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Exercise 3 To be worked on until November 21, 2024

To start with the exercise, please login to the jupytermachine, start the standard Datenanalyse

container and update your tp1 forstudents repository, e.g. by navigating to the directory in
the file browser on the left and then selecting Git -> Pull from Remote from the menu bar. A
new subfolder Exercise03 should appear with a Jupyter notebook Exercise03.ipynb. Open this
notebook and work though the different tasks that are given inside.

But... before you navigate through the notebook, please read the following sections, which will
give you some fundamental information to help you complete the exercise successfully.

1 Electromagnetic cascades in a calorimeter

1.1 Energy loss of electrons/positrons and photons

Bremsstrahlung is the primary energy loss process for electrons/positrons above ∼ 10 MeV, while
photons lose energy mainly through the production of electron–positron pairs. High-energy pho-
tons, electrons, and positrons create a cascade of secondary particles—known as an “electromag-
netic shower.” The following quantities (Thomson’s approximation) are defined:

• Radiation Length X0: Average distance over which the electron energy reduces by 1/e:

X0 ≈
1

4αnZ2 r2e ln
(

287√
Z

)
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Figure 1: Energy loss of electron as a function
of energy.

Figure 2: Electromagnetic cascade

where α is the fine-structure constant, n is the number density of the nucleus, Z is the
atomic number of the nucles, and re is the classical electron radius.

• Critical Energy Ec: Energy at which ionization becomes the dominant energy loss:

Ec ≈
800MeV

Z

• Molière Radius RM : Represents the lateral spread of an electromagnetic shower, mainly
due to multiple scattering:

RM =
21MeV

Ec

X0 (g/cm
2)

Approximately 95% of the shower energy is contained within 2RM (transverse width).

• Maximum Particle Count Length xmax: The shower reaches the maximum particle
count after xmax radiation lengths, given by:

xmax =
ln(E/Ec)

ln 2
X0

where E is the initial energy. xmax is also called longitudinal depth.

1.2 Energy loss of muons

For muons with energies less than 100 GeV, the ionization is the dominant energy-loss process.
Muons travel significant distances in dense materials: for example, a 10 GeV muon loses order of
10 MeV/cm in iron and has a range of several meters.

A particle with a momentum close to the minimum ionization point is called a minimum ionizing
particle (MIP). A particle with a much larger momentum but with an energy loss comparable to
that of the minimum ionization point is also called a MIP.
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Figure 3: Energy loss of muons as a function of the muon momentum.

2 Calorimetry and reconstruction

We have prepared ROOT n-tuples containing hit information from EMCal simulations at the
PHENIX experiment at Brookhaven National Laboratory (https://www.phenix.bnl.gov/). The
data were generated using a particle gun with a gaussian energy distribution, ranging from 5 GeV
to 80 GeV. The EMCal at the PHENIX experiment covers an area of 2 m × 4 m perpendicular
to the beamline. This corresponds to 3 × 6 EMCal super modules where:

• 1 EMCal super module = 6 × 6 = 36 EMCal modules.

• 1 EMCal module is 11 cm × 11 cm and contains 2 × 2 = 4 towers/channels, with a granularity
of approximately 5.5 cm.

In total, there are 2592 towers or channels to read out the energy deposits from the EMCal.

For practical purposes, consider the PHENIX EMCal as a 2D matrix of 2592 channels (72 hori-
zontal x 36 vertical), where each channel has a dimension of (5.535cm x 5.535cm x 36.96cm).

In the notebook, you have the option to get readout for electron and dielectron events from the
EMCal. The readout has the following format:
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’elmID’: array([1207, 1208, 1243, 1244, 1245, 1246, 1279, 1280, 1281, 1282,

1283, 1314, 1315, 1316, 1317, 1318, 1352, 1387, 1388, 1389, 1390],

dtype=int32),

’edep’: array([2.1672759e-03, 2.3865167e-03, 6.9637364e-03, 6.5519638e-02,

5.9960117e-03, 1.5223619e-03, 1.5519783e-02, 1.3763729e+00,

1.7959915e-02, 1.1316873e-03, 2.6412117e-03, 1.1183993e-03,

3.0373151e-03, 1.8506199e-02, 5.9680296e-03, 1.2358509e-03,

1.5430434e-03, 1.2675102e-03, 8.8297541e-04, 8.7783835e-04,

1.5175857e-03],

dtype=float32)

where elmID[X] is the identifier of the channel that measured a given edep[X]. The values of
elmID[X] vary from 0 to 2591 (corresponding to the total number of channels).

2.1 Moments of a distribution

The moments of a distribution provide useful information about its shape and spread. Below are
the formulas for different moments:

• 1st order (raw):

Mean: µ := E[X] =
µ1

1

• 2nd order (central):

Variance: σ2 = E[(X − µ)2] =
µ2

12
= µ2

• 3rd order (standardized):

Skewnessγ = E

[(
X − µ

σ

)3
]
=

E[(X − µ)3]

(E[(X − µ)2])3/2

• 4th order (standardized):

Kurtosis g = E

[(
X − µ

σ

)4
]
=

E[(X − µ)4]

(E[(X − µ)2])2

They are helpful to analyze the 2D distribution of the EMCal hits.
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3 Calorimetry and clustering algorithms

Due to the complex patterns of particle interactions, EMCal readouts can become dense and
chaotic. In these situations, clustering algorithms are essential to group hits that originate from
a single particle, helping to reconstruct particle flows or analyze jets.

3.1 Clustering using the K-means algorithm

The K-means algorithm is a popular unsupervised machine learning technique used to partition
data into K distinct clusters based on feature similarity.

1. Initialize centroids: Randomly select K hits; these hits will be the starting, K, centroids

2. Assign clusters: Assign hits to the nearest centroid, forming K clusters

3. Update centroids and reassign hits: Calculate the centroid (mean of the coordinates)
of each cluster; check if a hit in a cluster is closer to another centroid; if so, reallocate the
hits to the closest cluster.

4. Iterate: Repeat step 3 until no more hits change cluster (or until a certain tolerance).

5. Output: The final centroids represent the centers of the K clusters, and each hit is assigned
to the cluster of its nearest centroid.

3.2 Finding the optimal number of clusters

K-means is an efficient method that works well with large datasets, making it ideal for quickly
organizing data into clusters based on similarity. However, one limitation is that the number of
clusters, K, must be predetermined, which can be challenging without prior knowledge of the data
structure. To address this, techniques such as the Elbow and the Silhouette methods are often
used to find the optimal number of clusters, helping to ensure that the chosen K best captures
the natural groupings within the data. In any case, for a given event, one must run the K-means
algorithm multiple times, scanning different values of K and identifying the optimal value of K.
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3.2.1 Elbow method

The Elbow Method helps find the optimal number of clusters K by computing the within-cluster
sum of squares (WCSSK):

WCSSK =
K∑
i=1

∑
x∈Ci

∥x− µi∥2

where K is the number of clusters, Ci is the i-th cluster, x is a hit in the cluster, µi is the centroid
of the cluster Ci, and ∥x−µi∥2 is the squared Euclidean distance between the hit and the centroid.
If you plot WCSSK as a function of K, you will notice that as K increases, WCSSK decreases.
The ”elbow” point, where the decrease slows down ”sharply”, indicates the optimal K.

To determine the elbow point more precisely, you can: calculate the second derivative of WCSS
with respect to K and identify the point with the largest change, indicating the most signifi-
cant slowdown in the rate of decrease; use algorithms such as the ”Kneedle” algorithm, which
automatically detects the ”knee” or ”elbow” in the curve by analyzing the curvature.

3.2.2 Silouette method

The Silhouette method evaluates the quality of clustering by calculating a ”silhouette score” for
each hit, based on how similar it is to hits in its own cluster compared to hits in the nearest other
cluster. For a given number of clusters K, the average silhouette score S ranges from -1 to 1:
S near 1 indicates well-clustered hits, close to their own cluster and far from others; S near 0
indicates the presence of hits on the boundary between clusters (overlapping clusters); a negative
S indicates that many hits are assigned to the wrong cluster.

To determine the optimal K, calculate the average silhouette score for different K values and
choose the K that maximizes this score, indicating the best-defined clusters. Here is a method to
calculate the silhouette score S:

• Compute the intra-cluster distance ai: for each hit i in a cluster, compute the average
Euclidean distance to all other points within the same cluster.

• Compute the nearest cluster distance bi: for each hit i in a cluster, compute the average
euclidean distance to all points of another cluster; repeat for all clusters and take the smallest
average distance computed.

• Compute silhouette hit score si: for each hit i in a cluster, compute

si =
bi − ai

max(ai, bi)

and repeat it for all hits in the event.

• Calculate the average silhouette score S of the event, i.e. the average of si over all hits in
the event.
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3.2.3 Energy seeding

We are future data scientists, but also future physicists! Let’s approach the determination of K
from the perspective of physics. The EMCal readouts provide not only the hit position information,
but also the energy deposition measured for each hit.

”Energy seeds” in calorimetry refer to localized points in the detector where the energy deposition
is significantly higher than the surrounding areas. These seeds act as initial markers for clustering
algorithms, helping to identify and group hits that are likely to belong to the same cluster.
By starting with these high-energy regions, energy seed-based clustering improves accuracy in
reconstructing particle trajectories and separating overlapping showers.

Figure 4: A possible logic for seed searching

Here there is an idea for a seed-searching algorithm:

• Suppose we have a 15× 15 EMCal grid and create a (15 + 1)× (15 + 1) 2D array initialized
with zeros.

• Assign energy values to the cells based on their elmID.

• Apply a minimum energy mask to identify potential energy seed candidates.
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• Sort the energy seeds in ascending order.

• Add a padding region for each seed candidate. If any hit within the padding region has a
higher energy than the candidate, discard the candidate. Loop through the list of energy
seed candidates.

The found seed candidates can be used as a starting point for the K-means clustering algorithm.
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