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Lecture evaluation T

https://onlineumfrage.kit.edu/evasys/online.php?p=J99EY
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Learning goals IT

= Be able to define flavour physics
® Understand the GIM mechanism

= Understanding of Cabibbo mechanism, the CKM matrix and how to
measure its parameters

®= Understand Meson-Antimeson Mixing: Kaons and B-mesons
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Flavour physics IT

®= What is flavor physics?

= Experimentally: three fermion families (generations)
— six different quark and lepton flavors

= Flavor guantum numbers (weak isospin, strangeness, charm, beauty, truth) conserved in
electromagnetic and strong interactions

= Only charged current (CC) weak interactions change quark flavours:

_ 1
* Up to now: Universal W-boson coupling to left handed fermions & nyf"a(l —¥s5)f

= Transitions within the same SU(2). doublet occurs in particle decays
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Flavour physics KIT

DEFINITION: Flavour DEFINITION: Flavour physics

is a quantum number used to distinguish particles/fields el : . .- .
that have the same gauge quantum numbers deals with interactions that distinguishes between flavours

In the SM: quarks and leptons come in three copies with the same colour In the SM: QED and QCD interactions do not distinguish between flavours,
representation and electric charge while the weak interactions (and the couplings to the Higgs field) do
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Decay classification SKIT

® | eptonic decays

= Final state does only contain leptons

" Example: Muondecay u= — e v,

= Semileptonic decays " y
===y
= Final state contains leptons and hadrons L’\_,ij “
W~ <
“ Example: B-decay n — p+e_17€ <\—7
Q
®= Hadronic decays
: . Y A A }TC‘
®» Final state contains only hadrons S =3

Qi
+ oA +
" Example: K - ntn~ W AT
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Challenge 1: Semi-leptonic vs leptonic decays, and Kaon decaysXIT

= [wo experimental observations challenge the electroweak theory:

= Coupling strength in (semileptonic) neutron decays is 3% smaller than in (leptonic) muon
decays

® Kaon decays K~ — ¢ v are significantly rarer than pion decays 7~ — £ v:

$)

,\.A
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Cabibbo theory (1963) SKIT

®= Quark eigenstates of the weak interactions are not the mass eigenstates (the
actual reason behind this: the Yukawa coupling in the Higgs sector is not
flavour diagonal)

" Quark states are rotated by the Cabibbo angle 6, (for 2 generations):
d\ [ cosfc sinfc)\ (d
s/ \ —sinf- cosO-) \s

= \W bosons couple to the rotated down-type and the up-type states

= Why rotate the down-type and not the up-type states? As usual: Convention.

,U

<f
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Challenge 2: “Forbidden” Kaon decays

= Compare branching fractions of two kaon decays:

= Kt > ,u+1/ﬂ: flavour changing charged current current with As = 1
(strangeness violated)

= KV > u™t ™ flavour changing current neutral current (FCNC) with
As = 1 (strangeness violated)
— forbidden at tree level in the SM

BK" — pp)

RB(KT — uv)
in the 1960s the decay K~ — u ™1~ had not been
observed

~ 6% 107°,

y Experimentally today:

= While the Box diagram with two W-bosons is
suppressed compared to a single W-boson
exchange, it does not explain such a tiny branching

fraction...

11
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GIM mechanism AT

a S. Glashow, J. lliopoulos and L. Maiani postulated* the existence of a fourth
quark

\/<O__7 + — |
% (OS@( r/\ 'A % - &\V\@Q %
A g = —lb\* o — = «l\.\*
(/\\/ C\/
[ S ) S —< )
> %S.V\GQ A I rA > cos® A i 'M

» Destructive interference (there is a minus sign!) leads to tiny branching fraction

® |[f mass of charm quark and mass of up quark were identical: Exact

cancellation: Limits on 93(1{0 — i) can be translated on limits on charm
quark mass

® In 1974: Direct discovery of the charm quark bound state J/y

12 *PRD 2 (1970) 1285 Particle Physics 1



Challenge 3: CP violation in Kaon decays IT

® |n other news, 1964 Discovery on CP violation (discrete symmetries C
and P violated simultaneously) discovered in neutral Kaon decays...

= The GIM mechanism does not provide an answer for that

= M. Kobayashi, T. Maskawa and postulated the existence of a third
quark generation in 1973:

d A\ [V Vs Vi [0 VR d
sS|=Vexm S| =|Vea Vs V| |S]| — Jss =(U,C, 1) (7“ 5(1 — VS)VCK|\/|> S
b’ b Vie Vi Vg b b

= This is todays description using the so-called CKM matrix

= Provides a mechanism to explain CP violation (later)

*Prog. Theor. Phys. 49 (1973) 634)
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Nobel prize 2008 SKIT

Prize motivation: “for the discovery of the origin of the broken
symmetry which predicts the existence of at least three families of
quarks in nature”

Toshihide Maskawa

Born: 7 February 1940, Nagoya, Japan

Died: 23 July 2021, Kyoto, Japan

Makoto Kobayashi

Source: https://www.nobelprize.org/prizes/physics/2008/maskawa/facts/
Source: https://www.nobelprize.org/prizes/physics/2008/kobayashi/facts/

Born: 7 April 1944, Nagoya, Japan
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Properties of the CKM matrix SKIT

® Unitary, complex 3x3 matrix (3 generations, 6 flavours): 18 parameters

= Un|tar|ty VCKMVCKM — VCKMVCKM 13

® Quark fields can absorb one parameter (“phase”) each (6), but overall offset
(“global phase”) is unknown (1): parameters reduced by 6-1=5 (next slide)

= CKM Unitarity reduces parameters by another 3+6=09:

. %k —
ZVUVU = lforj=1.3 EEE B
. X . =
]
Z ‘/l]‘/;]k Oforj,k=1.3,k>j Vickm X Vekm = 13
HEE (8 0
X - =
® 4 free parameters (experimental input) n

Credit: U. Husemann
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Properties of the CKM matrix: Unobservables phases SKIT

Phases of left-handed fields in J°¢ are unobservable: possible redefinition

u »>e”"u, ¢, > e, t, —» et

d >e’"9%, s, —>e"s, b —e"p

T

Real numbers
Under phase transformation:

[ g~ i4(u) 0 0 \(Vud V.. Vub\/ewf(d) 0 0
V| 0 e 0 ||V, V. V.| 0 € 0

CS C

0 0 e")V, V, V)| 0 o0 &

Vaj - expli(#(j) - Ha)IVaj | Sunorsenadle
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Unitarity constraints of the CKM matrix

18

Ve + Vsl + Wl =1
‘Vcd‘g T |VCS|2 T ‘Vcb‘z =1
Vid” +WVidl” + Vil =1

Vo™ + Ve + Vi =1
‘VUS‘Z T ‘VCS|2 T ‘VtS‘Z =1

V]~ +Ver|” + V| =7

ViaVeatVusVes+VipVer =0
ViaVia +VusVis+V ) Vin =0
VegVid+tVesVistV i Vip =0

Vud VZS +Vca V?:s + Vi Vts =0
V ud V:,b +Vd VZb + Vg th =0
Vus V:,b + Vs Vzb +Vis th =0
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CKM Matrix AT
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CKM Matrix: Parametrizations T

" Standard parametrization®: Three Euler angles 6’1:]- and one phase o:

1 0 0 C13 0 5136_/(S C1o S 0
Vekm =10 Co3  So3 0 1 0 —S12 Ci2 O
0 —So3 Co3 —5136'(S 0 C13 0 0 1

S-b mixing d-b mixing + phase d-s mixing

with ¢j; = cos 0j;, S =sing;

C12C13 | S12C13 | S1ze "
= | —S12C23 — C12523513€"°  C12003 — S$12523513€"°  Sp3Cy3
S12823 — C12C23513€"°  —C12S23 — S12C23513€"°  C23C13

20 *Almost never used for the CKM Matrix. Particle Physics 1



CKM Matrix: Parametrizations T

0.97435 + 0.00016  0.22500 & 0.00067 0.00369 + 0.00011
Vexm| = | 0.22486 & 0.00067  0.97349 + 0.00016  0.0418279-900%>
0.00020 0.00083 0.000031

Source: PDG 2022

® Clear hierarchy of matrix
elements:

®= diagonal elements all ~1 — transitions
within one generation are most likely

"> 8> 857> 853

Credit: U. Husemann
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CKM Matrix: Wolfenstein Parametrizations

" Use hierarchy and expand in Cabibbo angle s;, = sin 6

22

s13e” = Vi = AN (p + in)

So3 = AN? = )\

Ve
V’LLS

AN (p+in)v1 — AZ)\A

T VT A2[1— A2\ (5 +i7)]

A
1 — /2
—AN?

AN (p — in)

AN

1
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CKM Matrix: Experimental

a Experimentally: four physical CKM
parameters can be over-constrained
with >4 measurements

= Unitarity dictates relations among
CKM matrix elements, consider six

complex equations (columns 127,
13%, 23%, 1*2, 1*3, 2*3)

= Sum of three complex numbers = 0:
triangle in complex plane — unitarity
triangles

® Base length normalized to 1

23

First and second®* column:

VJS Vud + Vc;ks Vcd + Vfg th =0

First and third* column:
b Vud + Vep Vea + Vip Vig = 0

ViV
V:;b Vig b

ng Ved

Second and third* column
b Vus + Vp Ves + Vip Vis = 0

V(jb VUS —

(not to scale)

Credit: U. Husemann
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CKM Matrix: Experimental

By meson (bd) :
Bs meson (bs) :

(0,0) (1.0)

(small but non squashed)
Bp-meson triangle (bd)

24 In reality, people ~always talk about the (bd) triangle when talking about the CKM triangle.

Vg Vi +

Via Vi, + Vea Vi + Vig Vi, =0
Vus V*b T Vcs V*b T Vts V;Zg —
Vud Viis + Vea Vs + Vig Vi, =0
+ Vs Vis + Vip Vi =0

Karlsruhe Institute of Technology

(As,A3,A3)
(A4,A2,A2)
(X, A, 2°)
(X, A\, )

(0,0)

(1,0)

(large but squashed)
D-meson triangle (cu)
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CKM Matrix: Measurements T

d — u: Nuclear physics (superallowed 5 decays)

s — u: Kaon physics (KLOE, KTeV, NA62)

¢ — d, s: Charm physics (CLEO-c, Babar, Belle, BESIII)

b— u,candt — d,s: B physics (Babar, Belle, CDF, DG, LHCDb)

t — b: Top physics (CDF/DQ, ATLAS, CMS) Particle PhySiCS 1
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CKM Matrix 1995 XIT
3,0,y = ®1, Oo O3

1.5 771 T T * .

excluded area has CL > 0.95

Via Vi
Via Vs

1.0

(0.0) (1.0)

0.5
< 0.0
-0.5 —
-1.0 -
— 1995 |
_1.5_IIII|IIIIIIIII el 1
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

"~ — A2\ = din 2
P P Vhl —Aig - Al;;(ﬁn+iﬁ) N (1+ %) lp+ia) +0(X).
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CKM Matrix 2021

1.5 1 L | BN e T T 1 T T 1
[ excluded area has CL > 0.95 | 7% .
i ¥ 3 _
1.0 “ —
b .

0.5

= 0.0 — =
-0.5 — a7
o e i
-1.0 — ’Y K
u 5 sol. w/cos2B<0 —
— Spring o1 : (excl. at CL > 0.95) —

-1.5 B | T e

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
ﬁ NP 1 — A2\ p+in
PTI= VT 1- 22X +iq)

27

Via Vi
Via Vs

(0.0) (1.0)

~ (1 + T) (p+in)+O(N).
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Interim Summary IT
= Concept of quark mixing:

= Cabibbo: charged-current couplings smaller for quarks than for leptons
— U quark couples to linear combination of d and s quark

= GIM: flavor-changing neutral currents suppressed
— 2x2 mixing matrix, charm quark predicted

= KM: CP violation requires =3 quark families
— 3x3 mixing matrix: CKM matrix, third quark family predicted, CP violation explained (later)

= CKM Matrix: Must be determined experimentally!

d

® Unitary 3x3 matrix . ’

@
= 4 free parameters (3 angles and one phase) | ‘ ’

® Strong hierarchy, experimentally overconstrained —
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Meson-Antimeson-Mixing IT

= Hadrons are produced as strong eigenstates in strong interactions (reminder: all
quantum numbers are conserved in QCD)

®= Hadrons (and all particles) propagate as mass eigenstates

®= Hadrons can decay via the weak interaction

— |n general, those eigenstates can be different (and nature choose this solution)

®= This produces a strange phenomenon, known as meson-antimeson mixing
(observed for neutral mesons KO, DO, BO, Bg)

®= The physical idea is always the same, the resulting experimental observables are different

“ Note that no Baryon oscillations (e.g. n <> n) have been observed yet (Baryon
number violation)
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Meson-Antimeson-Mixing IT

B

w.c,C
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Meson-Antimeson-Mixing IT
= Now the weirdness starts! (this is guantum mechanics at its best)
® Starting point is a hadron produced as | P) or \P) In a strong interaction

" After atime A#: Mixture of | P) or | P), superimposed with (potential) particle decays
(different lifetimes for different particles)

= Description of the time evolution of such a system via the Schrodinger equation with an
effective Hamiltonian
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Meson-Antimeson-Mixing IT

® [ime evolution

at () == (o)) = (M- 72) (jy ) v =7

Decay
Mats.s width
ATHGRTEA matrix

= Components of the effective Hamiltonian:

s — M I.I’ (M-H — /I'11/2 M12 —/I'12/2)
2 M1*2—I|_12/2 M22—1F22/2

" M, M,,: Quark masses and binding energies given by strong interaction

“1y,15,1,, M;,: Oscillations and decay through weak processes
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Meson-Antimeson-Mixing: Diagonalize IT

®= Diagonalize the effective Hamiltonian operator to get physical masses and
widths

® Try linear combinations of | P) and | P): | P;) = p|P) + ¢g|P)and |Py) =p|P) — q|P)

with complex p and g and | p © + | g * = 1. “L” and “H” stand for “light” and “heavy”.

® Time evolution of physical particles | P, ) and | Py):

® : 1—‘L,H
| P (1)) = exp | —iM; yt — > t || P )

" Time evolution of flavour eigenstates | P) and | P):

- (E(t)>> ) (,0 ,0) exp :—iMLt r2L t: _ 0 | (P D )1 <E>)
pe)) ~\a -q : oxo [ igt— 2] | \a ~a) P
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Meson-Antimeson-Mixing: Result IT

® Result of the (rather short) calculation:
(E(t)}) ) ( g.(t) gg(t)) (5>)
Pt))  \2g9-(1) g.(t) P)

. 1 - [ - s
with g (1) = 5 (exp —IM; t 2Lt + exp | —iMyt Ht)

® [nterpretation as transition probabillities:

9. (1)]° : probability for |P) (|P)) to remain in the same state
q/p|%1g9-(t)|7 . probability for |P) to oscillate to |P) after time interval ¢
p/q|%|g_(t)|* : probability for |P) to oscillate to |P) after time interval t
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Meson-Antimeson-Mixing IT

= As usual (you should be used to this by now) it is convention to
express the light and heavy mass eigenstates by their averages:

1 1
m = M =M22=§(MH+ML) =111 =F22=§(FL+FH)

Am=MH—ML Ar=rL_rH

. Am
sometimes also: x = =

® Express the transition probabilities as function of these variables:

9. ()% = expl-T1] _cosh (AFt) + cos(Amt)_

2 2
Oscillation due Oscillation due
Decay to decay width to mass
difference difference
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Neutral kaons

® Historically: Mass eigenstates
identified by their lifetimes
(“K short” and “K long”),

| Pp) = ‘K§)> and
| Py) = |K£>
" I'=1/178.8ps
* A, ~ T (| P;) decays very fast)

" AM, = 0.507 ps-1

= — practically no oscillation
since one component decays
very fast

37

~ Transition Probability
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Kaon mixing IT

AAm(T) _ R‘F(T) + 5— (T) B _R-|—(T) + R (T)

Neutral—kaon decay time [7]

Source: Phys. Lett. B 444 (1998) 38-42
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Neutral B-mesons: Bg T

" Since |V, | = 0, the top
quark is the (by far) most
relevant contribution here

» | arge top (large mass

predicted m, > 50 GeV)
predicted already long

before LEP global fits or the N St Ve :(
actual discovery of the top . 3 >
oA b
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Neutral B-mesons oscillation at ARGUS

- =
< 1'_;. i’j -
\ - oy R S
% e o
\ LS
) e

Credit; Aleksander Mielczarek

AT
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Discovery of B-meson mixing

41
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Neutral B-mesons: Bc(z’)

a Oscillation parameters
" I',=1/1.53ps
" Al' ;=0
" AM,=0.53ps-1

» | ifetime approximately one
oscillation period before
decay

» Oscillation dominated by
mass difference AM ,

42

Transition Probability
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L — g.()

N g- ()

__ g+ (1)]° = exp[z—rt] [cosh (%) + cos(Amt)]
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Neutral B-mesons: B’

a Oscillation parameters
"1, =1/147ps
" Al =0
* AM, = 17.77 ps-!

® \ery fast oscillations, many
periods before decay

® Oscillation dominated by
mass difference AM

43
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What questions do you have?
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