between the modulation
RF field and the optical mode is reduced in comparison with the z-cut geometry, which leads to
operation voltages that are approximately 20% higher than those of z-cut devices.

the nonlinear polarization Py (z,t,w;) and the electric field E(z,t,w;), the signal experiences
amplification, absorption or a phase shift. Proper phase matching is therefore of prime importance
for efficient nonlinear interaction. In this section, we will investigate the impact of phase mismatch
for the case of sum frequency generation (SFG) and second harmonic generation (SHG). Based
on these investigations, we introduce different techniques to achieve phase matching - either by
exploiting birefringence, or by so-called quasi-phase-matching techniques. In the following, we will
use the retarded time frame (2/,#') introduced by Egs. - ([1.98), but omit the primes for the
sake of readability.

3.3.1 Impact of phase mismatch on sum-frequency and second-harmonic
generation

To understand the impact of phase mismatch on the nonlinear conversion efficiency, let us first
consider the case of sum frequency generation. We assume two plane waves, oscillating at fre-
quencies wy and wy, with wave vectors parallel to the z-direction, and consider the evolution of
the sum-frequency component E (z,¢,w3) along z. The waves do not necessarily need to have the
same polarization, i.e., the slowly varying complex amplitude vectors E (z,t,w;) and E (z,t,ws)
are in general not parallel. In analogy to Egs. and , we can describe the evolution of
E (z,t,ws) by

0E, (z,t,w3)
0z

=—j 20:(:;3) ;X@) (w3 : w1, we) B, (2,t,w1) E, (2,t,ws) e~ iAkz (3.47)

q:7,s

where ¢,r, s € {z,y, z} and where
Ak = ki + ko — k3 (348)

denotes the wave vector mismatch.
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Effective value d.g of the nonlinear susceptibility

For a fixed geometry, i.e., for fixed propagation and polarization directions, we can express the
complex amplitude vectors E (z,t, w;) by

E(z7t7wi) :E(Zatvwi)ei; (349)

where e; is the unit vector pointing into direction in which the wave oscillating at frequency w; is
polarized. It is then possible to express the nonlinear polarization by means of a scalar relationship,

OE (z,t,ws) . w3

0z ~ (ws3)
where, e; , denotes the g-th component of the unit vector e;, and where, similarly to Eq. (2.55)),

deffE (Zatvwl)E(Z7tvw2) e—jAk)Z’ (350)

1
deﬁ = 5 Z eg’qxe) (W3 : oJl,WQ) €1 r€2 (351)

q:7,s
q,7,8

denotes the effective value of the dielectric tensor. Following the same procedure, we can derive
equations for the wave amplitudes at wy and wo,

OF (z,t,w1) . Wi i Ak

— = —j————dgF (2, E* (2t JANZ 3.52
32 JC’ﬂ (CU1) eff L4 (Z; 7w3)i (Za ,WQ)G 3 ( )

OFE (z,t,ws) . wa jAk

— = = j——degFE (2,t E* (2t JENE 3.53
Ep JCTL (CUQ) eff & (Za 7W3)7 (Za 7w1) € ( )

Here we have assumed lossless media with full permutation symmetry, which results in the same
value of deg in each of the three equations.

Phase-matching considerations

To understand the impact of phase mismatch, let us assume that we have two strong waves at
frequencies wy and wy at z = 0, whereas E (z = 0,t,ws) = 0. If we consider nonlinear interaction
over small length scales only, we can assume that power conversion from the input fields E (z, ¢, w1)
and FE (z,t,ws) to the sum-frequency field E (z,t,w3) is small, such that the input fields can be
assumed to be constant, and the right-hand side of Eq. can be readily integrated. In the
literature, this assumption is also referred to as the “undepleted pump approximation”, since the
conversion of energy from the input (“pump”) waves to the sum frequency is neglected.

Let us first consider the case of perfect phase matching where Ak = 0. The amplitude
E (z,t,ws) of the sum-frequency field increases linearly with interaction length L, and its intensity
increases quadratically,

w3
en (ws3)

Conversely, when Ak # 0, we find that converted power oscillates with interaction length,

E (L, t,ws)| pp—o = =i detE (0,t,w1) E (0,t,ws) L. (3.54)

. w3 2 . AkL i AKL
E (L, t,ws)| a0 = *deeffﬂ (0,t,w1) E(0,t,w2) ap S (2 el (3.55)
For the case of second harmonic generation (SHG), wi = ws, the evolution of the intensity

I(z,t,2w1) = |E (2,t,2w)|* / (2Z0) along z is illustrated in Fig.[3.19|(a). Comparing the two
cases with and without phase mismatch, we find a considerable decrease of the power conversion
efficiency for AkL > 1,

.2 L
E(Latvw?))uk;éo ? sin (cho )

E (La t7 w3)|Ak:0

(3.56)

70



(@

Ak=27z/3mm™"

4 %1-----

I
|
|
]
T
L

Figure 3.19: Phase matching and conversion efficiency for the case of second-harmonic generation
(SHG). (a) Intensity I (z,t,2w) at second harmonic for the case of phase matching (Ak = 0) and
for different degrees of phase mismach, (Ak#£0). For phase mismatch, power oscillates back an
forth between the fundamental and the second harmonic. For increasing values of Ak, both the
oscillation period decrease and the maximum converted power decrease. (b) Decrease of power
conversion efficiency for a given interaction length (crystal thickness) L for different values of Ak.
For maximum conversion efficiency, it is important to ensure AkL < 1.

where Lo, denotes the so-called coherent build-up length

™

- (3.57)

Lcoh =

Careful phase matching is therefore of prime importance for efficient nonlinear interaction, see
Fig[3.19|(b).

3.3.2 Phase matching by exploiting birefringence

Phase matching requires that the wave vector mismatch according to Eq. (3.48) vanishes. For sum
frequency generation where ws = wy + wo, this implies

win (w1) +wan (w2) — wsn (w3) =0, (3.58)

where we assumed an isotropic material, where the refractive index does not depend on the po-
larization direction. For the case of second-harmonic generation where wy = wo, this relation can
be simplified to

n(w) =n2w). (3.59)
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Since most materials of practical interest are operated below their resonance frequencies, they
exhibit normal phase velocity dispersionﬂ i.e., a refractive index which increases monotonically
with frequency w. As a consequence, neither Eq. nor Eq. can be fulfilled, unless
combinations of materials with normal and anomalous dispersion would be used.

In practice, another strategy has proven to be viable: The exploitation of birefringence to
achieve phase matching of waves propagating in different polarizations. These waves can either be
polarized and propagate along one of the principal axes of the index ellipsoid and hence behave
just like a plane wave in a bulk medium, or they can propagate under a certain angle with respect
to principal axes and hence exhibit a walk-off between the wave vector and the Poynting vector,
see Section ((3.1.3)).

In the following sections, we will discuss different strategies of phase matching for the case of
second-harmonic generation and sum-frequency generation. We assume normal dispersion for all
materials. The derived phase matching strategies can be readily applied to other cases such as
difference-frequency generation.

Type-1 phase matching

For so-called Type-1 phase matching, the lower-frequency components have the same polarization.
Let us first consider the case of second-harmonic generation, where we have to fulfill the relation

n (2wi) =n(wr). (3.60)

In the simplest case, let us assume that all waves are polarized along the principal axes of the
index ellipsoid. For normal dispersion, the refractive index increases with frequency. Hence, for
the case of a negative-uniaxial crystal where n. (w) < n, (w), we choose the ordinary polarization
for the fundamental, and the extraordinary polarization for the second harmonic,

ne (2w1) = n, (wW1) [o0 — €], (3.61)

where [oo — €] represents a short-form notation expressing the fact that two photons at the or-
dinary polarization (00) interact to generate a photon at the extraordinary (e) polarization. The
corresponding dispersion diagrams are illustrated in Fig.[3:20] Conversely, when dealing with
a positive-uniaxial crystal, the fundamental propagates as an extraordinary mode, whereas the
second harmonic has ordinary polarization

No (2w1) = ne (w1) [ee — o], (3.62)

see Fig.|3.21]
These concepts can be directly transferred to the case of sum-frequency generation, where the
relations

w3ne (W3) = win, (w1) + wan, (w2) negative-uniaxial, [oo — €] (3.63)

w3n, (w3) = wine (W1) + wane (wo) positive-uniaxial, [ee — o] (3.64)

have to be fulfilled.

Configurations where all waves are polarized along the principal axes of the index ellipsoid are
also referred to as noncritical phase matching, whereas critical phase matching denotes the case
where the waves propagate under a certain angle with respect to the principal axes. For noncritical
phase matching, all waves propagate through the material as normal modes, see Fig.|3.20|(b) and
Fig.[3.21](b). Noncritical phase matching can be obtained for one specific frequency only. To
achieve phase matching for other frequencies as well, we need to tune the wave vectors. Two ways
of tuning are commonly used: Temperature tuning and angle tuning. These techniques shall be
discussed in more detail in the following sections.

INote that in optical communications, the term “dispersion” usually refers to group velocity dispersion, i.e., the
wavelength-dependent group refractive index. In contrast to that, here we must consider phase mismatch and hence
phase velocity dispersion. In the remainder of these lecture notes, we will omit the term “phase velocity” and just
talk about “dispersion” unless otherwise noted.

72



»

(a) (b)

n( (1))

10} 20

Figure 3.20: Type-1 phase matching in a negative-uniaxial crystal (n. (w) < m, (w)) exhibiting
normal phase velocity dispersion (dn.,/dw > 0). (a) Frequency dependence of the refractive
indices and phase matching concept: Phase matching is achieved by choosing the ordinary polar-
ization for the fundamental, and the extraordinary polarization for the second harmonic ([oo — €])
such that ne (2w;) = n, (w1). (b) Both the fundamental and the second harmonic waves represent
normal modes of the material, i.e., they are polarized along one main axis of the index ellipsoid
and propagate along another main axis. This case is also referred to as noncritical phase matching.

(Figure adapted from [29, 26])
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Figure 3.21: Type-1 phase matching in a positive-uniaxial crystal (n. (w) > n, (w)) exhibiting
normal phase velocity dispersion (dne,/dw > 0). (a) Frequency dependence of the refractive
indices and phase matching concept: Phase matching is achieved by choosing the extraordinary
polarization for the fundamental, and the ordinary polarization for the second harmonic ([ee — 0])
such that n, (2w1) = ne (w1). (b) As in Fig.[3.20] both the fundamental and the second harmonic
waves represent normal modes of the material, i.e., they are polarized along one main axis of
the index ellipsoid and propagate along another main axis (noncritical phase matching). (Figure

adapted from [29] [26])
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Temperature tuning

Temperature tuning exploits the fact that for some crystals, the amount of birefringence is strongly
temperature-dependent. Phase-matching can hence be achieved by varying the temperature of the
crystal. Lithium niobate, for example, exhibits a strong temperature dependence of the birefrin-
gence. In contrast to angle tuning, temperature tuning does not have the disadvantage of intro-
ducing a walk-off between the Poynting vector and the wave vector of the extraordinary waves,
see next section for a more detailed discussion.

Angle tuning

Angle tuning is based on precise adjustment of the propagation direction of the involved rays with
respect to the principal axes of the crystal. As an example, let us consider Type-1 phase matching
for second-harmonic generation in a negative-uniaxial crystal, see Fig.[3:22] In this configuration,
the direction of propagation is defined by the angle © between the k-vector and the optical axis
of the crystal. The fundamental wave propagates as an ordinary mode under the influence of a re-
fractive index n, (w1 ), whereas the second harmonic experiences an angle-dependent extraordinary
refractive indexﬂ ne (2wy, ). To achieve phase matching, the propagation direction © is chosen
such that both waves experience the same refractive index, ne (2wi,©,) = n, (w1). Similarly,
for positive uniaxial crystals, the fundamental wave propagates as an extraordinary mode under
the influence of the angle-dependent extraordinary refractive index n. (w1, ©), and the second
harmonic propagates as an ordinary mode under the influence of a refractive index n, (wy), see
Fig.[3:22] The angle © is again chosen such that both waves experience the same refractive index.

For a quantitative analysis, let us consider the case of a negative uniaxial material. The index
ellipse can be constructed from the intersection of the plane normal to the wave vector k as
illustrated in Fig.|3.23|(b) for a positive uniaxial crystal. For the second harmonic in a negative
uniaxial crystal, the long half-axis of the index ellipse corresponds to the ordinary refractive index
N, (2w1) and the short half-axis corresponds to the extrarodinary index n. (2w;). In analogy to
the derivation of Eq. (3.18), we can derive a relation for the propagation direction 6,

tan @, = —
anp ne (2wy)

ne (2w1) \/né (2wy) — n2 (wl). (3.65)
o

Adjusting phase matching by angle tuning is also referred to as critical phase matching. The
attribute “critical” comes from the fact that this technique is very sensitive to misalignment of
the beams, i.e., there is only a finite range of beam angles where critical phase matching works,
and this range is much smaller than for the case of noncritical phase matching, where all waves
propagate as normal modes of the anisotropic crystal, and where, in a first-order approximation,
the propagation constant is independent of the propagation direction. The range of possible beam
directions is quantified by the so-called acceptance angle, also called angular phase-matching
bandwidth. More information on acceptance angles for different configurations can be found in
[13].

One drawback of angle tuning is the fact that the Poynting vector and the wave vector are not
parallel for the extraordinary ray, whenever the angle © has a value other than 0° or 90°. As a
consequence, ordinary and extraordinary rays with parallel wave vectors diverge from each other
as they propagate through the crystal, see Fig.[3.24] For critical phase matching in a negative
uniaxial crystal, the walk-off angle at the second harmonic is obtained in analogy to Eq. ,

n2 (2w;) cos? (B,) + n? (2w;) sin® (6,) '
\/n‘é (2w1) cos? (O,) + nd (2w:) sin® (6,,)

cos (p) = (3.66)

2Note that the extraordinary refractive index of the crystal is n. (w), whereas n./ (w, ®) refers to the index
seen by an extraordinary mode that propagates under an angle @ with respect to the z-direction, i.e., ne (w) =
nes (w,® =90°). Often, the prime in the subscript of the angle-dependent refractive index ngs (w,® = 90°) is
omitted and the quantity is simply referred to as the “angle-dependent extraordinary refractive index”.
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Figure 3.22: Type-1 phase matching and angle tuning in a negative-uniaxial crystal (n. (w) <
N, (w)) exhibiting normal phase velocity dispersion (dn. ,/dw > 0). (a) Frequency dependence of
the refractive indices and phase matching concept: Phase matching is achieved by adjusting the
propagation angle © with respect to the crystal axis such that the angle-dependent extraordinary
refractive index n.s (2w, ©,) for the second harmonic is equal to the angle-independent ordinary
index n, (w1) for the fundamental (oo — e]). (b) The direction of propagation and the angle-
dependent extraordinary refractive index n. (2w, ©) are defined by the angle © between the
k-vector and the optical axis of the crystal. The fundamental wave (illustrated in red) propagates
as an ordinary mode under influence of a refractive index n, (w1), whereas the second harmonic
(illustrated in blue) experiences an angle-dependent extraordinary refractive index nes (2wy, ©).
The technique is referred to as “critical phase matching” since the conversion efficiency is more
sensitive to angular misalignment of the beams than for the case where all waves propagate as
normal modes of the anisotropic crystal. (Figure adapted from [29, [26])

For optical beams with finite diameter, this walk-off limits the spatial overlap and decreases the
efficiency of nonlinear interaction.

Note that angle tuning can be extended to the case of sum-frequency generation, ws = wy +ws,
where the relations

w3ne (W3, Op) = win, (w1) + wane (wW2) negative-uniaxial, [oo — e] (3.67)

w3, (w3) = wine (w1, Op) + wane (W2, Op) positive-uniaxial, [ee — 0] (3.68)

have to be fulfilled.

Type-2 phase matching

In some cases, the propagation angle ©,, and hence the walk-off can be reduced by using a different
method for phase matching: In so-called Type-2 phase matching, the two waves of lower frequency
components propagate with orthogonal polarizations with respect to each other. This means, that
for sum-frequency generation in an uniaxial crystal, one fundamental mode features ordinary
and the other extraordinary polarization. For second-harmonic generation, we have to fulfill the
relations

Ne (2w1,0p) = = (No (w1) + e (w1, Op)) negative-uniaxial, [oe — €] (3.69)

)_‘N)M—l

n, (2wy) = 3 (o (w1) + ne (w1, 6p)) positive-uniaxial, [oe — 0] (3.70)

The corresponding dispersion diagrams are illustrated in Fig.[3.25] Type-II phase matching is
used when the birefringence is relatively strong compared to the phase velocity mismatch, hence
overcompensating the dispersion in a type-I scheme.
The concept can be generalized to the case of sum-frequency generation, where the relations
w3Ne (W3, Op) = win, (W1) + wane (W2, Op) negative-uniaxial, [oe — €] (3.71)

w3, (W3) = wine (W1) + wane (w2, ©,) positive-uniaxial, [oe — o]. (3.72)
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Figure 3.23: Type-1 phase matching and angle tuning in a positive-uniaxial crystal (n. (w) >
N, (w)) exhibiting normal phase velocity dispersion (dn.,/dw > 0). (a) Frequency dependence
of the refractive indices and phase matching concept: Phase matching is achieved by adjusting
the propagation angle © with respect to the crystal axis such that angle-dependent extraordinary
refractive index nes (w1, ©,) for the fundamental is equal to the angle-independent ordinary polar-
ization for the second harmonic ([ee — 0]). (b) The direction of propagation is defined by the angle
© between the k-vector and the optical axis of the crystal. The fundamental wave (illustrated
in red) propagates as an ordinary mode under influence of a refractive index n, (w1), whereas
the second harmonic (illustrated in blue) experiences an angle-dependent extraordinary refractive
index ne (2w, ©). The technique is referred to as “critical phase matching” since the conversion
efficiency is more sensitive to angular misalignment of the beams than for the case where all waves
propagate as normal modes of the anisotropic crystal. (Figure adapted from [29, [26])

Figure 3.24: Walk-off between ordinary and extraordinary ray for the case of angle tuning. For the
extraordinary wave, the Poynting vector and the wave vector are not parallel. As a consequence,
there is a divergence p between the ordinary and extraordinary ray even though the wave vectors
are parallel. This limits the spatial overlap of the beams and decreases the efficiency of nonlinear
interaction. (Figure adapted from [26])
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Figure 3.25: Concept of type-2 phase matching for second-harmonic generation. (a) Negative-
uniaxial crystal ([oe — e]): The fundamental is launched in both ordinary and extraordinary po-
larization, experiencing the refractive indices n, (w1) and n, (w1, ©), respectively. The second har-
monic propagates in extraordinary polarization and experiences the refractive index n. (2w1, ©,),
which must correspond to the mean of the indices at the fundamental, Eq.[3.69} (b) Positive-
uniaxial crystal (Joe — o]): The fundamental is again launched in both ordinary and extraordinary
polarization, experiencing the refractive indices n, (w1) and n. (w1, @), respectively. The second
harmonic now propagates in ordinary polarization and experiences the refractive index n, (2wy),
which must correspond to the mean of the indices at the fundamental, Eq. (Figure adapted

from [29])

have to be fulfilled.

3.3.3 Quasi-phase-matching (QPM)
Principle of quasi-phase matching

In the last section, we have discussed techniques to exploit the birefringence of an optical material
for achieving phase-matching. However, there are circumstances under which these techniques
can not be applied: Some second-order nonlinear materials do not exhibit birefringence. Gal-
lium arsenide, e.g., is noncentrosymmetric, but possesses a cubic lattice, and birefringence hence
vanishes. Similarly, at high frequencies that approach a resonance of the medium, the refractive
index tends to increase rapidly with frequency whereas the birefringence tends to be nearly con-
stant, see Fig.[3:26] This makes type-1 and type-2 phase matching impossible. Moreover, we also
might want to exploit the dss coefficient of the nonlinear tensor, which is particularly strong in
some materials. This, however, requires a set of waves that are polarized in the same direction.
Birefringence cannot be used to compensate for dispersion in this case.

In these cases, we may use quasi-phase-matching, which relies on a position-dependent periodic
nonlinearity. To understand the concept of quasi-phase-matching (QPM), let us consider the
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Figure 3.26: When approaching an electronic resonance at high frequencies, the refractive index
of a medium increases strongly. For a given birefringence, it is then not any more possible to
achieve phase matching over large frequency ranges as would be required for, e.g., SHG or SFG.
In this case, quasi phase matching can be exploited to increase nonlinear interaction.

differential equation that governs sum-frequency generation,

w =—j Cn“;ig)deﬁﬁ (z,t,w1) E (2, t,ws) e 3442, (3.73)
For zero wave vector mismatch, Ak = 0, the converted wave amplitude increases linearly with
z. This effects can be visualized by sketching the phasor elements that are associated with the
contributions AF (z,t,ws3) = %Az from different positions along z, see Fig.(a). A
nonzero wave vector mismatch Ak # 0 leads to a constant phase change of the contribution on
the right-hand side of Eq. (3.73). Hence, when starting with E (0,¢,ws) = 0 at z = 0, we will first
observe build-up of the converted wave, until a phase shift of Akz = 7 is reached. From this point
onwards, newly generated contributions on the right-hand side will interfere destructively with the
existing wave, and power will be converted back from the sum frequency to the fundamental waves.
This leads to a circular trace of the converted wave amplitude in the complex plane, Fig. (b),
and hence to an oscillatory behavior as we have already observed in Section[3.3.1} After complete
depletion of the sum frequency for Akz = 27, the process repeats. The basic idea of quasi-phase-
matching is now to reverse the sign of the nonlinearity, whenever a phase shift of 7 is accumulated,
see Fig.|3.27|(c). This requires a material, for which the orientation of the susceptibility tensor is
switched after regular intervals of 7/Ak, see Fig.[3.27)(d).

The z-dependent evolution of the intensity I (z,t,ws) = |E (z,t,ws3)|* of the converted wave
is sketched in Fig.[3.28 For phase matching, Ak = 0, the wave amplitude increases linearly and
the intensity increases quadratically with z, and phase mismatch leads to a periodic sin? (Akz/2)-
oscillation. For quasi-phase-matching, we observe a wave-like, but steady increase of I (z,t,ws)
with z.

Mathematical analysis of quasi-phase matching

For a mathematical analysis of quasi-phase-matching, let us start from Eq. (3.73) and introduce a
periodic effective second-order nonlinearity deg (2 + A) = degr (2). We expand deg (2) in a Fourier
series,

det (2) = Y dpe™ 5, (3.74)
m
where d,,, are the Fourier coefficients. This transforms Eq. (3.73) into
OF (z,t,ws) . w3 i Ak 2
oz&mtws) A (2,t,01) E (2,t J(Ak—m )z 3.75
2 Jcn(wg) %: E(z,t,w1) E(z,t,wa)e ) ( )
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Figure 3.27: The principles of quasi-phase-matching. (a) For the case of phase matching, Ak = 0,

and the contributions AF (z,t,w3) = %

;""3) Az to the converted wave amplitude F (z,¢,ws) do
not change phase along z. In the complex plane, this leads to a continuous build-up of the
converted wave amplitude. Re and Im denote the directions associated with the real and the
imaginary part of the complex plane in the respective sketch. Note that, due to the forefactor
—j in Eq. (3.73), the converted amplitude E (z,t,ws) features a phase shift of —7 relative to the
product E (z,t,w;) E (2,t,ws), which is associated negative imaginary part (horizontal direction
in this plot). (b) For nonzero phase mismatch, Ak # 0, the contributions AFE (z,t,ws) to the
converted wave amplitude E (z,t, ws3) decrease linearly in phase along z. In the complex plane,
this leads to circular trace and hence to an oscillation of the complex wave amplitude, i.e., power
is continuously converted back and forth between the fundamental and the converted wave. (c) In
the case of quasi-phase-matching, the sign of the nonlinearity is reversed whenever a phase shift
of 7 is accumulated. (d) Quasi-phase-matching requires a material for which the orientation of
the susceptibility tensor is switched after regular intervals of 7/Ak. (Figures adapted from [26])
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Figure 3.28: Evolution of the intensity I (z,¢,ws) = |E (2,t,ws)|* of the converted wave along z.
(a) For phase matching, Ak = 0, the wave amplitude increases linearly and the intensity increases
quadratically with z, whereas, for the case of phase mismatch, a periodic sin® (Akz/2)-oscillation
is observed. (b) For quasi-phase-matching (QPM), the sign of the optical nonlinearity is reversed
after Leon = 4% This leads to a wave-like steady increase of I (z,t,ws) with z.
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Figure 3.29: Fabrication of periodically poled lithium niobate. An intense electric field (approx.
22kV/mm) can invert the crystal structure and, as a result, flip the orientation of the electric
dipole moment and of the second-order nonlinear susceptibility tensor. To this end, a periodic
electrode structure is temporarily deposited on the front side of the lithium niobate wafer to apply
the poling field. (Figure adapted from [2])

Quasi-phase-matching can be achieved through an interaction with the m-th order Fourier
coefficient of the periodic nonlinearity, for which Ak — m%’r = 0. Since the Fourier coefficients
tend to decrease with increasing order m, it is most desirable to achieve quasi-phase-matching
through a first-order (m = 1) interaction. The period of the quasi-phase-matching grating is then

given by

21
AN=— 3.76
s (3.76)
which is consistent with the idea of reversing the sign of the second-order nonlinearity after dis-
tances of fr = %

Technology and applications of quasi-phase-matching

Technologically, quasi-phase matching can be realized by, e.g., lithographical definition of periodic
electrodes which are used to apply a strong periodic electric field that inscribes the direction of
the crystal’s permanent electric polarization, a technique called poling. This approach has been
applied to ferroelectric crystals such as LiTaO3z, KTP, and LiNbOs.

The fabrication of periodically poled lithium niobate (PPLN) is illustrated in Fig.[3.29] Lithium
Niobate is a ferroelectric crystal, i.e., each unit cell in the crystal has a small electric dipole
moment, the orientation of which is dependent on the positions of the niobium and lithium atoms
in the unit cell. An intense electric field can invert the crystal structure and, as a result, flip the
orientation of the electric dipole moment and of the second-order nonlinear susceptibility tensor.
The electric field needed to invert the crystal is very large (approx. 22kV/mm) and is applied for
a few milliseconds only. The inverted sections of the crystal are then permanently imprinted into
the crystal structure. To produce PPLN, a periodic electrode structure is deposited on the front
side of the lithium niobate wafer, whereas the back side is completely covered with a large-area
electrode, see Fig.[3:29] A voltage is then applied to invert the crystal underneath the electrodes.
To create the poled regions with the desired shape and to produce a short periodicity, the design of
the electrodes and the exact control of the applied voltage are very important. PPLN waveguides
are used for sum- and difference-frequency generation, and allow, e.g., generation of entangled
photon pairs by frequency downconversion.

3.4 Difference-frequency generation and parametric amplifi-
cation
In the last section, we have discussed frequency upconversion by sum-frequency generation along

with techniques associated to achieve phase matching for these processes. These phase match-
ing techniques can be readily transferred to the complementary processes of difference-frequency
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generation. Difference-frequency generation leads to simultaneous annihilation of a high-energy
photon and creation of two low-energy photons. This process can be stimulated by the presence
of at least one low-energy photon and can hence be used for so-called parametric amplification of
optical signals. In this section, we will investigate difference frequency generation and parametric
amplification in more detail.

3.4.1 The Manley-Rowe relations

We will start by investigating the power transfer between three waves oscillating at frequencies
w1y, wo, and w3 = wy + we. The interaction between the respective wave amplitudes is given by

Bas. (550), (52, and

OF (z,t,ws) . w3 —jAk

=\ el deaE (2.t E(z,t janz 3.77
82] .]cn (CLJg) eff & (Za 7w1)i(z7 ,UJQ) € bl ( )

OE (z,t,w1) LW j Ak

= i deB (2.t E* (z,t, JarE 3.78
2 JC?’Z (wl) eff L (Za 7w3)i (Za WQ) € ( )

OF (z,t,ws) i Ak

=\ 2] doaFE (2.t E* (2.t JARZ 3.79
82’ JC’ﬂ (w2) eff L. (Z; 7w3)7 (Za ,W]_) € ( )

To understand power transfer between the three waves let us study the evolution of the respective
intensities rather than the wave amplitudes,

1
I(zt,wi) = jeoen (i) |E (=t wi)|” (3.80)

The evolution of the intensities is given by

oI (z,t,w;) OE™ (z,t,w;)

0z = %eocn (wi) (E (2,t,wi) oz + E* (2,t,w;) (9E((Z(),Zt,wl)> ) (3.81)

Inserting Egs. (]m), (]m[), and m, we find
W = —cowsdesr Im { E* (2,6, w1) E* (2, t,w2) E (2, £, ws) ejAkz} (3.82)
W = cowadeg Tm { E* (2,t,w1) B* (2, t,ws) E (2,1, ws) ejAkz} (3.83)
W = eqw1der Im {E* (z,t,w1) E* (2,t,wa) E (2,t,ws) ejAkz} . (3.84)

The sign of 01 (z,t,w1) /0% is the same as for II (z,t,wy) /0z but opposite to OI (z,t,ws) /0z . As

expected for propagation in a lossless medium, we find from Egs. (3.82), (3.83), and (3.84) that
the total intensity does not change along z,

% (I(z,t,w1)+I(z,t,ws)+I(2,t,ws)) =0. (3.85)
Equations (3.82)), (3.83)), and (3.84) further imply the relation

0 (I(zt,w)) _ 0 (I(zt,w) 0 (I(ztws) (3.56)

82’ hwl o (92’ hLUQ o 82 hwg ' '

This equation is known as the so-called Manley-Rowe relation. The quantity I (z,t,w;) /fiw; is
associated with the photon flux density at frequency w;. Equation hence states that gener-
ation of a photon at w; is always accompanied by generation of a photon at ws and annihilation
of a photon at w3 and vice versa. This is graphically illustrated by the energy-level diagrams we
have used earlier, see, e.g., Fig.[1.9|
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It might be surprising that these relations lead to the notion of photons, even though the
derivation appears to be entirely based on classical wave optics. However, a key assumption of our
derivation was that the nonlinear susceptibility tensor features full permutation symmetry and
that we hence have the identical coefficient deg in each of the nonlinear coupled-mode equations

3.77), (3.78), and (3.79). Full permutation symmetry is a consequence of a quantum-mechanical
analysis, see [9] for further details.

3.4.2 Parametric amplification and parametric oscillators

In lossless second-order material, annihilation of a high-frequency photon at frequency w3 always
implies generation of a first photon at some frequency w; and a second photon at frequency
wg = w3 — wy. If proper phase matching Ak = ki + ko — k3 = 0 can be achieved, this mechanism
can be used to amplify a signal at w; by pumping the material with a strong wave at ws. To
analyze this, let us use undepleted-pump approximation, i.e., we assume that the pump signal
E (z,t,ws) is very strong, such that we can neglect depletion by nonlinear interaction and assume
E(z,t,ws) = E(0,t,ws) to be constant along z. Assuming further phase matching, the nonlinear
coupled-wave equations for E (z,¢,wy) and E (z,t,ws) can be written as

OF (z,t,w1) .ow x
=20 — L dewE (0,1, w3) B (2,t 3.87
32’ JCTL (wl) eﬁri< ) 7“3)i (27 ,WQ)7 ( )
OFE (z,t,ws) . wa .
— = = —j——dgE (0, E* (z,t . 3.88
2 JC’I’L (CUQ) eﬁi( ) ,Cdg)i (Z7 awl) ( )
Inserting Eq. (3.88)) in Eq. (3.87)), we obtain a relation for E (z,¢,w;) only,
O%E (z,t,w
% = K’E (z,t,w1), (3.89)
where the coupling coefficient « is given by
2 wiwadgy 2
= —F<—|E(0,¢ . 3.90
k C2n(w1)n(w2) |—( ) 7w3)| ( )
Eq. (3.89) is solved by
E(z,t,w) = E, cosh (kz) + E, sinh (kz), (3.91)

and the corresponding solution for F (z,t,ws) can be derived from Eq. (3.87)

. Jwan (wr) E(0,t,ws)
E (2,t,ws) = —

(E? sinh (kz) + Ej, cosh (k2)) (3.92)

Let us assume that we only launch a signal at frequency w; into the waveguide,
E(0,t,wy) = Ey, E(0,t,ws) =0. (3.93)
The solution for these boundary conditions is then given by

E(z,t,w1) = E, cosh (kz), (3.94)

Bz tiwn) = =iy | 2 Ez;; é Egig'El sinh (12) (3.95)

Both fields experience monotonic growth during propagation along z, and for kz > 1, each of
the two grows as e”?. The signal wave at w; preserves its original phase and is just amplified,
whereas the so-called idler wave at frequency w- is generated with a phase that is given by the
signal and the pump. This process is also referred to as parametric amplification of the signal
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Figure 3.30: (a) Optical parametric amplifier (OPA): A strong wave at frequency ws is launched
into the second-order nonlinear material along with a signal at frequency w;. Phase matching is
established for difference frequency generation wy = w3 — wy. This leads to amplification of the
signal at frequency w; and to creating of a new, so-called idler wave at frequency ws. (b) The OPA
is turned into an optical parametric oscillator (OPO) by placing mirrors with high reflectivities
R; and R» at wy and/or wy at both sides of the nonlinear medium. This leads to optical feedback
and hence to self-sustained oscillation that starts from zero-point fluctuations. (Figures adapted
from [26])

at wy. The evolution of E (z,t,w;) and E (z,t,ws) along z is depicted in Fig. (a). The
optical parametric amplifier (OPA) can be turned into an optical parametric oscillator (OPO) by
introducing a feedback mechanism, i.e., by placing mirrors with high reflectivities at w; and/or
wo at both sides of the nonlinear medium to form an optical resonator, see Fig.[3.30|(b). The
OPO starts from zero-point fluctuations; the oscillation frequencies w; and ws are defined by the
phase matching conditions. OPO are often used as broadband tunable sources for frequencies that
cannot be accessed by lasers.
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Chapter 4

Acousto-optics and photon-phonon
interactions

Acousto-optics is a branch of optics that studies the interactions of sound waves and light waves
such as, e.g., lead to diffraction of laser light by ultrasound waves. Photon-phonon interactions
can occur in both directions: The presence of phonons can influence the propagation of photons,
while, at the same time, phonons can be stimulated by interaction of photons with matter. This
may eventually lead to phonon-assisted nonlinear interaction of light waves, and we hence consider
photon-phonon interactions as a part of nonlinear optics.

4.1 Elasto-optic effect

If strain is applied to a medium, the density of the material changes locally, and this leads to
variations of the local refractive index. This effect is referred to as the elasto-optic effect. Strain
of a material is related to its deformation, i.e., to the vectorial displacement u = (uy,us,us3) of a
volume element (dz,dy,dz) at a position (z1,z2,23) = (x,y,2). This deformation is quantified
by the so-called strain tensor, a symmetric tensor with elements

_ L (0w, Ow
Ol = 3 (8%1 + al’k> (4.1)

The diagonal elements 011, 022, and o33 denote tensile strain along the z-, y-, and z-direction,
whereas the off-diagonal elements o33 = 093, 013 = 031, and 012 = 091 are related to shear
strain, see Fig.[d1] for a visualization of the displacements associated with the different kinds of
strain. In the presence of strain, the dielectric impermeability tensor 1 changes. To a first-order
approximation, the strain-induced changes An;; of the impermeability tensor elements depend
linearly on the various elements of the strain tensor,

15 (k) = 135 (0) + Zpijklo'kh (4.2)
Kl

where p;;i; denotes the fourth-rank elasto-optic or photo-elastic tensor. Note that both n;; and
oy, are symmetric tensors and that the pairs of indices (i,5) and (k,l) can be contracted to a

single index in analogy to Eq. (3.22),

ij/kl 11 22 33 23,32 13,31 12,21

I/JK 1 2 3 4 5 6 (4.3)
The elasto-optic tensor can the be written as 6 x 6-matrix prx,
Anr = prxok (4.4)
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Figure 4.1:  Ilustration of strain in solid-state medium (U and V correspond to u; and ug,
respectively). (a) Tensile strain (o1; > 0) corresponds to a displacement u; = U that increases
with the corresponding spatial coordinate x1. (b) Shear strain (o2 > 0) is described by a steadily
increasing lateral displacement perpendicular to a coordinate axis. Note that for the case of shear
strain, the lateral displacements u; = U and us = V have different signs. (c) The case where the
lateral displacements u; = U and us = V have different signs corresponds to a simple rotation of
the body and does not lead to strain. (Figures adapted from [I7])

Similarly to the case of the electric susceptibility tensor, crystal symmetry requires that some of
the coefficients pyx vanish and that others are related. Elasto-optic tensors of commonly used
materials are shown in Fig.[f.2 and can, e.g., be found in [17].

4.2 Acousto-optics

The elasto-optic effect describes the change of the refractive index as a consequence of local
mechanical strain. If the strain is generated by an acoustic wave, the interaction is often referred
to as the acousto-optic effect. The refractive index then experiences a spatial modulation which
propagates with the acoustic wave. The period of the modulation is defined by the frequency €2
of the sound wave,

2TV,

A
Q )

(4.5)

where v denotes the speed of sound in the respective material.

4.2.1 Acousto-optic light deflector

A simple example of an acousto-optic modulator is sketched in Fig.(a). The device is based
on y-cut tellurium dioxide (TeO2). This material does not only exhibit elasto-optic properties,
but is also piezoelectric, i.e., the acoustic wave is generated by interdigital electrodes which are
driven by an electrical AC signal. The acoustic wave is launched on the surface of the crystal;
these devices are therefore also called surface acoustic wave (SAW) light deflectors. The incident
light is diffracted by the strain-induced periodic index variation, where the direction of diffraction
depends on the wavelength (frequency) of the acoustic wave. Such a light deflector is called an
acousto-optic light deflector.

For a simple analysis, let us assume that the optical wave and the acoustic wave are launched
in (x,z)-plane. If TeO, is used as a base material for an acousto-optic device, it is advantageous the
exploit the large p13 coefficient of the elasto-optic tensor, see Fig.[£:2] This requires application of
tensile strain along the z-direction (o3 # 0) in combination with an optical wave which is polarized
along the z- or the y-direction. In the absence of any strain, TeOg is an isotropic medium with
refractive index ng for all polarizations. If tensile strain is applied along the z-direction, the
material becomes uniaxial with the optical axis oriented along the z-direction and the refractive
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Name of Chemical Photoelastic Index of Wavelength  Crystal Elastooptic

Substance Symtol Constant Refraction (um) Symmetry Tensor
Fused silica SiO, pn = 0.121 n = 1457 0.63 Isotropic
pi= 10270 (pu p2 p2 0O 0 O
Pu = Pss = Pes pi2opu op2 0O 0 0
=2(Pu=pn) piz P2 pu 0O 0 0
0 0 0 py 0O 0
Water H,0 pu =031 n= 133 0.63 Isotropic 0 0 0 0 pe 0O
P12 = 03l LO 0 0 0 0 peg
Pu= {’« = P
=3(pn-=pn)
Gallium GaAs P = ~0.165 ny=n, =n,=3.42 115 Fam [Pn P2 P2 0 0 0
arsenide p12 = ~0.140 P2 Punop2 0 0 0
pa = 0061 pi2 p2 pu 0O 0 0
, 0 0 0 pu 0O 0
Zine sulfide B-ZnS P = 0.091 ny=n, =n, = 2352 0.63 0 0 0 0 pu O
pz=-001 Lo 0 0 0 0 pu
pas = 0075
Lithium niobate  LiNbO, P = =002 ny=n,=2286 0.63 3m
P2 = 0.08 n, =220
P13 =0.13 (Pn P2 pn ps 00
P = —0.08 P2 Pn Py -puw 0 0
pu=017 pn pPn P 0 0 0
pa =007 P ~pn 0 pu 0 O
pa = ~0.15 0 0 0 0 pu pa
P =0.12 L0 0 0 0 pa pe
Pes = %(I’u = P12)
Lit hium LiTaO, i = —0.08 ne=n,=2176 0.63 I
tantalate p12=~008 n; = 2.180
pu=000
P = 003
Py = 0.09
Py = —0.044
Py = —0.085
pa = 0.02
Pee = %(pn - p12)
Rutile TiO, Py = ~0011 ny=n,=2585 063 2m
P2 = 0172 n, = 2.875
pin = —0.168
pu = —0.096
pan = —0.058
pas = 0.0095 0.51 Pn P2 P 0 0 0
pes = £0.072 0.63 P2 pnoPa 00 0
_ pn opn opn O 0 O
Potassum KH,PO, pu = 0251 ny=n, =151 0.63 2m 0 0 0 pu O 0
dihydrogen P12 = 0249 n, = 147 0 0 0 0 py O
phasphate P13 = 0.246 0 0 0 0 0 pg
(KDP) pu = 0.225
P = 0221
pu=-0019 0.59
Pes = ~0.058 0.63
Ammonium NH4HPOs or i = 0302 nx=ny=152 063 2m
dihydrogen ADP pi2 = 0.246 n; = 148
phosphate pin= 0236
(ADP) Py = 0.195
53 = 0.263 X
z.. = 0,058 059 £iL F 1y 2 g 2
Pee = —0.075 0.59 P2z P Pn
pa Py pn 0 0 0
Tellurium TeO: pu=00014  ny=n,=n, =235 063 Tom 0 0 0 py 0 0
dioxide piz = 0.187 0 0 0 0 py O
pin = 0340 00 0 0 0 pe
pa = 0.090
Py = 0.240
pu=-017
pee = ~0.046

Figure 4.2: Elasto-optic tensors of different materials. Crystal symmetry requires that some of
the coeflicients prx vanish and that others are related. (Table adapted from [I7])
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indices

1
Ny = ny =nNg — 5718]71303, (46)
1
N, =ng — 7”8]?33(73. (47)

2
The index ellipsoid is depicted in Fig.[4.3|(b).

4.2.2 Coupled-wave analysis

In the following, we will analyze the diffraction of light waves at the grating that is produced by
the sound wave in an acousto-optic modulator, Fig. [.3] For TeO,, the elasto-optic tensor element
p13 = 0.340. Since the strain tensor element is much smaller than unity, o3 < 1, we may assume
that the relative refractive index change is also small An, < n,. In the following, we will assume
a wave polarized along the y-direction and omit the subscript y for the sake of readability.

Wave equation

For a basic analysis, let us decompose the time- and space-dependent refractive index change into
a constant background index ng and a weak variation An that is generated by the plane sound
wave,

n(r,t) = ng + An (r,t), (4.8)
An (r,t) = Angcos (2t — qr). (4.9)

Here, 2 denotes the acoustic frequency and q is the wave vector defining the propagating direction
of the acoustic wave,

Q
lal = —, (4.10)

Vs
where v, is the phase velocity of the sound wave within the medium. To derive the wave equation
for the acousto-optic interaction, we first use Eqs. (4.8)) and (4.9) to write the electric displacement
as

D(r,t) ~ € (ngE(r, t) + 2no An (r,t) E(r,t)) . (4.11)

Inserting this relation into Maxwell’s equations and and following a derivation similar
to that of Eq. , we obtain the wave equation for acousto-optic interaction,

V2E(r, 1) — %gLE(r’t) _ I F (An () B, Y) (4.12)

c ot? c? ot?

The left-hand side of Eq. corresponds to the wave equation for a homogeneous medium.
The source term on the right-hand side leads to generation of waves at new frequencies that arise
from temporal modulation of the electric field E(r,¢) with the time-dependent refractive index
perturbation An (r,t) according to Eq. . As a consequence, a solution of Eq. cannot
consist of a single plane wave but has to comprise a superposition of plane waves at different
frequencies.

Slowly-varying envelope approximation (SVEA)

To solve Eq. (4.12)), we use an ansatz that comprises a superposition of several monochromatic
plane waves, oscillating at frequencies wy,

E(r,t) =Y E(r,w)e k), (4.13)
l
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Figure 4.3: Acousto-optic modulator based on y-cut tellurium dioxide (TeOz). (a) Device concept:
The material is piezo-eletric, and a surface acoustic wave can easily be generated by interdigital
electrodes which are driven by an electrical AC signal. The incident light is diffracted by the
strain-induced periodic index variation. Such a light deflector is called an acousto-optic light
deflector or an surface acoustic wave (SAW) light deflector. (b) Analysis: In the absence of any
strain, TeOs is a an isotropic medium with refractive index ng for all polarizations. If tensile strain
is applied along the z-direction, the material becomes uniaxial with the optical axis oriented along
the z-direction. Due to the large value of p15 = pa3, this leads to strong changes in refreactive
index for an optical wave polarized along the y-direction and hence to efficient diffraction in the
backward direction. (Figures adapted from [17])

89



In this relation, the unit vector e; defines the polarization of the plane wave oscillating at frequency
w;. The dominating space dependence of the plane waves is contained in the complex propagator
exp (j (wit — kjr)), whereas the weakly space-dependent scalar amplitudes E(r,w;) account for
coupling of the plane waves by the space-dependent index variation An (r,t). The magnitude of
the wave vector is related to the frequency by |k;| = “*. Note that the time dependence of the
index variation is already covered by the fact that we assume a superposition of various carrier
frequencies w;. An explicit time-dependence of the amplitude E is hence not required.

We insert Eq. into Eq. , use the product rule for the Laplace operator, V2 (¢¥) =
VU +2VP - V¥ + ¥V2®, and make use of the slowly-varying envlope approximation, i.e., the
fact that E(r,w;) varies only weakly with space,

|V2E(r,wl)| < |k; - VE(r,w)| .

This leads to the coupled-wave equation for the space-dependent wave amplitudes E(r,w;),

. j(wit—k;r 2n 62 j(wit—k;r
7 [=2jk - VE(r w)] e ) = ZR N7 o (An(r,8) E(r,wn) e ) (414)
1 l

Let us assume that we launch a single optical wave at frequency wg. Spatio-temporal modulation
of the refractive index profile according to Eq. leads to generation of new frequencies wyq, =
wo £ Q. For simplicity, let us only consider the evolution of the complex amplitude E(r,w;) at
frequency w1,

1 2 -
ki VE(r,w1) = —j; (e1- ) ”—;noAnOE(r,wo)e'ﬂkﬁq*kl)# (4.15)
c
Oscillation of the acoustic wave at frequency €2 hence leads to coupling of the optical waves at
frequency wp and wy; = wg + 2. In this case, the frequency is up-shifted. In other configurations,
the acoustic wave can also lead to a downshift of frequency from wg to w_1 = wg—S2. The efficiency
with which these processes occur is again given by the corresponding phase matching condition

on the right-hand side of Eq. (4.15)).

Phase matching and Bragg condition

Efficient interaction between the waves can only occur if the spatially quickly varying exponential
on the right-hand side of Eq. (4.15) vanishes. For the case of up-shifted frequencies, this leads to
the phase matching condition

ki =ko +q. (4.16)

The corresponding wave vector diagrams are sketched in Fig.d:4] The solution of the phase
matching condition can be simplified by exploiting the fact that the relative change in frequency
Q/wp is much smaller than the relative change of the wavevector
c Q

laf _ @ (4.17)

lko| wvsw
As a consequence we may neglect the change in optical frequency and hence the energy transfer
between the optical and the acoustic wave and assume that the magnitude of the wavenumber
remains unchanged,

ko| = [k, (4.18)
see Fig.[£.4)(a). The deflection angle 20 of the optical wave can then be obtained from

lq] _ A/mo
2 kol 24 7

sin@p = (4.19)
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The quantity @p is also referred to as the Braggﬂ angle: At this angle, incremental optical
reflections from neighboring wavefronts of the acoustic wave experience a relative phase delay
of 27 and hence interfere constructively in the backward direction. This angle is observed for
both frequency upconversion and downconversion - depending on the propagation direction of the
sound wave, see Figs.[f.4](a) and (b).

In many cases of practical interest, the interacting optical and acoustic beams do not have plane
phase fronts, see Fig.[L.5] If a converging optical beam interacts with a plane sound wave, only one
plane-wave component of the optical beam satisfies the Bragg condition, and the diffracted light
hence represents a plane wave, Fig.(a). In contrast to that, for sufficiently large divergence
angles §© of the acoustic beam, every plane-wave component of the converging optical beam finds
an acoustic plane-wave counterpart that satisfies the Bragg condition. The diffracted beam hence
represents a diverging beam, Fig.[.5](b).

Quantum interpretation

In a quantum picture, light of angular frequency w and wavevector k, where |k| = w/¢, is rep-
resented by a stream of photons of energy hw and momentum #fk. Likewise, an acoustic wave
of angular frequency 2 and wavenumber q, where |q| = Q/vs and where v, denotes the speed of
sound in the respective material, can be regarded as a stream of phonons of energy /£ and momen-
tum hq. Acousto-optic effects correspond to interaction of photons with phonons, whereby new
photons with frequency ws and wavevectors kg can be generated, where energy and momentum
conservation require

ws = w + £, (4.20)
k. =k+q. (4.21)

For so-called acoustic phonons, we have (2 <« w, which leads again to the illustrations sketched in
Fig.[A4l Further insight into interactions of photons with different kinds of phonons will be given
in Section[4.3l

4.2.3 Acousto-optic devices

Acousto-optic effects are used in various applications, a few of which will be discussed in the
following.

Acousto-optic modulators If the sound wave is sufficiently weak, the intensity of the refracted
light is poportional to the intensity of the acoustic wave. The device can then be used
as an analogue modulator that translates the envelope of the sound wave to the envelope
of the optical wave, see Fig.|4.6/(a). At high acoustic intensities, however, the light beam
is completely reflected, and the intensity of the optical wave is not any more proportional
to that of the sound wave. The device can then be used as a optical switch, which turns
the reflected light on and off by switching the sound wave on and off, Fig.(b). For a
broadband acoustic modulation signal, each frequency component of the sound wave must
find a suitable optical plane wave component that has a suitable propagation direction to
fulfill the Bragg condition. The acousto-optic modulation bandwidth is therefore connected
to the angular divergence of the optical beam, see, e.g., [26] for more details.

Beam scanners Acousto-optic scanners rely on the relation between the angle 205 of deflection
and the sound frequency 2, see Eq. (4.19). For small deflection angles, we can approximate
this relationship by

= ——. 4.22
205 =g (4.22)

IBragg observed similar effects when sending coherent X-ray beams through a crystalline solid: For suitable
combinations of propagation direction, lattice constant, and frequency, the scattered waves interfere constructively
and form ring- and point-like diffraction patterns.
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Figure 4.4: Diffraction of beams in acousto-optic modulators. Momentum conservation requires
k; = ko + q, whereas for interaction with acounstic phonons we may assume that ) < w and
hence |ko| ~ |ki|. (a) Upconversion of the optical frequency: The optical beam is diffracted by
a counter-propagating optical beam, which leads to an increased frequency w; = w + €. of the
diffracted light by the Doppler effect. The vector wave equation k; = ko + q is equivalent to the
Bragg condition sin©p = |q| /(2 |ko|) . (b) Downconversion of the optical frequency: The optical
beam is diffracted from a co-propagating optical beam, which leads to a decreased frequency of
the diffracted light, w; = w — Q. Again, the vector wave equation k; = kg + q is equivalent to
the Bragg condition sin©@p = |q| / (2|ko|) . (c) A standing acosutic wave leads to a diffraction of
the optical wave in two directions. Both outgoing optical waves contain an up-shifted frequency
component w + Q and a down-shifted frequency component w — Q. (Figures adapted from [26])
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Figure 4.5: Interaction of optical and acoustic beams that do not have plane phase fronts. (a) If
a converging optical beam interacts with a plane sound wave, only one plane-wave component of
the optical beam satisfies the Bragg condition. The diffracted light hence represents a plane wave.
(b) For sufficiently large divergence angles d© of the acoustic beam, every plane-wave component

of the optical beam finds an acoustic plane-wave counterpart that satisfies the Bragg condition.
(Figures adapted from [26])
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Figure 4.6: Acousto-optic modulators. (a) Analogue modulator: For weak acoustic waves, the
intensity of the refracted light is proportional to the intensity of the acoustic wave. (b) Acousto-
optic switch: At high acoustic intensities, the light beam is completely reflected. The reflected
beam can be turned on and off by switching the sound wave on and off. (Figures adapted from

[26])

Hence, by changing the modulation frequency, the beam can be scanned in the lateral di-
rection. Phase matching can be maintained by varying both the angle of incidence and the
acoustic frequency simultaneously. This can be accomplished by using, e.g., a phased ar-
ray of acoustic transducers which are driven with a phase delay as to generate the required
phase shift, see Fig.@(a). Alternatively, a diverging sound beam can be used rather than
a plane sound wave such that the incoming light wave always finds an acoustic plane-wave
component with the matching propagation direction, see Fig.(b).

Space switches Acousto-optic beam scanners can also be used to realize space switches, see
Fig.(a). By using acoustic drive signals that comprise various frequency components,
it is possible to split the incident optical beam to various different directions, where the
intensity coupled to a certain direction is proportional to the power of the respective sound-

frequency component, Fig.[4.§|(b).

Frequency shifters In an acousto-optic cell, the Bragg-reflected light is shifted up or down by
the frequency of the sound wave, Fig.(a). The devices can hence be used as a tunable
frequency shifter. Such devices are, e.g., used for highly sensitive heterodyne detection,
where a received signal is superimposed with a frequency-shifted copy of the transmitted
signal to measure amplitude and phase changes simultaneously. The example of a vibrometer
is illustrated in Fig.[4.9(b). More information on the principles of vibrometry can be found

in [1].
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Figure 4.7: Acousto-optic beam scanners. (a) Phased array of acoustic transducers: Simultaneous
variation of the angle of incidence and the acoustic frequency is necessary to maintain phase
matching. (b) Diverging sound beam: Incoming light wave always finds an acoustic plane-wave
component that fulfills the Bragg condition. (Figures adapted from [26])
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Figure 4.8: Acousto-optic space switches (a) By chaning the modulation frequency, the beam can
be switched from one port to another. (b) Using acoustic drive signals that comprise various fre-
quency components, it is possible to split the incident optical beam to various different directions,
where the intensity coupled to a certain direction is proportional to the power of the respective
acoustic frequency component. The Bragg condition is disregarded in these sketches for simplicity.
(Figures adapted from [26])
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Figure 4.9: Acousto-optic space frequency shifter. (a) In the case of counter-propagating sound
and light waves, the Doppler effect leads to an up-shift in freqency of the the diffracted light by
the frequency of the sound wave. For co-propagating waves, the frequency would have been down-
shifted. (b) Baisc principle of optical vibrometry: Light reflected from an object is superimposed
with a frequency-shifted copy of itself and detected. If the object does not move, this leads to
a narrowband beatnote in the photodetector current. Vibration of the object leads to a spectral
broadening of this beatnote. Spectral analysis of the photocurrent allows to derive the mechanical
vibration spectrum of the object. (Figures adapted from [26] [T])
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4.3 Interaction of photons and phonons

The acousto-optic interactions considered in the last section can be interpreted as a special case
of interaction of photons and phonons. Such interactions, however, are not restricted to the case
where traveling sound waves are launched into the material. In this section we will consider two
more interaction mechanisms of photons and phonons: Brillouin scattering, which is associated
with interaction of photons with propagating sound waves, so-called acoustic phonons, and Ra-
man scattering, which originates from interaction of photons with vibrational normal modes of
molecules, so-called optic phonons. Simplified dispersion relations and motion patterns of acous-
tic and optical phonons in a linear diatomic chain are illustrated in Fig.[£.10] The term “acoustic
phonon” refers to a lattice vibration pattern in which neighboring atoms move in phase. In this
case, the phonon energy is much smaller than that of optical phonons and increases linearly with
momentum. For optical phonons, neighbouring atoms move out of phase. The energy of optical
phonons is much larger than that of acoustic phonons and is largely independent of momentum.
Note that in an optical fiber Brillouin scattering can only occur in backward direction, whereas
Raman scattering can occur in both backward and forward direction.

An overview of different photon-phonon-interactions by means of elastic and inelastic light
scattering is illustrated in Fig.[.T1] For completeness, Rayleigh scattering is also illustrated, even
though no energy transfer between photons and phonons is involed in this case. Rayleigh scattering
is caused by elastic scattering of photons from tiny inhomogeneities in the medium that are much
smaller than the wavelength. Energy conseved in this process and the frequency of the light does
hence not change. Brillouin and Raman scattering, in contrast, lead to transfer of energy between
the incident photons and phonons. This can lead to a loss of photon energy and creation of a
new phonon, or to an increase of photon energy by absorption of a phonen. The case where the
photon looses energy is also referred to as the Stokes process, whereas the an increase of photon
energy corresponds to the Anti-Stokes process. Brillouin and Raman scattering can occur in both
the Stokes and the Anti-Stokes case. Since the energy of optical phonons is much larger than that
of acoustic phonons, the Raman frequency shift is much larger than the Brillouin shift.

In the following, we will restrict ourselves to a brief phenomenological description of Brillouin
and Raman scattering. A more in-depth discussion of Brillouin and Raman scattering in optical
fibers can be found in [5].

4.3.1 Brillouin scattering

Spontaneous Brillouin scattering can be viewed as scattering of pump-wave photons from an
acoustic wave. For a rough estimate of the associated frequency shift, let us consider the case of
an optical wave at a wavelength of A = 1.55 um, propagating along a silica fiber of refractive index
1.45. Whe considering Brillouin scattering in a optical fiber, we observe inelastic scattering of light
in the backward direction only. As both energy and momentum have to be conserved during the
scattering event, Eqs. and (£.21), we find that the Brillouin shift of the backscattered light
is given by

fp=5_-=2_"F (4.23)

where f is the optical frequency, and where v, is the speed of sound within the silica material of
the fiber. Using vy = 5.96 km /s for sound waves in silica, we find the Brillouin shift of a silica fiber
to be approximately 11 GHz. For backward scattering, the momentum of the phonon corresponds
to twice the momentum of the incident photon. At the same time, since fp < f , i.e., the
energy of the scattered photon is practically identical to that of the incident photon, even though
twice the photon momentum is transferred to the phonon. For forward scattering, the momentum
transfer to the acoustic phonon would be close to zero, and hence no energy would be transferred.
Forward scattering is therefore indistinguishable from elastic Rayleigh scattering, which does not
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Figure 4.10: Acoustic and optical phonons along with the corresponding dispersion relations. (a)
Tllustration of an acoustic phonon using a simplfied diatomic linear-chain model medium: The
crystal is assumed to consist of a linear chain of identical atoms, which are connected by springs of
alternating strengths (“G-spring” and “K-spring”). For long-wavelength acoustic phonons, the local
ensemble of atmos moves in the same direction. The K-vector is associated with the wavelength
of the long-range oscillation. Coustic phonons can be thought of as sound waves that propagate
through the medium. (b) Illustration of an optical phonon, for which neighboring atoms move
180° out of phase. The wave vector is now associated with a long-rang envelope of the oscillation
of neighboring atoms with respect to each other. This leads to a higher oscillation frequency
and hence a higher energy. Optical phonons can be thought of as vibrational modes of molecules
and chains of atoms. (c) Dispersion relation of the acoustic (A) and the optical (O) phonons
of the diatomic linear chain. Optical phonons have nonzero energy even though the K-vector
(momentum) is equal to zero. (Figures adapted from [6])
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Figure 4.11: Interaction of photons and phonons by elastic and inelastic light scattering. (a)
Spectral distribution of scattered light. The incident liight beam oscillates at frequency wg. Elastic
Rayleigh scattering is caused by inhomogeneities in the medium that are much smaller than the
wavelength. Energy is conseved in this process and the frequency of the light does hence not
change. Brillouin scattering leads to transfer of energy between the incident photons and acoustic
phonons. This can lead to a loss of photon energy and creation of a new phonon, or to an increase
of photon energy by absorption of a phonen. The case where the photon looses energy is also
referred to as the Stokes process, whereas the an increase of photon energy corresponds to the
Anti-Stokes process. Raman scattering can also occur in both the Stokes and the Anti-Stokes case,
but the frequency shift is much larger than for Brillouin scattering due to interaction with high-
energy optical phonons. (b) Energy-level illustrations of various light scatterng processes. The
dashed horizontal lines indicate virtual energy states. For Brillouin scattering, only the Stokes
case is illustrated, even though scattering may occur in both Stokes and Anti-Stokes configuration.
(Figures adapted from [26])
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Figure 4.12: Gain spectra of stimulated Brillouin scattering in different optical fibers for a pump
wavelength of 1525 nm. The gain spectrum is influenced by both the guided natur of the optical
modes and by the presence of dopants in the core. (1) Silica-core fiber; (2) Depressed-cladding
fiber; (3) Dispersion-shifted fiber (Figures adapted from [5])

change photon energy. For optical phonons, however, the dispersion relation does not go through
the origin, see Fig..10] As a consquence, a measureable amount of energy can be transferred
from the incident photon to an optical phonon even for the case of forward scattering, where the
momentum of the scattered photon changes only slightly. Raman scattering can therfore occur
both in the forward and in the backward direction, see Section{4.3.2]

Once the scattered lightwave is generated by spontaneous Brillouin scattering, it interferes
with the pump wave, leading to a beat signal at exactly the frequency Q5. The beating leads to
formation of new phonons, e.g., via the process of electrostrictionEL and hence acts as a sources
for the sound wave, which in turn increases the amplitude of the scattered wave, see [9] for a more
detailed analysis. The positive feedback leads to stimulated Brillouin scattering (SBS), which can
be described by the relations

I,

E = _gBIpIs - aI]N (424)
dI,
dz = gBIpIs - alsa (425)

where I; and I, denote the Stokes and the pump intensity, respectively, gg () = g (wp — ws) is
the frequency-depenent Brillouin gain, and a accounts for fiber loss. Measured Brillouin gain spec-
tra for different optical fibers are depicted in Fig.[d.12] The three fibers have different structures
and different doping levels of germania (GeQO,) in their core, leading to slight deviations from the
estimated Brillouin shift of 11 GHz. In addition, the gain spectrum has a certain width which is
associated with the phonon lifetime within the respective optical fiber. Depending on the type of
optical fiber, the SBS gain bandwidth can vary significantly. Typical values are around 50 MHz,
but gain bandwidths beyond 100 MHz are also possible.

SBS can lead to significant transfer from the pump power to the scattered wave. Once the
optical power launched into a fiber exceeds a certain threshold, most of the light is reflected back
by SBS. This ultimately limits the power of a narrowband source that can be transmitted through
an optical fiber. SBS thresholds can be as low as a few milliwatts for a fiber length of several
kilometers, see [4] for more details.

4.3.2 Raman scattering

Similarly to the case of Brillouin scattering, spontaneous Raman scattering can be viewed as
scattering of the pump by interaction with vibrational states of the material molecules or atoms.
The two phenomena differ, however, by the fact that for Raman scattering, the photons interact
with an optical phonons istead of propagating acoustic waves, and that energy transfer between

2Electrostriction is a process in which dielectrics change their shape under the application of an electric field.
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the photons and the phonons is hence largely independent from the momentum transfer. As
a consequence, spontaneous Raman scattering in an optical fiber occurs both in forward and
backward direction, or isotropically in all direction if no fiber is involved. As indicated by the
dispersion relation in Fig.[4.10] optical phonons carry much more power than acoustic phonons.
The frequency shift associated with Raman scattering is hence much larger than the Brillouin
shift.

Just like stimulated Brillouin scatterring, stimulated Raman scattering (SRS) can occur due
to a positive feedback: The scattered wave interferes with the incoming wave, generating a beat
signal at the Raman frequency. This leads to the creation of new phonons, e.g., by electrostriction,
which further enhance Raman scattering. SRS is governed by the relations,

dr

d; = gRIpIs — a1, (426)
drI w

d—; = —w—pgRIpIS —aply, (4.27)

where I, and I, denote the Stokes and the pump intensity, respectively, gr () = gr (wWp — ws)
is the frequency-depenent Raman gain, and «, and oy, account for fiber losses at the Stokes and
pump frequencies, respectively. In silica fibers, the maximum Raman gain occurs at a frequency
shift of 13 THz from the pump wave. The factor w,/ws on the left-hand side of Eq. takes
into account the different photon energies.

Since silica is an amorphous material, it contains microscopic inhomogeneities, i.e., each silica
molecule experiences a slightly different environment and the frequencies of the vibrational eigen-
states hence differ slightly. This leads to inhomogeneous broadening of the Raman gain spectrum -
the Raman gain bandwidth in optical fibers can easily exceed 10 THz, see Fig.[d.13] In contrast to
that, the Raman gain spectra of crystalline materials such as silicon are much more narrowband.

Similar to the case of SBS, SRS can also limit the power that can be transmitted through
an optical fiber. For SRS, the threshold power levels are much larger than in the case of SBS,
but the large gain bandwidth may still lead to SRS-induced impairments in wavelength-division
multiplexing (WDM) systems with large numbers of optical channels, see [4] and the references
therein for more details.

Raman amplifiers and Raman lasers

If the pump and the signal wavelengths are chosen accordingly, SRS can be used for amplification
of signals, thereby making use of the extremely large gain bandwidth, see [4] and the references
therein for more details. A forward-pumped Raman amplifier is dpiected in Fig.[£.14 We can
calculate the Raman gain of a fiber of length L by using Egs. and . If the signal is
much weaker than the pump, we may neglect pump depletion due to Raman scattering. We can
readily integrate Eq. to obtain the evolution of the pump intensity along the fiber,

I, (2) =1, (0) e 2»=. (4.28)
This relation can be used to solve Eq. , leading to

I, (L) = I, (0) e~ L Gp, (4.29)
where the Raman gain Gp is given by

Gp = eIrlp(O)Len (4.30)

The effective length Leg is slightly shorter than the geometrical length L of the fiber due to
attenuation of the pump,
1— —apL
L= —2 " (4.31)
Qp

When used within an optical cavity, SRS can serve as an amplification mechanism for laser emis-
sion. This principle has, e.g., been exploited to realize one of the first integrated all-silicon light
sources [25].
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Figure 4.13: Raman scattering. (a) Energy-level representation of Raman scattering in a silica
fiber. Silica is an amorphous material, and each silica molecule hence experiences a slightly
different environment. As a consequence, the frequencies of the vibrational eigenstates differ
slightly, which leads to inhomogeneous broadening of the Raman gain spectrum. (b) Raman gain
spectrum in a silica fiber. The gain bandwidth can easily exceed 10 THz. (Figures adapted from

[41)
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Figure 4.14: Fiber-based Raman amplifier in forward-pumping configuration. A strong pump
wave at frequency w, is launched into the fiber along with the signal centered at ws; < w,. The
frequency difference w, — w; is chosen such that the signal experiences amplification by stimu-
lated Raman scattering (SRS). A filter at the end of the fiber blocks residual pump light. In an
alternative configuration, the pump light can also launched from the end of the fiber (backward
pumping), thereby expoting backward scattering for signal amplification. (Figure adapted from

[41)
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Chapter 5

Third-order nonlinear effects

In many materials, second-order nonlinearities are absent, and third-order nonlinear interactions
are dominant. Even though they might be weak, third-order nonlinearities can lead to significant
effects if high intensities are involved and if the interaction length is large. This is, e.g., true
in optical fibers, where light waves can copropagate over many kilometers while being confined
to a tiny micrometer-scale cross section in the core. If optical waves with similar frequencies
interact with a third-order nonlinear material, they can generate new frequency components that
are identical or similar to the initial frequencies, where phase matching is inherently fulfilled for
some effects (e.g., SPM and XPM). We have already given an overview on various third-order
nonlinear effects in Section using the simplistic examples of plane waves. In this chapter,
we focus on third-order nonlinear effects in waveguides and study various effects that can lead to
interaction of co-propagating signals.

5.1 Signal propagation in linear waveguides

5.1.1 Waveguide modes for monochromatic waves

A homogeneous optical waveguide in general is a dielectric structure which is invariant along the
propagation direction of the optical power, which is usually associated with the positive z-direction,
see Fig.[5.1] The refractive index profile can then be written as

n(r)=n(z,y). (5.1)

It can be shown that a lossless homogeneous waveguide possesses a set of eigenmodes, i.e., elec-
tromagnetic wave patterns which do not change their transverse shapes during propagation [22].
For a monochromatic wave oscillating at frequency w, the total field associated with a specific
eigenmode can be written as

E(r, 1) = £(w,y,w) §@AD2), (5.2)

H(r,t) = H(x,y,w) @), (5.3)
The mode fields £(z,y,w) and H(z,y,w) and the dispersion relation § (w) are calculated by in-
serting Eqs. (5.2)) and (5.3)) into Maxwell’s equations. Using the identity V x (?F) =@ (V x F) +
(VP x F), Eq. (1.2)) leads to a relation of the form

(V X §(l’, Y, w)) - .]ﬂ (w) €. X§($7 Y, w) = 7jwﬂ0ﬂ('r7 Y, w)' (54)
A similar relation can be obtained from Eq. (1.4]),

(v X ﬂ(.%‘,y,OJ)) _.]6 (w) ezxﬂ(mu y7w) = jWEon2§($7y7w)- (55)
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Solving these relations leads to an eigenvalue problem: Nontrivial solutions £(z,y,w) # 0 and
H(z,y,w) # 0 are only obtained for certain values of § =  (w). For most waveguide structures of
practical interest, numerical methods are needed to calculate the mode fields and the dispersion
relation.

An arbitrary field pattern propagating along a waveguide can expressed as a superposition of
eigenmodes,

E(r,t) =Y A&, (x,y,w) @l (5.6)

1

H(r,t) =Y AH,(,y,w) @) (5.7)
I

where 3, (w) is the propagation constant of mode y and where dimensionless complex quantitiesﬂ
A,, describe the magnitude and phase with which mode y contributes to the total field ﬂ For given
field patterns E(r, t) and H(r, t), the mode amplitudes can be calculated by using the orthogonality
relation for guided modes,

1 > * *
1 ﬂ (éu(mvy) X ﬂu(x7y) +§y(xa y) X ﬂu(l',y)) - €y dxdy :PM(SV}M (58)

where §,,, denotes the Kronecker delta, and where P, represents the power that is associated with
the mode field,

P ;//_Z Re (&, (v,y) x H(w,9)} -e-dwdy. (5.9)

More information on waveguide theory can be found in the lecture Optical Waveguides and Fibers
and in the corresponding lecture notes [22].

5.1.2 Propagation of time-dependent signals in linear dispersive wave-
guides

In the last section, we have considered optical waveguide modes for monochromatic signals, i.e.
signals that have a constant wave amplitude. The spectrum consists of a discrete spectral peak
at frequency w. Any time-dependent signal can be represented as a superposition of monochro-
matic waves, the amplitudes of which are obtained by means of a Fourier transform. Each of
these frequency components travels with a specific propagation constant 3 (w). In general, the
frequency dependence of the propagation constant leads to a frequency-dependent delay of the
various components and hence to deformation of the signal shape during propagation. This effect
is referred to as dispersion. In linear optics, signal propagation in a dispersive waveguide is most
easily described in the frequency domain.

In nonlinear optics, however, it is advantageous to use a time-domain description of signal
propagation, since multiplications of electric fields in the time domain would correspond to convo-
lutions of the corresponding spectra in the frequency domain, which are usually difficult to handle.
For this reason, we introduce a slowly varying complex envelope A (z,t) in the time domain and

2
INote that we will later introduce an alternative definition of the complex time-domain amplitude, where ‘Au‘

denotes the power (in Watts) carried by the waveguide mode, and where Au hence has the unit vW.

2Note that in Egs. and 7 we have used a discrete set of eigenmodes, i.e., the superposition is represented
by a discrete sum of field patterns, each of which propagates with a distinct wavenumber along the z-direction.
This is valid as long as only guided modes are involved, i.e., as long as the field pattern does not loose energy
by radiation. If the field pattern looses energy, we also need to consider radiation modes, which can assume any
propagation constant 8 and hence form a continuous set. The discrete sum must then be replaced by a continuous
integral. Nevertheless, the basic conclusion of the presented analysis remains valid. More information on mode
expansions can be found in the lecture Optical Waveguides and Fibers and in the corresponding lecture notes [22].
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Figure 5.1: Homogeneous waveguide: The structure is invariant along the propagation direction
of the optical power, which is usually associated with the z-direction. A lossless homogenous
waveguide features a set of electromagnetic wave patterns which do not change their transverse
shapes during propagation along z, so-called eigenmodes.

try to derive an equation that describes the deformation of the signal envelope during propagation
along z.

Let us first consider the simplified case where the waveguide is still linear, but dispersive. In
a linear medium, the propagating fields do not influence each other, and we can consider the
waveguide modes individually. For a single waveguide mode, the slowly varying envelope ansatzes
for the electric and the magnetic field can be written as

E(r,t) = A(z,t) E(z, y,we) el (Wet=Blwe)2) (5.10)
H(r,t) = A(z,t) H(z, y, w,) @ He)2), (5.11)

where w, denotes the carrier frequency of the signal, 5 (w.) is the corresponding modal propagation
constant, and A (z,t) is the complex wave amplitude. We take the Fourier transforms of Eqgs. (5.10)

and (5.11) and insert them into the corresponding Maxwell’s equations (1.15) and (1.17)). Using
again the identity V x (®F) = & (V x F) + (V& x F), we obtain a relation of the form

A(z,w—we) (V x E(z,y,we)) (5.12)
+ (W —iB (wc)g(z,w - WC)> e. x &(z,y,we)

= _JWMOﬂ(.T, Y, WC>‘

We now multiply Eq. with A~(27w — w,) and subtract the result from Eq. . Since we
consider a narrowband signal AN(z7w — w,) which has nonzero frequency components only for
frequencies w that are close to the carrier frequency w., we can assume the modal fields do not
depend on frequency, i.e., £(z,y,w) =~ E(x,y,w.) and H(z,y,w) ~ H(z,y,w.). We hence obtain a
simple frequency-domain relation for the evolution of A (z,t) during propagation along z,

OA (2w — w,)

o (B (W) = (o) Az, w —we) =0 (5.13)

The exact dispersion relation [ (w) is usually unknown. As an approximation, it is useful to
expand S(w) in a Taylor series about the carrier frequency we,

(w—we)?

(w—we)3
2!

3 B ..., (5.14)

Bw) = B + (w — w)BY + B +

where
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5 _ d'B(w)
@ = . 5.15
p = 2% (5.15)
W=we
Eq. (5.13) can then be rewritten as
A —we 1 _
% +] (ﬁgl) (w—we) + 58P (@ —wo) + . ) A(z,w—we) =0, (5.16)
where the dots ... denote higher-order Taylor expressions. Translating this equation back into

the time domain, we obtain a partial differential equation for the time-domain evolution of the
signal envelope,
0z ¢ ot 27°¢ ot?

+...=0. (5.17)

In this equation, the expression ﬁﬁl) aééf’t) on the left-hand side leads to time shift of the optical

signal by the so-called group delay

=8z (5.18)
This can be verified by introducing a retarded time frame similarly to Egs. (1.96)) - (1.98]),

t=t— Mz, (5.19)
2 =z, (5.20)
Az t) = Azt — W 2). (5.21)

Eq. (5.17) can then be rewritten as
O () _ 1 ) PAY)
0z 2 ot’?
In the following, we will omit the primes keeping in mind that the time dependence refers to a
retarded reference frame.

+...=0. (5.22)

Example: Propagation of a Gaussian pulse through a dispersive waveguide Trans-
forming Eq. (5.22) back into the frequency domain, we obtain the relation

A(z,w) = A(0,w) e T35, (5.23)

If a Gaussian pulse is launched at the fiber input,

+2

A(0,t) = Age >, (5.24)

we obtain a so-called chirped Gaussian pulse at the output,

+2

e 2(0t2+j5£2)z) ) (525)

2ro?
27 (Utz — j5£2)z)

A “chirped” Gaussian impulse is a waveform with a Gaussian envelope and a time-dependent
frequencyﬂ The instantaneous frequency of the complete signal a (0,t) = A (0,t)exp (jw.t) can
be defined by the rate at which the phase of the complex signal changes,

A(Z7t) = AO

d &
arg {A (2, 1)) = o+ —
ot + <5§ )Z>

(5.26)

3to chirp = zirpen, zwitschern
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For 6£2) > 0, the leading edge of the signal has a lower frequency (“red shift”) than the trailing
edge (“blue shift”); for ﬂ(@ < 0, the situation is reversed. This is consistent with the picture
that 6£2) gives the frequency dependence of the group delay Bél)z: For 6£2) > 0, the group delay
increases with frequency, i.e., “blue” frequency components experience a bigger delay than ‘“red”
components, and the leading edge is hence red-shifted. Likewise, for 59) < 0, the leading edge
is blue-shifted. These principles are illustrated on the lecture slides. The case of 69) > 0 is also
referred to as normal group velocity dispersion, (GVD), whereas ,Béz) < 0, corresponds to so-called
anomalous GVD.

Normal GVD: ﬁéQ) >0

Anomalous GVD: Béz) <0

Figure 5.2: Propagation of a Gaussian pulse through a dispersive waveguide. (a) For normal

group velocity dispersion (GVD), 6((;2) > 0 and the group delay 6((;1)2 increases with frequency, i.e.,
“blue” frequency components (B) experience a bigger delay than “red” components (R). (b) For

anomalous GVD, B£2) > (0 and the group delay Bgl)z decreases with frequency, i.e., “blue” frequency
components (B) experience a smaller delay than “red” components (R). (Figures adapted from [26])

5.2 Signal propagation in third-order nonlinear waveguides

5.2.1 Maxwell’s equations and mode expansion for nonlinear propaga-
tion
Let us now consider the case where an optical signal propagates along a Kerr-nonlinear waveguide.

The propagation is governed by Maxwell’s equations, Eqgs. (1.1) to (1.4). Separating the linear from
the nonlinear polarization according to Eq. (1.77)), the curl equations can be written as

) )
V x H(r,t) = eon2§E(r,t) + EPNL(r, 1), (5.27)
V x E(r,t) = —uO%H(r,t). (5.28)

In contrast to the linear waveguide considered in Section [5.1.2] where only a single guided mode
was analyzed, the various modes of the waveguide might now be coupled by nonlinear effects. We
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therefore need to consider the complete expansion, comprising all waveguide modes and carrier
frequencies. Moreover, in the mode expansion defined in Eqgs. and , dimensionless com-
plex wave amplitudes A, are used to describe the contribution of mode u to the total field. In
this representation, the physical power carried by mode p cannot be directly derived from the
mode amplitude A, since it depends on the normalization of the mode fields &, (z,y,w) and
ﬂu(x,y,w). In nonlinear optics, we therefore introduce an explicit power normalization of the
mode fields £, (z,y,w) and H,,(7,y,w) to the associated power P, according to Eq. . The
mode expansion can then be written as

1 5 2@y, W)
E(r,t) = = (E(r,t) + cc) A, (21, W) el wmt=Bu(wm)z) 5.29
RS {CCUEREEE D 9 oF! Lty o) (529
1 H x) 7wm i
H(r,t) = 3 (H(r,t) + cc) Z STA, (2t wn) Memmt—mwm)z)’ (5.30)
—M \% 7)“
where w,, = —w_,,, denote the various positive and negative frequencies that are needed to repre-

sent real field quantities E(r,t) and H(r,t). In this representation, the nonlinear polarization is
given by

1 +M
P (r,t) Z Py (1, b, wp, )9t (5.31)

where the complex amplitudes Pyy (r,t,w,,) can be derived by inserting Eq. (5.29) in Eq. (2.22).
(-39,

To analyze nonlinear propagation, we first insert the mode expansion, Egs. (5.29) and (5.30
into Eqs. and (5.28). Considering only the terms that belong to a specific carrier frequency
Wi, making use of the identity V x (§F) = & (V x F)+ (VP x F), and transforming the resulting
relations to the frequency domain, we obtain

[V y H,(z,y,wm)

VPu

g A (z,w — wm,wm)em““’"’

m
A -j Wm )2z ﬂ (mvvam)
+£ |:Au (27W—wm,wm)eJ5“( m) ] e. x MT

&,y wim)

VPu

_jweon2Avy, (Z7 W — Wm, wm) e'jBH(UJm)Z = JWENL (r7 W — Wm, wm)

(5.32)
and
A E(x,y,wm
ZA” (Z,w Wm,wm)eJBu(Wm) v x 7#( Y )
p N
-iBu(wWm w25y,
- A (5,0 = ) )% e, V/Pn
A H z,Y,w .
+jw/}l04y’ (Z7w - wm’ OJm) Me"]ﬂu(wm)z — 0 (533)

vV Pu
In these relations, AE (2,0 — W, wm) and Py (r,w — wm,wy,) denote the Fourier transforms of

the associated time-domain quantities A, (z,t,wy,) and Pyy, (r,t, wy,) with respect to . We now
use the fact that £, (z,y,wn) and H ,(z,y, wy,) represent guided mode fields that fulfill Egs. (5.4)
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and (5.5), i.e.,

é y . §4 y I . ﬂ v

(0o B ) i, ) o B Talee) 53
H I’ ) . ﬂ ) ? . é ) Y

(75 2D g, 0 o ) ) (5.9

We insert Egs. and @ in Egs. l) and and use the fact that A~u (z,W — Winy W)
is a narrow-band signal which has nonzero frequency components only for frequencies w that are
close to the carrier frequency w,,. We may therefore assume that the modal fields do not depend
on frequency, i.e., £, (z,y,w) = &, (z,y,wn) and X (v,y,w) ~ H,(z,y,wy). This leads to the
relations

>

m

8gu (z,w — W, W) . ~
82 +J(ﬁ# (w)_ﬂp. (wm))Aﬂ (va_wmawm) [SP

ﬂu(z7 y7 wm)

VPu

+] (IBN (w> - IBN (wm»Avﬂ (z,w - Wmawm)‘| e,

X eIPu(0m)z — 5P (1w — Wi,y wWin) (5.36)

éﬂ (.’E, Y, UJm) e'jﬁu (Wim)
vV Pu

The left-hand sides of Egs. (5.36) and (5.37)) still comprise a superposition of many waveguide
modes. Since we are interested only in the evolution of a single waveguide mode v, we make use of
the orthogonality relation, Eq. (5.8)), to project out the corresponding amplitude. Dot-multiplying

Eq. (5.36) with [-&}(z,y, wn )] and Eq. (5.37) with H (x, y, w, ) and adding the resulting relations,
we obtain

>

I
[5#(x7yawm) X E;($7y7wm) + éi(‘rvyawm) X ﬂ#(.’li, y>wm)‘| eze'jﬂ“(‘”’"’)z

VPu

x =0 (5.37)

2 +J(ﬂ# (w) 75# (wm))Au (Zaw*wmawm)

aAy (va_wnuwm) e ]

(5.38)

= _waNL(raw - Wmawm) . §;(xayawm)

We now integrate over the entire (x,y)-plane and make use of Eq. (5.8]).

0z

aAV (270.} — wm?wm) +J (Bu (UJ) - ﬁu (wm))gu (Z7w - wm7wm)‘| e_jBV(wm)z
jw
4P,

Using a Taylor expansion of the propagation constant §, (w) series about the carrier frequency

W, Egs. (5.14)) and (5.15]), we can transform Eq. (5.39) back to the time domain,

// Pt (0,0 — o) - £, gy dady (5.30)

04, (z,t,wm) | 5104, (2t wm) 1 50) A, (2t wm) ] (=B (wn)2)
o + 8! i i5he 9 e
___1L 9 //OOP (r,t,wm) - E5(x,y, w ) dz dy e4mt (5.40)
T ayp, o \ ) ) s e G Gy |
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We introduce again a retarded time frame defined in Egs. (5.19) to (5.21) and make further use
of the fact that Py, (v, t,w,,) is only weakly time-dependent such that the time-derivative on the
right-hand side of Eq. (5.40) is dominated by the expression e/“=*. This leads to

6A1/ (ZatvwWL) _.]16(2) 62AI/ (Z’t7MM) efjﬂy(wm)z
0z ot?

- // Py (1) - €3 (2, Y, ) e dy. (5.41)

This relation describes the spatio-temporal evolution of the mode amplitude A, (z,t, w,,) under
the influence of dispersion and nonlinearities. For further analysis, we need to investigate how
Py (r, t,wy) depends on the electric fields and hence on the mode amplitudes A, (z, ¢, wy,).

5.2.2 The nonlinear Schrédinger equation (NLSE)

Let us now consider the most simple case where power is propagating in one waveguide mode
v only, and where only a single carrier frequency is involved. Following Eq. (2.22) and using
Eq. (5.29), the complex amplitude of the nonlinear polarization can be written as

3 *
ENL(r7tawm) - 160 ( ( ) (wm . wm7 _wm;wm) Eéy(xay7wm)§u(x7yawm)éy('r7y,wm))
AI/ (Zat7wM) Alt (Zat7w?”n) Ay (zztawnL) efjﬁ,,(wm)z

VP, VP, VP,
Inserting Eq. (5.42) in Eq. (5.41)), we obtain the so-called nonlinear Schrodinger equation (NLSE)H,

(5.42)

8Ay (Zatawm) 1 8 A (z,t,wm) . 2
T _.]26 8t2 =—-J7 |AV (Zatawm)| Ay (Z7t’wm) ’ (543)

where the nonlinearity parameter ~ is given by

30 W oo [5(3) (Y, Wm)E (@, Yy Wim)EL (T, Y, wim) | - €5 (2, Y, wim) dz dy

16 P2 ’
(5.44)

Yo (Wm) =

In this relation, the argument (w., : Wy, —Wm, Wy, ) of the nonlinear susceptibility has been dropped
for the sake of readability. The numerator of this relation corresponds roughly to the spatial overlap
between the fourth power of the electric mode field and the Kerr-nonlinearity of the waveguide,
whereas the denominator is used for power normalization of the mode fields &, (z,y, w.,). Strong
nonlinearities can hence be achieved by confining the electric field of a waveguide mode to a small
region that consists of a highly nonlinear optical material, see examples on slide.

The preceding analysis was based on the assumption of a lossless waveguide. Waveguide losses
corresponding to a power attenuation constant o can be taken into account by an additional
expression of the form —$ A, (2,t,wy,) on the right-hand side of Eq. ,

2A
jp@ TR Ehen) _ 0y o) —inl4, Gt A, )

o2 2
(5.45)

8Ay (Z7 tv wm) _
0z

4The term “nonlinear Schrédinger equation” originates from the fact that, when exchanging the space and the
time coordinates, Eq. (5.43)) resembles the Schrédinger equation with a nonlinear potential term, i.e., a potential
that depends on the wave function.
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Using Eq. (5.9) for the mode field power, we can rewrite Eq. (5.44) as

w)_Mmﬂ%h@amW%mw%%mm%%ﬁxw%%mmy
T im) =y [I7 Re{E, (x, y,wim) x Hi(z,y,wim)} - e, dzdy '
(5.46)

Note that the analysis presented here is valid for all waveguide types. In fiber optics, the refractive
index ncore Of the waveguide core and the index n¢aq of the cladding are usually very similar,
N & Neore = Nelad- Lhe transverse components of the mode fields &, (z,y,wnm) and H,, (z, y, wm)
may then be approximated by a scalar function F(z,y),

éy(x7 y;wm) ~ FV(JU, Y, Wm) €, (547)
H, (2, y,wn) = ZEFV(m,y,wm)ey. (5.48)
0

If we further assume a homogeneous nonlinearity X(S) which does not change over the cross section,
then Eq. (5.46]) can be simplified to

wWmno
v m ~ ) 5.49
Yo ) > 2 (5.49)
where ny denotes the Kerr coefficient, see Eq. ((1.122]),
?)Z() (3)
= — , 5.50
"2 = e X (5.50)

and where the effective cross section of the waveguide Aeg is given by

(// |F (2, y,wn)|? do dy>

Ao ~ . 5.51
& |F (z, y,wm)| dx dy ( )

5.3 Applications and phenomena related to third-order non-
linear waveguides

5.3.1 Nonlinear phase shift and spectral broadening

The nonlinear Schrodinger equation describes the evolution of the complex optical mode amplitude
A (z,t) under the influence of dispersion and self-phase modulation (SPM). To understand the
impact of SPM, let us consider the case of a lossy waveguide, for which dispersion can be neglected.
The NLSE is then given by
0A (z,t
P2GD _ AGOPAGY - SAGD). (552
0z 2
As a solution ansatz, we use the expression
Al(z,t) =4, (t) 2PV 57, (5.53)

where the phase @, (2,t) accounts for the nonlinear phase shift due to SPM. Inserting Eq. (5.53))
into Eq.(5.52), we find an expression for the nonlinear phase shift that is accumulated along a
propagation distance L,

Onr (L,t) = —v |A0 (t)|2 Leg, (5.54)
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where the effective length L.g is given by

1— efaL

Leg = (5.55)

@
We hence find that SPM in a lossy fiber is not governed by the geometrical length L, but by the
effective length Leg that is smaller than L because of fiber loss.

The nonlinear phase shift according to Eq. leaves the temporal shape of the pulse un-
changed, but leads to broadening of the pulse spectrum. This can be understood when considering
the instantaneous frequency shift Q = 8%% that is associated with the nonlinear phase shift: €2
is negative near the leading edge of the pulse and hence leads to a red-shift, whereas it is positive
near the trailing edge of the pulse and causes a blue-shift there. Note that this is just the oppo-
site of anomalous group-velocity dispersion, which delays long wavelengths and hence leads to a
red-shifted trailing and a blue-shifted leading edge. The interplay of self-phase modulation and
anomalous group velocity dispersion can lead to pulse forms that do not change their envelope
during propagation, so-called solitons, see Section [5.3.2}

In the absence of dispersion, spectral broadening increases with fiber length and launch power.
For small fiber cross sections and large input powers, broadband so-called “supercontinuum” spec-
tra can be generated from a train of short input pulses, see Fig.[5.3

0 oS5 m 157
/\]\/\ J\/\/\/\ o
25T 35w iy

Frequency

(a)

Intensity

(c)

Figure 5.3: (a) Spectral broadening of an “unchirped” Gaussian pulse for different SPM-induced
nonlinear phase shifts @y, measured at the maximum of the pulse power. (b) Cross section of
a highly nonlinear fiber with ultra-small mode-field diameter. The fiber is made of highly Kerr-
nonlinear lead-silicate glass. Strong light confinment is achieved by using a fiber core suspended
in air by three lead silicate membranes, see inset on the lower left-hand side. (c¢) Octave-spanning
supercontinuum generated by launching femtosecond laser pulses into a highly nonlinear fiber.
(Figures adapted from [26, [, 23])
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5.3.2 Optical solitons

For anomalous group velocity dispersion (,35” < 0) self-phase modulation and dispersion are
counteracting, see discussion in Section [5.3.1] It turns out that for certain pulse shapes, the two
effects cancel each other exactly such that the pulse propagates without changing its shape. Such
pulses are called solitons. Solitary wave patterns that maintain their shape while traveling at a
constant speed do not only occur in nonlinear optics, but arise as solutions of a widespread class of
nonlinear dispersive partial differential equations, see [5] for a description of the first observation
of a solitary wave in water.

For a mathematical derivation let us start from the nonlinear Schrédinger equation, Eq.
and neglect fiber loss (o = 0). For simplicity, we consider a signal propagating only in a single
waveguide mode at a distinct carrier frequency. Omitting the mode index v and the carrier

frequency argument w,,, Eq. (5.45) can be written as
A (z,1) 1 ,50%A(z,t) . 2
= — L = —jv|A(z, )|  A(z,1t). 5.56

P 587 —5p 1A (2, 0)]" A(z,t) (5.56)

For a solitary wave, we require the magnitude of the complex envelope A (z,t) to be independent
of z, but still allow for a z-dependent global phase shift @ (z). This leads to an ansatz of the form

Az, t) = A (t) %), (5.57)

where we have additionally assumed that Ay (t) € R, i.e., that the phase of the signal does not
change for the duration of the pulse (chirp-free signal). Inserting this ansatz into Eq. (5.56), we
can separate variables into groups of purely z- and purely ¢-dependent terms, both of which have
to be constant. Assuming zero initial phase, @ (0) = 0, we obtain two relations of the form,

b(z) = —Kz, (5.58)
Thld) _ B (K 7 430) 40 1), (5.59)

where K denotes a real-value separation variable. Eq. (5.59) has solutions of the form

Ao (£) = Assech (;) , (5.60)

where sech (x) = 1/ cosh (x) denotes the hyperbolic-secant function, see [I8] for a rigorous solution
of Eq. (5.59)). Here we simply use Eq. (5.60) as an ansatz and insert it into Eq. (5.59). This leads
to two relations, linking the pulse peak power A%, the duration T, and the phase-delay parameter
K,

g

2 _
A2 = R (5.61)

1
K = §7A§. (5.62)

From these relations, it is immediately clear that solitons can only occur for anomalous group

velocity dispersion (,852) < 0) since the peak power A? must always be a positive number.
The total solution for the soliton can then be written as

t\
A(z,t) = Aysech (T) eIk,

where the parameters Ay, T, and K are linked by Egs. (5.61)) and (5.62). Eq. (5.61) states that, if
B

SPM is needed to compensate for the dispersion. Similarly, if the pulse duration 7 is increased,

the dispersion is increased, the pulse peak power A? must be increased as well, since stronger
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the effects of dispersion will decrease, since the pulse spectrum narrows, resulting in less delay
between the various spectral components. As a consequence, we may also reduce the pulse peak
power A?, since “less” SPM is needed to compensate for the dispersion. The parameter K in Eq.
(5.62)) quantifies the phase delay caused by SPM, which simply increases as the pulse peak power
increases. Soliton formation resulting from an interplay of anomalous group-velocity dispersion
(GVD) and self-phase modulation (SPM) is illustrated in Fig.

1 1 1
| 4

Linear dispersive medium (negative GVD)

" )k

Nonlinear nondispersive medium (positive SPM)

(c) JTK _' l\ | J?L

Nonlinear dispersive medium (negative GVD + positive SPM)

(a)

Figure 5.4: Formation of a soliton by an interplay of anomalous group-velocity dispersion (GVD)
and self-phase modulation (SPM). (a) In a linear medium with negative GVD, the high-frequency
spectral components (“blue”, B) experience a smaller group delay than the low-frequency compo-
nents (“red”, R). This results in spectral broadening of the pulse. (b) In a nondispersive Kerr-
nonlinear medium, self-phase modulation (SPM) leads to a red-shift of the leading edge of the
pulse and to a blue-shift of the trailing edge. The envelope of the pulse remains unchanged, but
the pulse experiences a chirp. (c) If a Kerr-nonlinear medium features negative GVD, the effects of
SPM and dispersion-induced broadening can cancel each other, leading to formation of an optical
soliton. Exact balance between negative GVD and SPM links the pulse duration to its power.
(Figures adapted from [26])

A sech-pulse is sketched in Fig.[5.5|(a) along with a Gaussian function of the same height and
width (full width at half the maximum, FWHM). Note that apart from the family of fundamental
solitons with real, z-invariant envelopes, Eq. also possesses solutions with complex envelopes
that reproduce themselves periodically during propagation. A so-called N = 2 soliton is depicted
in Fig.]5.5(c). A more detailed discussion of higher-order solitons can be found in the literature

126, 5].

5.3.3 Modulation instability
Stability analysis

In nonlinear optics, modulation instability is a phenomenon whereby a nonlinear interaction of a
strong continuous-wave (cw) signal and quantum noise leads to amplification of the noise, gener-
ation of spectral sidebands and eventually to the break-up of the cw signal into a train of pulses.
Let us assume a monochromatic continuous-wave signal with carrier frequency w., amplitude Ag
and power Py = A% propagating along an optical waveguide,
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(b)

0
20 2 t/n

Figure 5.5: Fundamental and higher-order solitons. (a) Sech-shape soliton pulse, combined a
Gaussian pulse of the same height and width (full width at half the maximum, FWHM) (b)
Fundamental soliton, maintaining its amplitude during propagation. (c) Higher-order soliton,
featuring a complex envelope that reproduces itself periodically during propagation. (Figures
adapted from [26])
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1 ; E(x,Y,we) i(w i
_ - JPNL(2) Al Jj(wet—LBcz)
E(r,t) = 5 Ape “Plw) e . (5.63)

Note that in this relation, phase factors can be transferred at will between Ag and & (z,y, w.)-
We may hence assume without loss of generality that Ag € R, which is used later to simplify the
derivation. The expression @y, (z) accounts for the power-dependent nonlinear phase shift that
the wave experiences due to self-phase modulation. This phase shift can be calculated by inserting
the corresponding slowly varying envelope,

Az, t) = Agd Ve ), (5.64)
into the nonlinear Schrédinger Equation, Eq. (5.43). This leads to
By (2) = =740l 2, (5.65)

i.e., the monochromatic wave experiences a phase delay which is proportional to the launched
power |AO|2 and increases linearly with distance z. This is consistent with the observation that
the Kerr effect leads to an increase of the refractive index and hence to an increase of the modal
propagation constant by A8 = ~ \A0|2, which is proportional to the signal power, see Eq.
and the discussion thereof.

However, the fact that the ansatz according to Eq. yields a physically meaningful solution
of Eq. does not yet imply stability of this solution. In this context, stability is related to the
question whether or not a small deviation from the solution A (z,t) = Age37401*% will decay and
eventually vanish or grow to infinity. This question is of particular relevance in nonlinear optics -
in linear optics, a small perturbation of a known solution will just evolve in the very same way as
the solution itself.

To analyze the stability of the monochromatic wave in the presence of third-order nonlinearity
let us assume that the cw solution Age37140°% ig perturbed by a small amplitude deviation
AA (z,t). The ansatz can then be written as

| 2

A(z,t) = (Ag + AA (2,1)) e 3140l 2, (5.66)

We may think of AA(z,t) as the optical amplitude that is associated with an additional noise
photon that is emitted into the waveguide mode at position z and time ¢. Note that in principle
we are free to incorporate the perturbation AA (z,t) into the bracket on the right-hand side of
Eq. or not. We have decided to do it in order to simplify the subsequent analysis.

We insert Eq. into Eq. (5.43)). Since the perturbation is much weaker than the amplitude
of the cw signal, |A (z,t)] < |Ap|, we may linearize the resulting equation about Ay by neglecting

all second-order products of small perturbation terms. Using again @y, (z) = —v|Ao|” 2, we
obtain a differential equation that describes the evolution of AA (z,t),

OAA (2,t) .1 0 O?AA(2,t) . .

02220 i s T8N A (AAG 1) + A" (2.1), (567

where AA* (z,t) denotes the complex conjugate of AA (z,t).

The spatial evolution of AA(z,t) depends on both its temporal change and the cw power.
To understand this better, let us try a time- and space-harmonic ansatz AA (z,t) for a wave
propagating in positive z-direction. Due to the complex conjugate on the right-hand side of
Eq. , the amplitudes at frequencies Q2 and — are coupled, and we hence need to incorporate
both of them into the ansatz,

AA (z,t) = Cred K2 4 0yed(U-K2) (5.68)

where the wave amplitudes C; and Cy are complex numbers. Note that, since AA(z,t) is a
perturbation of the slowly varying envelope A (z,t), the frequencies £ and the wave numbers
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+ K denote only the offset from the modal frequency w. and the corresponding wave number ..
Inserting Eq. (5.68)) into Eq. (5.67)), we can derive two linear equations for the wave amplitudes C
and Cs,

—K 39268 |4 714l Cr) _ (0
) s o) ) o K (5.69)
74| K+ 50%8:7 + 1A 2

Nontrivial solutions of this equation exist only if the determinant of the 2 x 2-matrix on the left-
hand side vanishes. This leads to the dispersion relation of the perturbation, i.e., to a relationship
between the offset frequency €2 and the corresponding wave number change K,

1 2
h i\/<292@9)> + 0280y | A%, (5.70)

From this relation, we can already infer that for the case of normal group-velocity dispersion,
ﬁ£2) > 0, we will always find a real wave number K € R, no matter what the frequency offset €2
and power |A0|2 of the cw pump wave are. A perturbation launched into the waveguide mode will
hence propagate along with the cw pump and the propagation constant is influenced by nonlinear
interaction, but the amplitude of the perturbation will not increase to infinity. For real fibers with
nonzero propagation loss, the perturbation will even decrease during propagation and eventually
vanish along with the cw wave. The system is hence stable in this case.

For anomalous group velocity dispersion, 6((;2) < 0, things are different. In this case, K becomes
purely imaginary for a certain range of frequency offsets,

4y]4,°
Q] < Q, = TQ;) (5.71)

C

In this case, the wavenumber is purely imaginary,

1
K= ij§ﬂ£ )0, /02 — Q2. (5.72)

As a consequence, the amplitude of the perturbation increases or decreases exponentially with
z. The situation of an exponentially increasing perturbation can be interpreted as an energy
transfer from the cw pump wave to two sidebands that emerge at distance £ from the pump,
see Fig.[5.6/(a). This energy transfer can be triggered by an infinitesimally small perturbation,
which then increases exponentially, thereby depleting the strong cw pump. The system is hence
unstable, and the cw pump breaks up into a train of pulses. This phenomenon is referred to as
modulation instability. The measured gain spectrum of modulation instability in an optical fiber
in depicted in Fig.[5.6{(b). Modulation instability can be induced by launching a weak cw probe
wave along with the pump. The repetition frequency of the generated pulse train is given by the
spectral distance of the probe wave from the pump, see Fig.[5.6/(c).

Gain spectrum

For the case of modulation instability, we may calculate the associated gain with which the side-
bands are amplified. Let us consider the upper sideband, which, according to Eq. propa-
gates as exp (j (2t — Kz)). The power gain is related to the imaginary part of the wavenumber
by ¢(©) = 2Im{K}. Similarly, the lower sideband propagates as exp (—j (2t — Kz)), and the
associated power gain is given by ¢ (2) = —2Im {K'}. The frequency dependence of the gain can
be directly inferred from Eq. ,

59’9. [z — 02, (5.73)
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Figure 5.6: Modulation instability (a) Nonlinear interaction transfers power from a strong

continuous-wave (cw) signal to spectral sidebands. This may lead to the break-up of the cw
signal into a train of pulses. (b) Measured gain spectrum of modulation instability in an optical
fiber. (c) Autocorrelation traces of time-domain signals that are subject to modulation instability.
Within the gain region according to Eq.[5.71} modulation instability can be induced by launching
a weak cw probe wave along with the pump. The repetition frequency of the generated impulses
is given by the spectral distance of the probe wave from the pump. The figure depicts two pulse
trains, generated by different probe waves. (Figures adapted from [16] [5])

The theoretically calculated gain spectrum of an optical fiber is sketched in Fig.[5.71 The gain
spectrum is perfectly symmetric with respect to the strong cw signal. Asymmetry can arise from
higher-order dispersion and different initial conditions that are related to the population of the
waveguide mode with random noise photons. According to Eq. , modulation instability gain
should always occur close to the optical carrier. Note, however, that real fibers have propagation

loss, which was not included in the preceding analysis, and modulation instability only plays an
important role once the associated gain is larger than the fiber loss.
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Figure 5.7: Calculated gain spectrum of modulation instability. In a simplified consideration, the
gain spectrum is perfectly symmetric with respect to the strong CW signal. Asymmetry can arise
from higher-order dispersion and different initial conditions that are related to the population of
the waveguide mode with random noise photons. (Figures adapted from [3])
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Kerr frequency comb generation

When combined with a high-Q optical resonator that “stores” the sideband photons, modulation
instability can be exploited to generate broadband frequency combs [20] [12] 21} [16]. The corre-
sponding experimental setup is illustrated in Fig.|5.8|(a). A high-Q Kerr-nonlinear microresonator
is pumped by a cw laser which is tuned to one of the resonance frequencies. The output power
of the pump laser is amplified to overcome the pump threshold power, for which the gain due to
modulation instability overcomes the cavity losses. Give the right dispersion profile, this leads to
for formation of broadband so-called Kerr frequency combs, where the line spacing is dictated by
the local free-spectral range (FSR) of the microresonator. The principle of Kerr frequency comb
generation is illustrated in Fig.|[5.8|(b). Power is transferred from the pump to the sidebands by
degenerate and nondegenerate four-wave mixing (FWM). Fig.[5.8)(c) illustrates a couple resonator
implementations, including silica and silicon nitride waveguide-based resonators, silica toroid res-
onators, and crystalline resonators that are fabricated by ultra-precision turning and polishing
of the surface. Octave-spanning frequency combs can be obtained from silica toroid resonators,
which exploit low-loss whispering-gallery mode propagation to achieve particularly high Q-factors,
see Fig.|5.9
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Figure 5.8: Kerr frequency comb generation, exploiting modulation instabilities in high-Q Kerr-
nonlinear resonator. (a) Setup used for Kerr comb generation: A high-Q Kerr-nonlinear microres-
onator is pumped by a cw laser which is tuned to one of the resonance frequencies. Above a
certain pump threshold, the gain due to modulation instability overcomes the cavity losses. (b)
Principle of Kerr frequency comb generation: Power is transferred from the pump to the sidebands
by degenerate and nondegenerate four-wave mixing (FWM). This leads to a broadband so-called
Kerr frequency comb, where the line spacing is dictated by the local free spectral range (FSR) of
the microresonator. (c) Different resonator implementations, including silica and silicon nitride
waveguide-based resonators, silica toroid devices, and crystalline resonators that are fabricated by
ultra-precision turning. (Figures adapted from [16])
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Figure 5.9: Generation of octave-spanning Kerr frequency combs in a toroidal whispering-gallery
mode resonator. (a) Scanning electron microscops (SEM) picture of the device along with a
calculated whispering-gallery mode field. The resonators are fabricated by laser-induced reflow
of silica disc resontor. (b) Recorded comb spectrum, spanning more than an octave of optical
frequencies. (Figures adapted from [I6])
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Appendix A

Mathematical Definitions and
Conventions

A.1 Time- and Frequency-Domain Quantities

If not otherwise stated, ¢ is the independent time domain variable, and w denotes the corresponding
frequency domain variable. The quantities u(t), v(t), and h(t) are functions in the time domain,

and %(w), ¥(w), and h(w) are the corresponding frequency domain spectra.

A.1.1 Fourier Transformation

The Fourier transform of a function u(t) with respect to the independent variable ¢ is denoted as
Tt {u(t)}. Accordingly, ! {u(w)} refers to the inverse Fourier transform of a function @(w) with

respect to the independent variable w,

—+o0

F {u(t)} = a(w) = / w(t) et dt,
_:O +oo
5 () =) = 5 [ e dw.

The independent variable ¢ usually represents the time, and w is angular frequency.

A.2 Vector calculus

A.2.1 The Nabla operator

Gradient
Oy Ozt
Vi =grady=| 0y | =1 0y
0. 9.9
Example: Ve 1¥T = —jke kT
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Curl

Oy A, OyA, — 04,y
VxA=rotA=1|0, | x| A4y | =| 0.4 — 0. A, (A.4)
0, A, Oz Ay — 0y Ay
Example: V x Age 3KT = —jk x Age kT
Divergence
Oy A,
V-A=divA=1|0, |- | 4y | = 0.4, + 0,4, + 0. A, (A.5)
0. A,
Example: V- Age 1kT = —jk . Age kT
Laplacian
Ay (02+02+02) As
VPA=AA=(02+0;+02) [ Ay | = | (02+ 07 +0%) A, (A.6)
A, (02 + 0 + 82) A,

Example: V2Age 1kT = (—i)?(k- k)AOe—jkr

A.2.2 Basic formulae of vector differential operators

A short summary of basic relations from vector differential calculus is given in Fig.[A.T]

Linearitdt
1. V(ad +B¥ )=a V& +B V¥
2. V- (aF+pG)=a V- F+B V- G
3. Vx(aF+ G)=a VxF+B VG

Operation auf Produkten
4. V(¥ )=0 V¥ +¥ Vo
5. VF-G)=(F-V)G+(G-V)F+
+Fx(VxG)+ G x(VxF)
V. (®F)=0 V- F+(V®)-F
V- (FxG)=G + VxF-F - VxG
Vx(®F)=® VXF + (V@ )xF
Vx(FxG)=(G-V)F-(F-V)G+
+F(V-G)-G(V-F)

Zweifache Anwendung von V
10. V- (VxF)=0
11. Vx(Vo)=0
12. Vx(VxF)=V(V-F)-V%F

O XN

grad(a® +B¥ )=a grad d +p grad ¥
div(a F+3 G)=a div F+p div G
rot(a F+B G)=a rot F+f rot G

grad(®¥)=® grad ¥ +V¥ grad ¢
grad(F - G)=(F - grad)G +

+(G - grad)F + F xrot G+ G xrot F
div(® F)=® divF+F - grad ®
div(FxG)=G - rotF-F - rot G
rot(® F) =® rot F+ (grad ®)xF
rot(F xG) =(G - grad)F -

—(F-grad)G+FdivG-G divF

divrot F=0
rot grad® =0
rot rot F=grad div F-AF

Figure A.1: Basic relations of vector

differential operators (Adapted from [24])
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