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Learning goals
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Be able to define flavour physics


Understand the GIM mechanism


Understanding of Cabibbo mechanism, the CKM matrix and how to 
measure its parameters


Understand Meson-Antimeson Mixing: Kaons and B-mesons
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Flavour physics
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What is flavor physics? 
Experimentally: three fermion families (generations)  
 → six different quark and lepton flavors 

Flavor quantum numbers (weak isospin, strangeness, charm, beauty, truth) conserved in 
electromagnetic and strong interactions 

Only charged current (CC) weak interactions change quark flavours:


Up to now: Universal W-boson coupling to left handed fermions 


Transitions within the same SU(2)L doublet occurs in particle decays

ℒ ∼ f̄γμ 1
2

(1 − γ5)f′￼
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Flavour physics
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What is “flavour” and “flavour physics”?

DEFINITION: Flavour
is a quantum number used to distinguish particles/fields 
that have the same gauge quantum numbers

In the SM: quarks and leptons come in three copies with the same colour 
representation and electric charge

DEFINITION: Flavour physics
deals with interactions that distinguishes between flavours

In the SM: QED and QCD interactions do not distinguish between flavours, 
while the weak interactions (and the couplings to the Higgs field) do

(from D. Straub)

→ this talk: focus on CP violation in quark flavour physics
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Flavour physics
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Columns: Families or generations
Rows: Type
Cell: Flavour
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Decay classification
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Leptonic decays

Final state does only contain leptons


Example: Muon decay  

Semileptonic decays

Final state contains leptons and hadrons


Example: β-decay  

Hadronic decays

Final state contains only hadrons


Example: 

μ− → e−ν̄eνμ

n → p+e−ν̄e

K0 → π+π−
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Challenge 1: Semi-leptonic vs leptonic decays, and Kaon decays
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Two experimental observations challenge the electroweak theory:

Coupling strength in (semileptonic) neutron decays is 3% smaller than in (leptonic) muon 
decays


Kaon decays  are significantly rarer than pion decays :K− → ℓ−ν π− → ℓ−ν
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Cabibbo theory (1963)
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Quark eigenstates of the weak interactions are not the mass eigenstates (the 
actual reason behind this: the Yukawa coupling in the Higgs sector is not 
flavour diagonal) 

Quark states are rotated by the Cabibbo angle  (for 2 generations): 
 
 

W bosons couple to the rotated down-type and the up-type states 

Why rotate the down-type and not the up-type states? As usual: Convention.

θC

weak interactions 93

where either l = e or l = µ. Putting in the masses and observing the
ratio in the experiment, we can obtain the angle qC ⇡ 13�. We can do this
measurement in both the muon and the electron channel and get the same
value for qC. It is not possible to calculate qC from first principles, as it is
a fundamental parameter of the standard model and therefore has to be
measured.

W+s̄

µ−W−

µ+

νµ

d

u

Figure 11.9: Decay of the K0 into
muon and anti-muon with an u
quark as internal line.

In the 1960s dozens of known decays with different rates were known.
Cabibbo’s theory was extremely successful in correlating the various decay
rates. However, one problem could not be solved: In this theory, the neutral
kaon K0 (see section 11.7) should decay into muon and anti-muon K0 !

µ+ + µ� (see figure 11.9) with a rate proportional to sin qC cos qC, but the
calculated rate is far greater than the measured one. In fact the process has
not been observed at all at that time.

The solution, which was proposed by Glashow, Iliopoulos and Maiani
(GIM) in 1970, was to postulate a fourth, yet unknown quark, namely the
charm quark. The charm quark should have couplings to s and d with fac-
tors cos qC and � sin qC, respectively (note the negative sign in one case):

W−

c̄

d

W−

c̄

s

µ �iggµ(1 � g5)(� sin qC) µ �iggµ(1 � g5) cos qC

Figure 11.10: cdW and csW vertex
factors for quark mixing in the
Cabibbo theory.

We then have another diagram contributing to the K0 decay, which is
shown in figure 11.11. The two possible diagrams are interfering and cancel
each other so that the decay heavily K0 ! µ+ + µ� is suppressed.

W+s̄

µ−W−

µ+

νµ

d

c

Figure 11.11: Decay of the K0 into
muon and anti-muon with a c
quark as internal line.

The correct interpretation of the GIM scheme is that the quark states in
the weak interaction are rotated by qC in the following way:

d0 = d cos qC + s sin qC and s0 = �d sin qC + s cos qC, (11.59)

which can be written in form of a rotation matrix
 

d0

s0

!
=

 
cos qC sin qC
� sin qC cos qC

! 
d
s

!
. (11.60)

The W bosons couple to the rotated states
 

u
d0

!
=

 
u

d cos qC + s sin qC

!
and

 
c
s0

!
=

 
c

�d sin qC + s cos qC

!
. (11.61)

Four years after this formalism has been introduced, postulating the exis-
tence of a c quark, it has been discovered experimentally. Before we extend
this concept to three generations in section 11.8, we make a short detour
and look at processes with strangeness changing interactions in more detail.

11.7 CP Violation

The concept of quark mixing has weird consequences for the system of
neutral kaons K0. The kaons are allowed to transform into their own anti-
particles K̄0 and back again. A diagram describing such a process is shown
in figure 11.12.
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Challenge 2: “Forbidden” Kaon decays
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Compare branching fractions of two kaon decays:


: flavour changing charged current current with Δs = 1 
(strangeness violated)


: flavour changing current neutral current (FCNC) with 
Δs = 1 (strangeness violated) 
→ forbidden at tree level in the SM


Experimentally today: , 

in the 1960s the decay  had not been 
observed


While the Box diagram with two W-bosons is 
suppressed compared to a single W-boson 
exchange, it does not explain such a tiny branching 
fraction…

K+ → μ+νμ

K0 → μ+μ−

ℬ(K0 → μμ)
ℬ(K+ → μν)

≈ 6 × 10−9

K0 → μ+μ−
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GIM mechanism
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S. Glashow, J. Iliopoulos and L. Maiani postulated* the existence of a fourth 
quark 
 
 
 
 
 

Destructive interference (there is a minus sign!) leads to tiny branching fraction


If mass of charm quark and mass of up quark were identical: Exact 
cancellation: Limits on  can be translated on limits on charm 
quark mass


In 1974: Direct discovery of the charm quark bound state 

ℬ(K0 → μμ)

J/ψ
*PRD 2 (1970) 1285
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Challenge 3: CP violation in Kaon decays 
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In other news, 1964: Discovery on CP violation (discrete symmetries C 
and P violated simultaneously) discovered in neutral Kaon decays…


The GIM mechanism does not provide an answer for that


M. Kobayashi, T. Maskawa and postulated the existence of a third 
quark generation in 1973: 
 
 
 

This is todays description using the so-called CKM matrix


Provides a mechanism to explain CP violation (later)
*Prog. Theor. Phys. 49 (1973) 634)Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

CKM Matrix

CP violation: discrete symmetries C and P violated simultaneously 
Discovered in neutral kaon system (J. Cronin, V. Fitch et al., 1964) 

Requirement for baryon asymmetry in the universe (A. Sacharow, 1967) 

Mechanism for CP violation in electroweak theory? 

KM mechanism: three-family quark mixing  
(M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49 (1973) 634)  

Description: Cabibbo-Kobayashi-Maskawa( CKM) matrix 
 
 
 

Reminder: origin of CKM matrix = quark Yukawa coupling 

CP violation in quark sector requires (at least) three quark families (needs 
complex phase → later) → prediction of top and bottom quark

!413
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Nobel prize 2008
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Prize motivation: “for the discovery of the origin of the broken 
symmetry which predicts the existence of at least three families of 

quarks in nature”
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 Toshihide Maskawa 

 
Born: 7 February 1940, Nagoya, Japan


Died: 23 July 2021, Kyoto, Japan

Makoto Kobayashi  
 

Born: 7 April 1944, Nagoya, Japan

https://www.nobelprize.org/prizes/physics/2008/maskawa/facts/
https://www.nobelprize.org/prizes/physics/2008/kobayashi/facts/
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Loki
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Properties of the CKM matrix
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Unitary, complex 3×3 matrix (3 generations, 6 flavours): 18 parameters


Unitarity: 


Quark fields can absorb one parameter (“phase”) each (6), but overall offset 
(“global phase”) is unknown (1): parameters reduced by 6-1=5 (next slide)


CKM Unitarity reduces parameters by another 3+6=9:








4 free parameters (experimental input)

V†
CKMVCKM = VCKMV†

CKM = 13

3

∑
i=1

VijV*ij = 1 for j = 1..3

3

∑
i=1

VijV*ij = 0 for j, k = 1..3,k > j

Credit: U. Husemann
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Properties of the CKM matrix: Unobservables phases
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Unitarity constraints of the CKM matrix
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Unitary triangle(s)

>In the SM, this matrix is unitary – one of the unitary
conditions:
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CKM Matrix
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CKM Matrix: Parametrizations
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Standard parametrization*: Three Euler angles  and one phase :θij δ

*Almost never used for the CKM Matrix.

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

CKM-Matrix: Parameterizations

Standard parameterization: three Euler angles θij, one phase δ 
(Kobayashi-Maskawa phase → CP violation) 
 
 
 
 
 
 
 
 

!417

s-b mixing d-b mixing + phase d-s mixing

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
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0 1 0
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1

A

0

@
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with cij = cos ✓ij , sij = sin ✓ij
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CKM Matrix: Parametrizations

12 12. CKM Quark-Mixing Matrix

12.3.4.2 B
0 æ D

(ú)±
fi

û

The interference of b æ u and b æ c transitions can be studied in B
0 æ D

(ú)+
fi

≠ (b æ cūd) and
B

0 æ B
0 æ D

(ú)+
fi

≠ (b̄ æ ūcd̄) decays and their CP conjugates, since both B
0 and B

0 decay to
D

(ú)±
fi

û (or D
±

fl
û, etc.). Since there are only tree and no penguin contributions to these decays,

in principle, it is possible to extract from the four time-dependent rates the magnitudes of the two
hadronic amplitudes, their relative strong phase, and the weak phase between the two decay paths,
which is 2— + “.

A complication is that the ratio of the interfering amplitudes is very small, rDfi = A(B0 æ
D

+
fi

≠)/A(B0 æ D
+

fi
≠) = O(0.01) (and similarly for rDúfi and rDfl), and therefore it has not

been possible to measure it. To obtain 2— + “, SU(3) flavor symmetry and dynamical assump-
tions have been used to relate A(B0 æ D

≠
fi

+) to A(B0 æ D
≠
s fi

+), so this measurement is not
model independent at present. Combining the D

±
fi

û, D
ú±

fi
û and D

±
fl

û measurements [131] gives
sin(2— + “) > 0.68 at 68% CL [115], consistent with the previously discussed results for — and “.

12.4 Global fit in the Standard Model
Using the independently measured CKM elements mentioned in the previous sections, the uni-

tarity of the CKM matrix can be checked. We obtain |Vud|2 + |Vus|2 + |Vub|2 = 0.9985 ± 0.0007 (1st
row), |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.001 ± 0.012 (2nd row), |Vud|2 + |Vcd|2 + |Vtd|2 = 0.9972 ± 0.0020 (1st
column), and |Vus|2+|Vcs|2+|Vts|2 = 1.004±0.012 (2nd column), respectively. Due to the recent re-
duction of the value of |Vud|, there is a 2.2‡ tension with unitarity in the 1st row, leading also to poor
consistency of the SM fit below. The uncertainties in the second row and column are dominated by
that of |Vcs|. For the second row, another check is obtained from the measurement of

q
u,c,d,s,b |Vij |2

in Sec. 12.2.4, minus the sum in the first row above: |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These
provide strong tests of the unitarity of the CKM matrix. With the significantly improved direct
determination of |Vtb|, the unitarity checks for the third row and column have also become fairly
precise, leaving decreasing room for mixing with other states. The sum of the three angles of the
unitarity triangle, – + — + “ =

!
173 ± 6

"¶, is also consistent with the SM expectation.
The CKM matrix elements can be most precisely determined using a global fit to all available

measurements and imposing the SM constraints (i.e., three generation unitarity). The fit must also
use theory predictions for hadronic matrix elements, which sometimes have significant uncertainties.
There are several approaches to combining the experimental data. CKMfitter [6,115] and Ref. [132]
(which develops [133,134] further) use frequentist statistics, while UTfit [116,135] uses a Bayesian
approach. These approaches provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix significantly
reduce the allowed range of some of the CKM elements. The fit for the Wolfenstein parameters
defined in Eq. (12.4) gives

⁄ = 0.22500 ± 0.00067 , A = 0.826+0.018
≠0.015 ,

fl̄ = 0.159 ± 0.010 , ÷̄ = 0.348 ± 0.010 . (12.26)

These values are obtained using the method of Refs. [6, 115]. The prescription of Refs. [116, 135]
gives ⁄ = 0.22499 ± 0.00067, A = 0.833 ± 0.011, fl̄ = 0.159 ± 0.010, and ÷̄ = 0.348 ± 0.009 [136];
these results are now very close to one another. The fit results for the magnitudes of all nine CKM
elements are

--VCKM
-- =

Q

ca
0.97435 ± 0.00016 0.22500 ± 0.00067 0.00369 ± 0.00011
0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085

≠0.00074
0.00857+0.00020

≠0.00018 0.04110+0.00083
≠0.00072 0.999118+0.000031

≠0.000036

R

db , (12.27)

11th August, 2022

Source: PDG 2022

Clear hierarchy of matrix 
elements:


diagonal elements all ~1 → transitions 
within one generation are most likely


1 ≫ s12 ≫ s23 ≫ s13

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

CKM Matrix: Parameterizations

Experimentally: magnitudes of CKM matrix elements (PDG 2016) 
 
 
 
 

Clear hierarchy of matrix elements: 
Magnitudes of diagonal elements ≈ 1: 
transitions within a family most likely 

In standard parameterization: 
s12 ≫ s23 ≫ s13

!418

u

d

c

s

t

b

|VCKM| =

0

BB@

0.97434+0.00011
�0.00012 0.22506 ± 0.00050 0.00357 ± 0.00015

0.22492 ± 0.00050 0.97351 ± 0.00013 0.0411 ± 0.0013

0.00875+0.00032
�0.00033 0.0403 ± 0.0013 0.99915 ± 0.00005

1

CCA

Credit: U. Husemann
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CKM Matrix: Wolfenstein Parametrizations
Use hierarchy and expand in Cabibbo angle s12 = sin θC

1 12. CKM Quark-Mixing Matrix

12. CKM Quark-Mixing Matrix

Revised March 2022 by A. Ceccucci (CERN), Z. Ligeti (LBNL) and Y. Sakai (KEK).

12.1 Introduction
The masses and mixings of quarks have a common origin in the Standard Model (SM). They

arise from the Yukawa interactions with the Higgs condensate,

LY = ≠Y
d

ij Q
I
Li „ d

I
Rj ≠ Y

u
ij Q

I
Li ‘ „

ú
u

I
Rj + h.c., (12.1)

where Y
u,d are 3◊3 complex matrices, „ is the Higgs field, i, j are generation labels, and ‘ is the 2◊2

antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis. When „ acquires a vacuum
expectation value, È„Í = (0, v/

Ô
2), Eq. (12.1) yields mass terms for the quarks. The physical states

are obtained by diagonalizing Y
u,d by four unitary matrices, V

u,d
L,R, as M

f
diag = V

f
L Y

f
V

f†

R (v/
Ô

2),
f = u, d. As a result, the charged-current W

± interactions couple to the physical uLj and dLk

quarks with couplings given by

≠gÔ
2

(uL, cL, tL)“µ
W

+
µ VCKM

Q

ca
dL

sL

bL

R

db + h.c., VCKM © V
u

L V
d

L
† =

Q

ca
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

R

db . (12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a 3 ◊ 3 unitary matrix. It can be
parameterized by three mixing angles and the CP -violating KM phase [2]. Of the many possible
conventions, a standard choice has become [3]

VCKM =

Q

ca
1 0 0
0 c23 s23
0 ≠s23 c23

R

db

Q

ca
c13 0 s13e

≠i”

0 1 0
≠s13e

i” 0 c13

R

db

Q

ca
c12 s12 0

≠s12 c12 0
0 0 1

R

db

=

Q

ca
c12c13 s12c13 s13e

≠i”

≠s12c23 ≠ c12s23s13e
i”

c12c23 ≠ s12s23s13e
i”

s23c13
s12s23 ≠ c12c23s13e

i” ≠c12s23 ≠ s12c23s13e
i”

c23c13

R

db , (12.3)

where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = ⁄ = |Vus|


|Vud|2 + |Vus|2
, s23 = A⁄

2 = ⁄

----
Vcb

Vus

---- ,

s13e
i” = V

ú

ub = A⁄
3(fl + i÷) = A⁄

3(fl̄ + i÷̄)
Ô

1 ≠ A2⁄4
Ô

1 ≠ ⁄2 [1 ≠ A2⁄4(fl̄ + i÷̄)]
. (12.4)

These relations ensure that fl̄ + i÷̄ = ≠(VudV
ú

ub)/(VcdV
ú

cb) is phase convention independent, and the
CKM matrix written in terms of ⁄, A, fl̄, and ÷̄ is unitary to all orders in ⁄. The definitions of fl̄, ÷̄

reproduce all approximate results in the literature; i.e., fl̄ = fl(1≠⁄
2
/2+. . .) and ÷̄ = ÷(1≠⁄

2
/2+. . .),

and one can write VCKM to O(⁄4) either in terms of fl̄, ÷̄ or, traditionally,

VCKM =

Q

ca
1 ≠ ⁄

2
/2 ⁄ A⁄

3(fl ≠ i÷)
≠⁄ 1 ≠ ⁄

2
/2 A⁄

2

A⁄
3(1 ≠ fl ≠ i÷) ≠A⁄

2 1

R

db + O(⁄4) . (12.5)

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
11th August, 2022 9:55am
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s12 = ⁄ = |Vus|


|Vud|2 + |Vus|2
, s23 = A⁄

2 = ⁄

----
Vcb

Vus

---- ,

s13e
i” = V

ú

ub = A⁄
3(fl + i÷) = A⁄

3(fl̄ + i÷̄)
Ô

1 ≠ A2⁄4
Ô

1 ≠ ⁄2 [1 ≠ A2⁄4(fl̄ + i÷̄)]
. (12.4)

These relations ensure that fl̄ + i÷̄ = ≠(VudV
ú

ub)/(VcdV
ú

cb) is phase convention independent, and the
CKM matrix written in terms of ⁄, A, fl̄, and ÷̄ is unitary to all orders in ⁄. The definitions of fl̄, ÷̄

reproduce all approximate results in the literature; i.e., fl̄ = fl(1≠⁄
2
/2+. . .) and ÷̄ = ÷(1≠⁄

2
/2+. . .),

and one can write VCKM to O(⁄4) either in terms of fl̄, ÷̄ or, traditionally,

VCKM =

Q

ca
1 ≠ ⁄

2
/2 ⁄ A⁄

3(fl ≠ i÷)
≠⁄ 1 ≠ ⁄

2
/2 A⁄

2

A⁄
3(1 ≠ fl ≠ i÷) ≠A⁄

2 1

R

db + O(⁄4) . (12.5)

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
11th August, 2022 9:55am
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CKM Matrix: Experimental
Experimentally: four physical CKM 
parameters can be over-constrained 
with >4 measurements 


Unitarity dictates relations among 
CKM matrix elements, consider six 
complex equations (columns 12*, 
13*, 23*, 1*2, 1*3, 2*3)


Sum of three complex numbers = 0:  
triangle in complex plane → unitarity 
triangles 

Base length normalized to 1

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

Unitarity Triangles
Experimentally: four physical CKM 
parameters can be over-constrained 
with >4 measurements 

Unitarity dictates relations among 
CKM matrix elements, consider three 
complex equations: 
 
 

Sum of three complex numbers = 0: 
triangle in complex plane  
→ three unitarity triangles 
One can show that area of all unitary 
triangles is the same, proportional to 
“Jarlskog invariant”  
→ measure of CP violation

!420

3X

i=1

VijV ⇤
ik = 0 für j , k = 1 ... 3, k > j

V ⇤
usVud + V ⇤

csVcd + V ⇤
tsVtd = 0

First and second* column:

V ⇤
usVud + V ⇤

csVcd + V ⇤
tsVtd = 0

V ⇤
ubVus + V ⇤

cbVcs + V ⇤
tbVts = 0

Second and third* column

V ⇤
ubVus + V ⇤

cbVcs + V ⇤
tbVts = 0

(not to scale)

V ⇤
ubVud + V ⇤

cbVcd + V ⇤
tbVtd = 0

First and third* column:

V ⇤
ubVud

V ⇤
cbVcd

V ⇤
tbVtd

Credit: U. Husemann
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CKM Matrix: Experimental

SM unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)
Bd meson (bd) : VudV ⇤

ub + VcdV ⇤
cb + VtdV ⇤

tb = 0 (�3,�3,�3)

Bs meson (bs) : VusV ⇤
ub + VcsV ⇤

cb + VtsV ⇤
tb = 0 (�4,�2,�2)

K meson (sd) : VudV ⇤
us + VcdV ⇤

cs + VtdV ⇤
ts = 0 (�,�,�5)

D meson (cu) : VudV ⇤
cd + VusV ⇤

cs + VubV ⇤
cb = 0 (�,�,�5)

Representation of (⇢, ⌘) through rescaled triangles

(small but non squashed)
BD-meson triangle (bd)

(large but squashed)
D-meson triangle (cu)

In practice, always Bd unitarity triangle (but only 2 parameters out of 4)

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 15

SM unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)
Bd meson (bd) : VudV ⇤

ub + VcdV ⇤
cb + VtdV ⇤

tb = 0 (�3,�3,�3)

Bs meson (bs) : VusV ⇤
ub + VcsV ⇤

cb + VtsV ⇤
tb = 0 (�4,�2,�2)

K meson (sd) : VudV ⇤
us + VcdV ⇤

cs + VtdV ⇤
ts = 0 (�,�,�5)

D meson (cu) : VudV ⇤
cd + VusV ⇤

cs + VubV ⇤
cb = 0 (�,�,�5)

Representation of (⇢, ⌘) through rescaled triangles

(small but non squashed)
BD-meson triangle (bd)

(large but squashed)
D-meson triangle (cu)

In practice, always Bd unitarity triangle (but only 2 parameters out of 4)

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 15

In reality, people ~always talk about the (bd) triangle when talking about the CKM triangle.
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CKM Matrix: Measurements

A handle on the CKM matrix
Measurements in terms of hadrons, not of quarks !

d ! u: Nuclear physics (superallowed � decays)
s ! u: Kaon physics (KLOE, KTeV, NA62)
c ! d , s: Charm physics (CLEO-c, Babar, Belle, BESIII)
b ! u, c and t ! d , s: B physics (Babar, Belle, CDF, DØ, LHCb)
t ! b: Top physics (CDF/DØ, ATLAS, CMS)

How to determine structure of CKM matrix ?

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 16

Structure of CKM matrix

For two generations, 1 modulus, no
phase, no CP violation (Cabbibo)

V =


Vud Vus
Vcd Vcs

�
=


cos ✓ sin ✓
� sin ✓ cos ✓

�

For three generations, 3 moduli and 1 phase, a unique source of CP
violation in quark sector (Kobayashi-Maskawa)

V =

2

4
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3

5 '

2

64
1 � �2

2 � A�3(⇢̄� i ⌘̄)
�� 1 � �2

2 A�2

A�3(1 � ⇢̄� i ⌘̄) �A�2 1

3

75+ O(�4)

where we have exploited the observed hierarchy of matrix elements
(V = 1 + O(�), close to unity)

=)extremely predictive model for CP violation embedded in SM

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 14

StructureofCKMmatrix

Fortwogenerations,1modulus,no
phase,noCPviolation(Cabbibo)

V=


VudVus
VcdVcs

�
=


cos✓sin✓
�sin✓cos✓

�

Forthreegenerations,3moduliand1phase,auniquesourceofCP
violationinquarksector(Kobayashi-Maskawa)

V=

2

4
VudVusVub

VcdVcsVcb

VtdVtsVtb

3

5'

2

64
1��2

2�A�3(⇢̄�ī⌘)
��1��2

2A�2

A�3(1�⇢̄�ī⌘)�A�21

3

75+O(�4)

wherewehaveexploitedtheobservedhierarchyofmatrixelements
(V=1+O(�),closetounity)

=)extremelypredictivemodelforCPviolationembeddedinSM

SébastienDescotes-Genon(LPT-Orsay)TheCKMmatrix(1)08/06/1814

A handle on the CKM matrix
Measurements in terms of hadrons, not of quarks !

d ! u: Nuclear physics (superallowed � decays)
s ! u: Kaon physics (KLOE, KTeV, NA62)
c ! d , s: Charm physics (CLEO-c, Babar, Belle, BESIII)
b ! u, c and t ! d , s: B physics (Babar, Belle, CDF, DØ, LHCb)
t ! b: Top physics (CDF/DØ, ATLAS, CMS)

How to determine structure of CKM matrix ?

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 16

u

c

t

d s b
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CKM Matrix 1995

Torben Ferber  |  UHH Neutrinoseminar | 02.12.2013  |  Page 14

1995 → now: B-Factories

→ Nobel prize 2008 for Makoto Kobayashi and Toshihide Maskawa

β,α,γ = Φ1, Φ2, Φ3

SM unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)
Bd meson (bd) : VudV ⇤

ub + VcdV ⇤
cb + VtdV ⇤

tb = 0 (�3,�3,�3)

Bs meson (bs) : VusV ⇤
ub + VcsV ⇤

cb + VtsV ⇤
tb = 0 (�4,�2,�2)

K meson (sd) : VudV ⇤
us + VcdV ⇤

cs + VtdV ⇤
ts = 0 (�,�,�5)

D meson (cu) : VudV ⇤
cd + VusV ⇤

cs + VubV ⇤
cb = 0 (�,�,�5)

Representation of (⇢, ⌘) through rescaled triangles

(small but non squashed)
BD-meson triangle (bd)

(large but squashed)
D-meson triangle (cu)

In practice, always Bd unitarity triangle (but only 2 parameters out of 4)

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 15
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CKM Matrix 2021
β,α,γ = Φ1, Φ2, Φ3

SM unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)
Bd meson (bd) : VudV ⇤

ub + VcdV ⇤
cb + VtdV ⇤

tb = 0 (�3,�3,�3)

Bs meson (bs) : VusV ⇤
ub + VcsV ⇤

cb + VtsV ⇤
tb = 0 (�4,�2,�2)

K meson (sd) : VudV ⇤
us + VcdV ⇤

cs + VtdV ⇤
ts = 0 (�,�,�5)

D meson (cu) : VudV ⇤
cd + VusV ⇤

cs + VubV ⇤
cb = 0 (�,�,�5)

Representation of (⇢, ⌘) through rescaled triangles

(small but non squashed)
BD-meson triangle (bd)

(large but squashed)
D-meson triangle (cu)

In practice, always Bd unitarity triangle (but only 2 parameters out of 4)

Sébastien Descotes-Genon (LPT-Orsay) The CKM matrix (1) 08/06/18 15
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Interim Summary

28

Concept of quark mixing:

Cabibbo: charged-current couplings smaller for quarks than for leptons  
→u quark couples to linear combination of d and s quark 


GIM: flavor-changing neutral currents suppressed  
→ 2×2 mixing matrix, charm quark predicted 


KM: CP violation requires ≥3 quark families  
→ 3×3 mixing matrix: CKM matrix, third quark family predicted, CP violation explained (later)


CKM Matrix: Must be determined experimentally!

Unitary 3×3 matrix


4 free parameters (3 angles and one phase)


Strong hierarchy, experimentally overconstrained
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Loki
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Meson-Antimeson-Mixing

30

Hadrons are produced as strong eigenstates in strong interactions (reminder: all 
quantum numbers are conserved in QCD)


Hadrons (and all particles) propagate as mass eigenstates


Hadrons can decay via the weak interaction 
 
→ In general, those eigenstates can be different (and nature choose this solution)


This produces a strange phenomenon, known as meson-antimeson mixing 
(observed for neutral mesons )


The physical idea is always the same, the resulting experimental observables are different


Note that no Baryon oscillations (e.g. ) have been observed yet (Baryon 
number violation)

K0, D0, B0
d , B0

s

n ↔ n̄
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Meson-Antimeson-Mixing

31
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Meson-Antimeson-Mixing

32

Now the weirdness starts! (this is quantum mechanics at its best)


Starting point is a hadron produced as  or  in a strong interaction


After a time :  Mixture of  or , superimposed with (potential) particle decays 
(different lifetimes for different particles)


Description of the time evolution of such a system via the Schrödinger equation with an 
effective Hamiltonian

|P⟩ | P̄⟩

Δt |P⟩ | P̄⟩
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Meson-Antimeson-Mixing

33

Time evolution 
 
 
 
 

Components of the effective Hamiltonian: 
 

: Quark masses and binding energies given by strong interaction


: Oscillations and decay through weak processes


CPT symmetry:  , , ,  

M11, M22

Γ11, Γ22, Γ12, M12

M11 = M22 = m Γ11, Γ22 = Γ Γ12 = Γ*12 M12 = M*12
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Meson-Antimeson Mixing

Diagonalize effective Hamilton operators Σ  
→ masses and decay widths of physical particles 

Ansatz: consider two linear combinations of |P⟩ and |P⟩ 
 
 
with |PL⟩ “light” and |PH⟩ “heavy” mass eigenstate 
and p, q complex coefficients with normalization condition |p|2 + |q|2 = 1 
Time evolution of physical particles |PL⟩ und |PH⟩: 
 
 

Time evolution of strong eigenstates |P⟩ and |P⟩:  
transformation using matrix of eigenvectors (p, q) and (p, –q)  
 
 

!429

|PLi = p |Pi + q |Pi , |PHi = p |Pi � q |Pi

|PL,H (t)i = exp

�iML,Ht � �L,H

2
t

�
|PL,Hi

✓
|P(t)i
|P(t)i

◆
=
✓

p p

q �q

◆0

@
exp

h
�iMLt � �L

2 t

i
0

0 exp
h
�iMHt � �H

2 t

i

1

A
✓

p p

q �q

◆�1 ✓|Pi
|Pi

◆

Meson-Antimeson-Mixing: Diagonalize

34

Diagonalize the effective Hamiltonian operator to get physical masses and 
widths


Try linear combinations of  and :  and   
 
with complex p and q and . “L” and “H” stand for “light” and “heavy”.


Time evolution of physical particles  and :





Time evolution of flavour eigenstates  and :


|P⟩ | P̄⟩ |PL⟩ = p |P⟩ + q | P̄⟩ |PH⟩ = p |P⟩ − q | P̄⟩

|p |2 + |q |2 = 1

|PL⟩ |PH⟩

|PL,H(t)⟩ = exp (−iML,Ht −
ΓL,H

2
t) |PL,H⟩

|P⟩ |P⟩



Particle Physics 1

Meson-Antimeson-Mixing: Result

35

Result of the (rather short) calculation: 
 
 
 
 
 

Interpretation as transition probabilities:

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

Meson-Antimeson Mixing

Result of short calculation: 
 
 
 
 

Interpretation as transition probabilities: 
 probability for |P⟩ (|P⟩) to remain in the same state 

 probability for |P⟩ to oscillate to |P⟩ after time interval t 

 probability for |P⟩ to oscillate to |P⟩ after time interval t 

Remark: indirect CP violation if p ≠ q (more later)

!430

✓
|P(t)i
|P(t)i

◆
=
✓

g+(t) p
q g�(t)

q
p g�(t) g+(t)

◆✓
|Pi
|Pi

◆

|g+(t)|2 :

|q/p|2|g�(t)|2 :

|p/q|2|g�(t)|2 :

with g±(t) =
1
2

✓
exp


�iMLt � �L

2
t

�
± exp


�iMHt � �H

2
t

�◆
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Meson-Antimeson Mixing

Result of short calculation: 
 
 
 
 

Interpretation as transition probabilities: 
 probability for |P⟩ (|P⟩) to remain in the same state 

 probability for |P⟩ to oscillate to |P⟩ after time interval t 

 probability for |P⟩ to oscillate to |P⟩ after time interval t 

Remark: indirect CP violation if p ≠ q (more later)

!430

✓
|P(t)i
|P(t)i

◆
=
✓

g+(t) p
q g�(t)

q
p g�(t) g+(t)

◆✓
|Pi
|Pi

◆

|g+(t)|2 :

|q/p|2|g�(t)|2 :

|p/q|2|g�(t)|2 :

with g±(t) =
1
2

✓
exp


�iMLt � �L

2
t

�
± exp


�iMHt � �H

2
t

�◆
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Meson-Antimeson Mixing

Usual convention: express masses and widths of heavy and light 
mass eigenstates by average values and differences 
 
 
 
 

Transition probabilities as a function of Γ, ΔΓ, Δm: 
 
 
 
 

!431

m = M11 = M22 =
1
2

(MH + ML)

�m = MH � ML

� = �11 = �22 =
1
2

(�L + �H )

�� = �L � �H

Decay
Oscillation due 
to decay width 

difference

Oscillation due 
to mass 

difference

|g±(t)|2 =
exp[��t ]

2


cosh

✓
��t

2

◆
± cos(�m t)

�

sometimes also: x =
�m
�

Meson-Antimeson-Mixing

36

As usual (you should be used to this by now) it is convention to 
express the light and heavy mass eigenstates by their averages: 
 
 
 
 

Express the transition probabilities as function of these variables:

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #11

Meson-Antimeson Mixing

Usual convention: express masses and widths of heavy and light 
mass eigenstates by average values and differences 
 
 
 
 

Transition probabilities as a function of Γ, ΔΓ, Δm: 
 
 
 
 

!431

m = M11 = M22 =
1
2

(MH + ML)

�m = MH � ML

� = �11 = �22 =
1
2

(�L + �H )

�� = �L � �H

Decay
Oscillation due 
to decay width 

difference

Oscillation due 
to mass 

difference

|g±(t)|2 =
exp[��t ]

2


cosh

✓
��t

2

◆
± cos(�m t)

�

sometimes also: x =
�m
�
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Neutral kaons

37
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Neutral Kaon Mixing

Historically: mass 
eigenstate distinguished 
by lifetime (K-short/ 
K-long) instead of mass 
(light/heavy) 

Kaon oscillation 
parameters: 
 
 
 

Mass and lifetime 
differences: same order 
of magnitude

!432

|PLi = |K 0
S
i , |PHi = |K 0

L
i

� =
1

178.8 ps
�� ⇡ �

�m = 0.0053 ps�1
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|g±(t)|2 =
exp[��t ]
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cosh

✓
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Pure KL beam

P(K0 → K0)

P(K0 → K̄0)

Historically: Mass eigenstates 
identified by their lifetimes 
(“K short” and “K long”), 

 and 






 (  decays very fast)





→ practically no oscillation 
since one component decays 
very fast

|PL⟩ = |K0
S⟩

|PH⟩ = |K0
L⟩

Γ = 1/178.8 ps

ΔΓd ≈ Γ |PL⟩

ΔMd = 0.507 ps−1
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Kaon mixing

38

CPLEAR

Source: Phys. Lett. B 444 (1998) 38-42
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Neutral B-mesons: B0
d

39

Since , the top 
quark is the (by far) most 
relevant contribution here


Large top (large mass 
predicted ) 
predicted already long 
before LEP global fits or the 
actual discovery of the top

|Vtd | ≈ 0

mt > 50 GeV
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Neutral B-mesons oscillation at ARGUS

40

Credit: Aleksander Mielczarek
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Discovery of B-meson mixing
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Neutral B-mesons: B0
d

42

Oscillation parameters











Lifetime approximately one 
oscillation period before 
decay


Oscillation dominated by 
mass difference 

Γd = 1/1.53 ps

ΔΓd ≈ 0

ΔMd = 0.53 ps−1

ΔMd

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #12

Neutral Bd-Meson Mixing

Oscillation parameters: 
 
 
 
 

Lifetime: approximately 
one oscillation period 

Dominant effect: 
oscillations due to 
mass difference Δmd
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Neutral B-mesons: B0
s

43

Oscillation parameters











Very fast oscillations, many 
periods before decay


Oscillation dominated by 
mass difference 

Γs = 1/1.47 ps

ΔΓs ≈ 0

ΔMs = 17.77 ps−1

ΔMs

Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #12

Neutral Bs-Meson Mixing

Oscillation parameters: 
 
 
 
 

Fast oscillation, many 
periods before decay 

Dominant effect: 
oscillations due to mass 
difference Δms
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What questions do you have?


