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Questions from past lectures
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KCETA Colloquium
Evidence for a rare B decay with two 
invisible neutrinos at Belle II
Thursday, November 30, 2023       
Kleiner Hörsaal A (CS) 15:45 - 17:00
Dr. Slavomira Stefkova 
(Institute of Elementary Particle Physics, Karlsruhe Institute of Techology)

KIT Center Elementary Particle and Astroparticle Physics (KCETA)

www.kceta.kit.edu

In this colloquium, I will show you 
details of the newest measurement of 
the rate of  decays, 
which is based on  of 
SuperKEKB  collision data 
collected at the  resonance by 
the Belle II experiment in Tsukuba, 
Japan. Using two different 
reconstruction techniques, we found, 
for the first time, evidence for the 

 process. At the end of 
my talk, I will also highlight future 
opportunities in -decays with 
invisible signatures.

B+ → K+νν̄
362 fb−1

e+e−

Υ(4S)

B+ → K+νν̄

B

Please note:  
The colloquium will also be live-streamed to Seminarraum 410 in Bld. 401 (CN).

The decay of  is mediated by a flavor-changing neutral current. In the Standard Model, 
the rate for this elusive process is predicted to be , while enhancements are foreseen in 
many New Physics scenarios. Searching for  decays is, however, experimentally 
challenging as these decays are not only rare but also contain two neutrinos, leaving no signature in 
the detector. 

B+ → K+νν̄
6 × 10−5

B+ → K+νν̄
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Trip to CERN
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Limit of 45 people from lectures reached

Additional people on the waiting list already 


Priority was given to TP1, TP2 and detector physics students that 
participate in exercises.


If you signed up successfully and got my email this morning: Please 
pay 65 Euro in the next days!
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Learning goals
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Understand how to use symmetries to construct complex theories


Understand electroweak unification and SU(2)×U(1)


Understand how the postulated Higgs-mechanism works


Understand boson and fermion mass generation
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Reminder
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QED: symmetry under  gauge transformation →  photon exchange  
 
 
 
 
 

QCD: symmetry under  gauge transformation → gluon exchange


Experimental observation of parity violation in the Wu experiment 
 
 
 
 
 
 
How can we include this in a consistent theory?

U(1)

SU(3)
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Parity conservation in axial currents
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and analogue for 

→ the time like component changes sign, the space-like is unchanged 




→ Axial vector current conserves parity as well… 😫

j1 = ūγμγ5u → ̂Pj1 = {
̂Pj0
1 = ūγ0γ0γ5γ0u = − ūγ0γ0γ0γ5u = − ūγ0γ5u = − j0

1, if k = 0
̂Pjk
1 = ūγ0γkγ5γ0u = uγ0γ0γkγ5u = uγkγ5u = jk

1, if k = 1,2,3

j2

j1j2 = j0
1 j0

2 − jk
1 jk

2 → ̂Pj1j2 = (−j0
1)(−j0

2) − ( jk
1)( jk

2) = j1j2

γ0γμ = − γμγ0
γ0γ0 = 1

γ0γμ = − γμγ0

γ0γ0 = 1twice
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Linear combination of vector and axial-vector currents with 
coefficients  and :  
and analogous 


  
 




Linear combination of vector and axial currents violates parity! 🥳 

Only left-handed chirality* particles and right-handed antiparticles 
participate in the charged current weak interaction: 

gV gA j1 = ū(gVγμ + gAγμγ5)u = gV jV,1 + gAjA,1
j2 = gV jV,2 + gAjA,2

j1j2 = g2
V jV,1jV,2 + g2

A jA,1jA,2 + gVgA( jV,1jA,2 + jV,2 jA,1)

→ Pj1j2 = g2
V jV,1jV,2 + g2

A jA,1jA,2 − gVgA( jV,1jA,2 + jV,2 jA,1)

j ∝ ψ̄(γμ(1 − γ5)ψ

Parity conservation in combination of vector and axial currents

“V-A theory” (vector minus axialvector)

*compare to chirality operators, VL8



Particle Physics 1

Glashow-Salam-Weinberg (GSW) model
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Abdus Salam 
 
Born: 29 January 1926, Jhang 
Maghiāna, India (now Pakistan)


Died: 21 November 1996, 
Oxford, United Kingdom 
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Sheldon Glashow 
 
Born: 5 December 1932, New York, 
NY, USA

Steven Weinberg 
 

Born: 3 May 1933, New York, NY, USA


Died: 23 July 2021, Austin, TX, USA
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SU(2)×U(1)
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Simplest (≠ simple!) combination of groups to arrive at unified description 
of electromagnetic and weak interactions: SU(2)L×U(1)Y 

SU(2)L: weak isospin I, acts on left-handed particles only 

U(1)Y: hypercharge Y, acts on all particles (≠ U(1) gauge group of QED)

Particle content: distinguish left-handed and right-handed particles

Left-handed particles: weak isospin doublets (I = 1/2, I3 = ±1/2) 
 
              


Right-handed particles: weak isospin singlets (I = I3 = 0) 
 
             , no right-handed neutrinos! 
 

L = (νe
e )L

, . . . , (u
d)L

R = e−
R , . . . uR, dR, . . .
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Covariant derivatives (see VL 9)
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Analogue to QED: invariance under local SU(n) transformations by 
introducing covariant derivatives 
 

  
 
 

 

 
 

∂μ → Dμ = ∂μ + igTaAa
μ

Aa
μ → Aa

μ −
1
g

∂μαa(x) − f abcαb(x)Ac
μ

Fa
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μ Ac
ν

∂μ → Dμ = ∂μ + iqAμ(x)
QED:

Aμ → Aμ −
1
q

∂μα

Fμν = ∂μAν − ∂νAμ =
i
q

[Dμ, Dν]
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Electroweak gauge group
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Gauge transformation of SU(2): 
 
 


Typical representation of generators  as traceless, hermitian matrices: Pauli matrices  
(a=1, 2, 3) → 3 gauge bosons 


Since SU(2) is not-abelian, the generators do not commutate, but fulfil  
with structure constants , the totally anti-symmetric Levi-Chivita tensor


Covariant derivative (analogous to QCD):  
 

ψ → ψ′￼ = U(x)ψ = eiαa(x)Taψ
Ta σa

Wa
μ

[Ta, Tb] = if abcTc

f abc = ϵabc

∂μ → Dμ = ∂μ + igTaWa
μ
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Electroweak gauge group: SU(2)L
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This Lagrange density is invariant under gauge transformations if the new 

gauge fields transforms like 


Field strength tensors: 
 

Wa
μ → Wa

μ −
1
g

∂μαa(x) − f abcαb(x)Wc
μ

Wa
μν = ∂μWa

ν − ∂νWa
μ − gfabcWb

μWc
ν

electroweak unification 113

The next step is to move towards local gauge invariance as we have done
it already in case of QED and QCD. The transformations depend on space-
time and we can always write them in the form

yL ! y0
L = UyL = eigaa(x)Ta

yL, (12.14)

where g is the coupling constant for W bosons, aa(x) are arbitrary functions
depending on space time, and Ta are the generators of SU(2)L. The gener-
ators Ta are linearly independent, hermitian, traceless 2 ⇥ 2 matrices. We
already know matrices fulfilling these conditions, the Pauli matrices, so that

Ta =
sa

2
with a = 1, 2, 3. (12.15)

The group is non-abelian2, i. e. Ta do not commutate but fulfill the follow- 2 In non-abelian theories the gauge
bosons interact with themselves,
such as the gluon in QCD, or the W
bosons in our case here as we will
see later.

ing commutator relations

[Ta, Tb] = i f abcTc, (12.16)

where in case of the SU(2) the structure constants f abc of the group is given
by the totally anti-symmetric Levi-Chivita tensor

f abc = eabc. (12.17)

The local transformations in the Lagrange density are not invariant be-
cause of the derivatives which act on the aa(x):

∂µy0 = ∂µ(Uy) 6= U∂µy. (12.18)

Similar to what we did before in QED and QCD, we replace the derivative
∂µ with a covariant derivative

Dµ = ∂µ + igTaWa
µ. (12.19)

The Wa
µ are three new vector-fields which are related to gauge bosons. And

the Lagrange density is

L = ȳ(igµDµ)y (12.20)

= ȳ(igµ∂µ)y � gȳ(gµTaWa
µ)y. (12.21)

The last term represents the interaction between the quarks and the gauge
bosons. This Lagrange density is invariant under gauge transformations if
the new vector fields transform in the following way

Wa
µ ! Wa0

µ = Wa
µ � ∂µaa(x)� g f abcab(x)Wc

µ. (12.22)

The last term is new compared to QED and already known in a similar way
from QCD (equation 9.53). For the kinetic term of the gauge fields we need
to add the component LW,kin to the Lagrangian with

LW,kin = �
1
4

WaµnWa
µn, (12.23)

where Wa
µn are the field strength tensors which are defined in the same way

as in QCD:
Wa

µn = ∂µWa
n � ∂nWa

µ � g f abcWb
µWc

n . (12.24)

In this definition, also the kinetic term LW,kin is gauge invariant. The ex-
pression LW,kin contains not only terms which are quadratic in the deriva-
tives of the fields (representing the kinetic energy of the gauge bosons),
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Electroweak gauge group: SU(2)L
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Field strength tensors: 
 




Mass terms  are not SU(2) invariant → Boson masses must be zero 
(analogous to QED and QCD)


This is not observed in nature (compare nuclear β decay), we will come back to that later

Wa
μν = ∂μWa

ν − ∂νWa
μ − gfabcWb

μWc
ν

m2Wa
μWa,μ

114 advanced particle physics

but also terms with ⇠ g(Wa
µ)

3 and ⇠ g(Wa
µ)

4. These terms represent the
self-coupling of the gauge bosons with 3-boson and 4-boson vertices. Again
this is in full analogy to the case of QCD. The full gauge invariant Lagrange
density is then

L = ȳL(igµDµ)yL �
1
4

WaµnWa
µn

= ȳL(igµ∂µ)yL| {z }
kin. term

of fermions

� gȳL(g
µTaWa

µ)yL
| {z }

Isospin doublet
coupling to W

�
1
4

WaµnWa
µn

| {z }
W kin. term and
self interaction

.

This theory is very successful because it predicts the transition of parti-
cles within isospin doublets e ! ne, it predicts three new gauge bosons and
how they couple to fermions and it includes parity violation. The problem
of this theory is that even the gauge bosons must be massless, otherwise
the Lagrange density is not gauge invariant. In addition, this model pre-
dicts three W bosons which all couple in the same way to the left-handed
fermions, while we know that there are only two W bosons and one Z bo-
son, which have slightly different couplings. The last point is resolved by
unification of the SU(2)L with the U(1) which will be discussed next.

12.4 Hypercharge and U(1)Y

Before we start with the unification of SU(2)L and U(1)Y we have a closer
look at the U(1)Y. The interaction is originating from a U(1)Y symmetry in
an analog way as QCD from SU(3)C and the weak interaction from SU(2)L.
It is very similar to QED, but instead of the electric charge, the hypercharge
Y appears with the coupling constant g0. In analogy to the photon in QED,
we find one additional gauge boson, the Bµ, which is not the photon. As we
will see later, the hypercharge needs to be defined as

Y = 2(Q � I3), (12.25)

where Q is the electric charge and I3 is the third component of the weak
isospin, which is ±1/2 for the weak isospin doublets. For the fermions we
therefore get the following values for Y:

Particle ne,L, eL ne,R eR uL, dL uR dR

Hypercharge Y -1 0 -2 1/3 4/3 -2/3

And in analogy the same for the other two generations. Note that left-
handed particles in an isospin doublet have the same hypercharge Y, while
the right-handed particles have different hypercharge.

We don’t have to repeat the full argumentation for defining the Lagrange
density, it is very similar to QED with a few exceptions. The covariant
derivative is

Dµ = ∂µ + ig0
Y
2

Bµ(x). (12.26)

The Lagrange density is

LY = ȳ(igµDµ)y �
1
4

BµnBµn (12.27)

= ȳ(igµ∂µ)y � g0
Y
2

ȳ(gµBµ)y �
1
4

BµnBµn (12.28)

where
Bµn = ∂µBn

� ∂nBµ. (12.29)
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Electroweak gauge group: Forbidden mass terms
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Reminder chirality operator  and 


Any spinor can be decomposed into left- and right-handed components, e.g. 

 and 


Applied to massterm  in Lagrangian, with  for an electron (as 
example): 
 

 

PL =
1
2

(1 − γ5) PR =
1
2

(1 + γ5)

eL = PLe =
1
2

(1 − γ5)e eR = PRe =
1
2

(1 + γ5)e

mψ̄ψ ψ = e

mēe = m(ēL + ēR)(eL + eR)

= m(ē
1
2

(1 − γ5) + ē
1
2

(1 + γ5))(
1
2

(1 − γ5)e +
1
2

(1 + γ5)e)

= m(ēLeR + eLēR)

(1 − γ5)(1 + γ5) = 1 − γ5 + γ5 + (γ5)2 = 0

(γ5)2 = 1
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Electroweak gauge group: Forbidden mass terms
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The weak charged-current interaction only couples to left-handed 
chiral particle states and right-handed chiral anti-particle states 


Fermion masses must be zero… 😩

This is definitely not observed in nature, we will come back to that later

mēe = m (ēLeR + eLēR) → mUēe = m (UēReL + ēRUeL) ≠ mēe
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lecture end 28.11.2023
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Particles and electroweak quantum numbers
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Fermion Chirality Isospin (I, I3) Hypercharge Y Charge Q (e)

Neutrinos
L (1/2, +1/2) -1 0

R not part of the standard model

Charged leptons
L (1/2, -1/2) -1 -1

R (0, 0) -2 -1

up-type quarks 
 (u, c, t)

L (1/2, +1/2) +1/3 +2/3

R (0, 0) +4/3 +2/3

down-type quarks 
 (d, s, b)

L (1/2, -1/2) +1/3 -1/3

R (0, 0) -2/3 -1/3

Y = 2(Q − I3)
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Electroweak gauge group: U(1)Y
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Gauge transformation of U(1): 
 
 


Covariant derivative (analogous to QED):  
 




Instead of the electric charge Q, introduce so-called hypercharge 
 (“Gell-Mann-Nishijima”-equation)


 for the weak isospin doublets, 0 for the isospin singlets


Instead of the photon, use a gauge boson  (this is not the photon!)

ψ → ψ′￼ = U(x)ψ = eiα(x)ψ

∂μ → Dμ = ∂μ + ig′￼

Y
2

Bμ(x)

Y = 2(Q − I3)

I3 = ± 1
2

Bμ
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Electroweak gauge group: U(1)Y
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Field strength tensor: 
 




Since Y is different for left- and for right handed particles, this 
interaction is parity violating as well

Bμν = ∂μBν − ∂νBμ

114 advanced particle physics

but also terms with ⇠ g(Wa
µ)

3 and ⇠ g(Wa
µ)

4. These terms represent the
self-coupling of the gauge bosons with 3-boson and 4-boson vertices. Again
this is in full analogy to the case of QCD. The full gauge invariant Lagrange
density is then

L = ȳL(igµDµ)yL �
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4

WaµnWa
µn

= ȳL(igµ∂µ)yL| {z }
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� gȳL(g
µTaWa
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1
4

WaµnWa
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| {z }
W kin. term and
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This theory is very successful because it predicts the transition of parti-
cles within isospin doublets e ! ne, it predicts three new gauge bosons and
how they couple to fermions and it includes parity violation. The problem
of this theory is that even the gauge bosons must be massless, otherwise
the Lagrange density is not gauge invariant. In addition, this model pre-
dicts three W bosons which all couple in the same way to the left-handed
fermions, while we know that there are only two W bosons and one Z bo-
son, which have slightly different couplings. The last point is resolved by
unification of the SU(2)L with the U(1) which will be discussed next.

12.4 Hypercharge and U(1)Y

Before we start with the unification of SU(2)L and U(1)Y we have a closer
look at the U(1)Y. The interaction is originating from a U(1)Y symmetry in
an analog way as QCD from SU(3)C and the weak interaction from SU(2)L.
It is very similar to QED, but instead of the electric charge, the hypercharge
Y appears with the coupling constant g0. In analogy to the photon in QED,
we find one additional gauge boson, the Bµ, which is not the photon. As we
will see later, the hypercharge needs to be defined as

Y = 2(Q � I3), (12.25)

where Q is the electric charge and I3 is the third component of the weak
isospin, which is ±1/2 for the weak isospin doublets. For the fermions we
therefore get the following values for Y:

Particle ne,L, eL ne,R eR uL, dL uR dR

Hypercharge Y -1 0 -2 1/3 4/3 -2/3

And in analogy the same for the other two generations. Note that left-
handed particles in an isospin doublet have the same hypercharge Y, while
the right-handed particles have different hypercharge.

We don’t have to repeat the full argumentation for defining the Lagrange
density, it is very similar to QED with a few exceptions. The covariant
derivative is

Dµ = ∂µ + ig0
Y
2

Bµ(x). (12.26)

The Lagrange density is

LY = ȳ(igµDµ)y �
1
4

BµnBµn (12.27)

= ȳ(igµ∂µ)y � g0
Y
2

ȳ(gµBµ)y �
1
4

BµnBµn (12.28)

where
Bµn = ∂µBn

� ∂nBµ. (12.29)
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Weak interactions: Interim Summary
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Solved:

SU(2)L and U(1)Y are parity violating 


Structure of field strength tensor allows triple (TGC) and quartic (QGC) gauge couplings for SU(2)L like in QCD


Problems:

Mediators must be massless, which contradicts experimental findings:


Cross section of -scattering goes to infinity for large collision energy


 production cross section is incorrect


Longitudinal  scattering is not finite


Fermions must be massless, which contradicts experimental findings


Three SU(2)L bosons with identical couplings to left-handed fermions

eν

WW

WW
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Unified electroweak: SU(2)L×U(1)Y
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Lagrange density is simply the sum of the two Lagrange densities: 
 

Summation runs over all left-handed doubles and all right-handed singles


Covariant derivatives: 
 
 

Reminder:

Left-handed particles participate in SU(2)L and U(1)Y, right-handed particles only in U(1)Y (not identical 
with QED!)


Two different coupling constants g and g’


Mass terms for all bosons and for all fermions are forbidden!

electroweak unification 115

Due to the fact that Y is different for left- and right-handed particles, this
interaction is parity violating as well. We therefore can split the interaction
term in equation ??:

LY = ȳ(igµ∂µ)y �

✓
g0

YR
2

ȳR(g
µBµ)yR + g0

YL
2

ȳL(g
µBµ)yL

◆
�

1
4

BµnBµn,

(12.30)
which makes it clear that left- and right-handed components have different
interactions under U(1)Y.

12.5 SU(2)L ⌦ U(1)Y

The unification of SU(2)L and U(1)Y which we have both discussed in the
previous sections is called electroweak unification. The Lagrange density is
simply the sum of both Lagrange densities:

L = �
1
4

WaµnWa
µn �

1
4

BµnBµn + Â ȳLigµDµyL + Â ȳRigµDµyR (12.31)

where the summation runs over all left-handed doublets yL and right-
handed singlets yR of the quarks and leptons. The Y values are different for
left- and right-handed particles. The covariant derivatives are different as
well for doublets and singlets. We therefore define

Dµ,LyL = (∂µ + igTaWa
µ + ig0

Y
2

Bµ)yL

Dµ,RyR = (∂µ + ig0
Y
2

Bµ)yR. (12.32)

Next, we insert the explicit expressions for the generators Ta = sa/2 (the
Pauli matrices) into the covariant derivatives Dµ:

Dµ = ∂µ + igTaWa
µ + ig0

Y
2

Bµ

= ∂µ +
ig
2

  
0 1
1 0

!
W1

µ +

 
0 �i
i 0

!
W2

µ +

 
1 0
0 �1

!
W3

µ

!
+ ig0

Y
2

Bµ

= ∂µ +
ig
2

 
W3 W1 � iW2

W1 + iW2 �W3

!

µ

+ ig0
Y
2

 
B 0
0 B

!

µ

. (12.33)

We remind ourselves that the interactions between the gauge bosons and
the left-handed leptons (for example) is given by

LL = ȳLigµDµyL = (n̄e, ē)igµDµ

 
ne

e

!

L

. (12.34)

This means that only the off-diagonal elements of the first matrix above
represent an interaction in which both e and ne participate. We have seen
before that the interaction of W bosons always proceeds as a transition be-
tween e and ne and analogously for the other leptons and quarks (“charged
current”). We therefore identify the off-diagonal elements in the expression
above as the W bosons, and we define

W± =
1
p

2
(W1

⌥ iW2) (12.35)

and T± =
1
p

2
(T1

± iT2), (12.36)
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ȳL(g
µBµ)yL

◆
�

1
4

BµnBµn,

(12.30)
which makes it clear that left- and right-handed components have different
interactions under U(1)Y.

12.5 SU(2)L ⌦ U(1)Y

The unification of SU(2)L and U(1)Y which we have both discussed in the
previous sections is called electroweak unification. The Lagrange density is
simply the sum of both Lagrange densities:

L = �
1
4

WaµnWa
µn �

1
4
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before that the interaction of W bosons always proceeds as a transition be-
tween e and ne and analogously for the other leptons and quarks (“charged
current”). We therefore identify the off-diagonal elements in the expression
above as the W bosons, and we define

W± =
1
p

2
(W1

⌥ iW2) (12.35)

and T± =
1
p

2
(T1

± iT2), (12.36)
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Insert explicit expressions (Pauli matrices) for the generators: 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Due to the fact that Y is different for left- and right-handed particles, this
interaction is parity violating as well. We therefore can split the interaction
term in equation ??:

LY = ȳ(igµ∂µ)y �

✓
g0

YR
2

ȳR(g
µBµ)yR + g0

YL
2

ȳL(g
µBµ)yL

◆
�

1
4

BµnBµn,

(12.30)
which makes it clear that left- and right-handed components have different
interactions under U(1)Y.

12.5 SU(2)L ⌦ U(1)Y

The unification of SU(2)L and U(1)Y which we have both discussed in the
previous sections is called electroweak unification. The Lagrange density is
simply the sum of both Lagrange densities:

L = �
1
4

WaµnWa
µn �

1
4

BµnBµn + Â ȳLigµDµyL + Â ȳRigµDµyR (12.31)

where the summation runs over all left-handed doublets yL and right-
handed singlets yR of the quarks and leptons. The Y values are different for
left- and right-handed particles. The covariant derivatives are different as
well for doublets and singlets. We therefore define

Dµ,LyL = (∂µ + igTaWa
µ + ig0

Y
2

Bµ)yL

Dµ,RyR = (∂µ + ig0
Y
2

Bµ)yR. (12.32)

Next, we insert the explicit expressions for the generators Ta = sa/2 (the
Pauli matrices) into the covariant derivatives Dµ:

Dµ = ∂µ + igTaWa
µ + ig0

Y
2

Bµ

= ∂µ +
ig
2

  
0 1
1 0

!
W1

µ +

 
0 �i
i 0

!
W2

µ +

 
1 0
0 �1

!
W3

µ

!
+ ig0

Y
2

Bµ

= ∂µ +
ig
2

 
W3 W1 � iW2

W1 + iW2 �W3
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µ

+ ig0
Y
2

 
B 0
0 B

!

µ

. (12.33)

We remind ourselves that the interactions between the gauge bosons and
the left-handed leptons (for example) is given by

LL = ȳLigµDµyL = (n̄e, ē)igµDµ
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This means that only the off-diagonal elements of the first matrix above
represent an interaction in which both e and ne participate. We have seen
before that the interaction of W bosons always proceeds as a transition be-
tween e and ne and analogously for the other leptons and quarks (“charged
current”). We therefore identify the off-diagonal elements in the expression
above as the W bosons, and we define

W± =
1
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1
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ȳR(g
µBµ)yR + g0

YL
2
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We remind ourselves that the interactions between the gauge bosons and
the left-handed leptons (for example) is given by

LL = ȳLigµDµyL = (n̄e, ē)igµDµ
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. (12.34)

This means that only the off-diagonal elements of the first matrix above
represent an interaction in which both e and ne participate. We have seen
before that the interaction of W bosons always proceeds as a transition be-
tween e and ne and analogously for the other leptons and quarks (“charged
current”). We therefore identify the off-diagonal elements in the expression
above as the W bosons, and we define

W± =
1
p

2
(W1

⌥ iW2) (12.35)

and T± =
1
p

2
(T1

± iT2), (12.36)



Particle Physics 1

Unified electroweak: SU(2)L×U(1)Y

24

There are qualitatively different contributions: 

One contribution that involves both isospin partners and changes flavours (“charged current”) 
via off-diagonal elements in the matrices


One contribution that does not change flavour (“neutral current”) via on-diagonal elements
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Separating the off-diagonal elements to identify charged currents
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We remind ourselves that the interactions between the gauge bosons and
the left-handed leptons (for example) is given by

LL = ȳLigµDµyL = (n̄e, ē)igµDµ
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. (12.34)

This means that only the off-diagonal elements of the first matrix above
represent an interaction in which both e and ne participate. We have seen
before that the interaction of W bosons always proceeds as a transition be-
tween e and ne and analogously for the other leptons and quarks (“charged
current”). We therefore identify the off-diagonal elements in the expression
above as the W bosons, and we define

W± =
1
p

2
(W1

⌥ iW2) (12.35)

and T± =
1
p

2
(T1

± iT2), (12.36)
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so that

T+ =
1
p

2

 
0 1
0 0

!
and T� =

1
p

2

 
0 0
1 0

!
. (12.37)

In this new basis for the gauge boson fields we have for the covariant
derivatives

Dµ = ∂µ +
ig
2

 
0 W+

W� 0

!

µ

+
i
2

 
gW3 + g0YB 0

0 �gW3 + g0YB

!

µ

= ∂µ + ig(T+W+ + T�W�)µ +

✓
igT3W3 + ig0

Y
2

B
◆

µ

= ∂µ + DW
µ + DgZ

µ (12.38)

Note that we simply separated the flavor changing off-diagonal elements
from the flavor conserving diagonal elements.

The various terms in the resulting Lagrange density L = ȳigµDµy have
the following meaning:

• ȳigµ∂µy correspond to the kinetic energy of the fermions. The fermions
have no mass terms, as discussed.

• ȳigµDW
µ y describes the interaction of W± bosons with fermions.

• ȳigµDgZ
µ y is the interaction of photons and Z bosons with fermions.

The Lagrange density for left-handed doublets can therefore be derived
from DW

µ to be

LL = igȳLigµ(T+W+ + T�W�)µyL

=
1
p

2
ig(n̄e, ē)Ligµ

 
0 W+

W� 0

!

µ

 
ne

e

!

L

= �
1
p

2
g(n̄eLgµW+

µ eL + ēLgµW�
µ neL). (12.39)

The first term describes the transition of e�L into a nL under emission of a
W� boson. The second term describes the inverse process.

12.6 Mixing of Photon and Z

The term with DgZ
µ describes neutral interactions without change of flavor

which can be either via the exchange of a photon g or a Z boson. In ad-
dition to the above Lagrange density LL we have to add the right-handed
interaction:

Lg,Z = LW3,B = ȳLigµi
✓

gT3W3
µ + g0

Y
2

Bµ

◆
yL + ȳRigµi

✓
g0

Y
2

Bµ

◆
yR

= Â
y=eL ,eR ,nL ,nR

ȳigµi
✓

gT3W3
µ + g0

Y
2

Bµ

◆
y. (12.40)

The two gauge bosons W3 and B are both coupling to the same particles.
Thus, in a similar way as we did above, we could write W3 and B expressed
in a new basis, so that they are combinations of two other bosons:

 
W3

µ

Bµ

!
=

 
cos qW sin qW
� sin qW cos qW

! 
Zµ

Aµ

!
. (12.41)
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purely off-diagonal: 
flavour changing charged currents DW

μ
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0 W+

W� 0

!

µ

 
ne

e

!

L

= �
1
p

2
g(n̄eLgµW+

µ eL + ēLgµW�
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example νe CC:
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Remaining part with both left- and right interactions by  and : 
 
 
 
 

Remember , 


Express and  by two new fields (right now somewhat arbitrary but 
it does not change physics), by rotation by the weak mixing angle :

W3 B

T3 =
σ3

2
σ3 = (1 0

0 −1)
W3 B

θW
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Identify  with the QED photon: Aμ
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This rotation does not change physics. It is a rotation by the Weinberg an-
gle qW which we already mentioned in section 11.9. We will see later that
such a rotation is indeed necessary because this way, the photon field Aµ is
massless while the Zµ field is massive. We can now write explicitly

Lg,Z = Â
en

iȳigµ
✓

g sin qW I3 + g0 cos qW
Y
2

◆
Aµy (12.42)

+iȳigµ
✓

g cos qW I3 � g0 sin qW
Y
2

◆
Zµy. (12.43)

Here, the first term describes the fermion-photon coupling, while the sec-
ond term describes the fermion-Z boson coupling.

If we now require that the field Aµ is identical to the photon in QED,
we find for the electrical charge Q of a particle in units of the elementary
charge e (compare to the Lagrange density in chapter 6):

eQ = g sin qW I3 + g0 cos qW
Y
2

eQ = eI3 + e
Y
2

, (12.44)

so that we derive the two relations

Q = I3 +
Y
2

and e = g sin qW = g0 cos qW . (12.45)

12.7 Interaction Between Z and Fermions

We see from ?? that the coupling of the Z boson to the fermions is given by

gZ = g cos qW I3 � g0 sin qW
Y
2

. (12.46)

Using ?? and ?? we get for gZ:

gZ =
e

sin qW cos qW
(I3 � Q sin2 qW). (12.47)

With this we can write the Lagrange density Lg,Z from ?? as:

Lg,Z = Â
en

iȳigµ(eQAµ + gZZµ)y. (12.48)

We have constructed the Z as a mixture of W3 (left-handed) and B (left- and
right-handed). So the Z couples to both left- and right-handed fermions:

gZy =
e

sin qW cos qW
(I3 � Q sin2 qW)(yL + yR). (12.49)

We have seen that I3 of right-handed particles is zero (T3yR = 0) which
leads to

(I3 � Q sin2 qW)(yL + yR) = (I3 � Q sin2 qW)yL � (Q sin2 qW)yR

= gLyL + gRyR. (12.50)

The constants gL and gR specify the coupling of the Z to left- and right-
handed fermion components:

gL = I3 � Q sin2 qW (12.51)

gR = �Q sin2 qW . (12.52)
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such a rotation is indeed necessary because this way, the photon field Aµ is
massless while the Zµ field is massive. We can now write explicitly

Lg,Z = Â
en

iȳigµ
✓

g sin qW I3 + g0 cos qW
Y
2

◆
Aµy (12.42)

+iȳigµ
✓

g cos qW I3 � g0 sin qW
Y
2

◆
Zµy. (12.43)

Here, the first term describes the fermion-photon coupling, while the sec-
ond term describes the fermion-Z boson coupling.

If we now require that the field Aµ is identical to the photon in QED,
we find for the electrical charge Q of a particle in units of the elementary
charge e (compare to the Lagrange density in chapter 6):

eQ = g sin qW I3 + g0 cos qW
Y
2

eQ = eI3 + e
Y
2

, (12.44)

so that we derive the two relations

Q = I3 +
Y
2

and e = g sin qW = g0 cos qW . (12.45)

12.7 Interaction Between Z and Fermions

We see from ?? that the coupling of the Z boson to the fermions is given by

gZ = g cos qW I3 � g0 sin qW
Y
2

. (12.46)

Using ?? and ?? we get for gZ:

gZ =
e

sin qW cos qW
(I3 � Q sin2 qW). (12.47)

With this we can write the Lagrange density Lg,Z from ?? as:

Lg,Z = Â
en

iȳigµ(eQAµ + gZZµ)y. (12.48)

We have constructed the Z as a mixture of W3 (left-handed) and B (left- and
right-handed). So the Z couples to both left- and right-handed fermions:

gZy =
e

sin qW cos qW
(I3 � Q sin2 qW)(yL + yR). (12.49)

We have seen that I3 of right-handed particles is zero (T3yR = 0) which
leads to

(I3 � Q sin2 qW)(yL + yR) = (I3 � Q sin2 qW)yL � (Q sin2 qW)yR

= gLyL + gRyR. (12.50)

The constants gL and gR specify the coupling of the Z to left- and right-
handed fermion components:

gL = I3 � Q sin2 qW (12.51)

gR = �Q sin2 qW . (12.52)



Particle Physics 1

Unified electroweak: SU(2)L×U(1)Y

28

116 advanced particle physics

so that

T+ =
1
p

2

 
0 1
0 0

!
and T� =

1
p

2

 
0 0
1 0

!
. (12.37)

In this new basis for the gauge boson fields we have for the covariant
derivatives

Dµ = ∂µ +
ig
2

 
0 W+

W� 0

!

µ

+
i
2

 
gW3 + g0YB 0

0 �gW3 + g0YB

!

µ

= ∂µ + ig(T+W+ + T�W�)µ +

✓
igT3W3 + ig0

Y
2

B
◆

µ

= ∂µ + DW
µ + DgZ

µ (12.38)

Note that we simply separated the flavor changing off-diagonal elements
from the flavor conserving diagonal elements.

The various terms in the resulting Lagrange density L = ȳigµDµy have
the following meaning:

• ȳigµ∂µy correspond to the kinetic energy of the fermions. The fermions
have no mass terms, as discussed.

• ȳigµDW
µ y describes the interaction of W± bosons with fermions.

• ȳigµDgZ
µ y is the interaction of photons and Z bosons with fermions.

The Lagrange density for left-handed doublets can therefore be derived
from DW

µ to be

LL = igȳLigµ(T+W+ + T�W�)µyL

=
1
p

2
ig(n̄e, ē)Ligµ

 
0 W+

W� 0

!

µ

 
ne

e

!

L

= �
1
p

2
g(n̄eLgµW+

µ eL + ēLgµW�
µ neL). (12.39)

The first term describes the transition of e�L into a nL under emission of a
W� boson. The second term describes the inverse process.

12.6 Mixing of Photon and Z

The term with DgZ
µ describes neutral interactions without change of flavor

which can be either via the exchange of a photon g or a Z boson. In ad-
dition to the above Lagrange density LL we have to add the right-handed
interaction:

Lg,Z = LW3,B = ȳLigµi
✓

gT3W3
µ + g0

Y
2

Bµ

◆
yL + ȳRigµi

✓
g0

Y
2

Bµ

◆
yR

= Â
y=eL ,eR ,nL ,nR

ȳigµi
✓

gT3W3
µ + g0

Y
2

Bµ

◆
y. (12.40)

The two gauge bosons W3 and B are both coupling to the same particles.
Thus, in a similar way as we did above, we could write W3 and B expressed
in a new basis, so that they are combinations of two other bosons:

 
W3

µ

Bµ

!
=

 
cos qW sin qW
� sin qW cos qW

! 
Zµ

Aµ

!
. (12.41)

: kinetic term for massless* fermions


: charged current interactions with massless* charged W 
bosons


: neutral current interactions with massless* bosons**

ψ̄iγμ∂μψ

ψ̄iγμDW
μ ψ

ψ̄iγμDγ,Z
μ ψ

*This will be fixed as soon as we introduce the spontaneous symmetry breaking.

** These are not quite the Z boson and the photon, but almost…



Particle Physics 1

Weak interactions: Interim Summary

29

Solved:

SU(2)L and U(1)Y are parity violating 


Structure of field strength tensor lead triple (TGC) and quartic (QGC) gauge couplings for SU(2)L like in QCD


2 charged bosons , one neutral boson , one neutral boson  (with identical properties as the QED photon) 

Problems:

Mediators must be massless, which contradicts experimental findings:


Cross section of eν scattering goes to infinity for large collision energy


WW production cross section is incorrect


Longitudinal WW scattering is not finite


Fermions must be massless, which contradicts experimental findings


Three SU(2)L bosons with identical couplings to left-handed fermions

W± Z0 γ
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Emy (by Y. Klügl)
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Francois Englert 
 
Born: 6 November 1932, Etterbeek, 
Belgium
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Peter Higgs 
 
Born: 29 May 1929, Newcastle upon 
Tyne, United Kingdom

Independently discovered 
and published by three 
groups in 1964:


P. Higgs


R. Brout (died 2011) and F. 
Englert


T.W.B. Kibble, C. R. Hagen, G. 
Guralnik

https://www.nobelprize.org/prizes/physics/2013/englert/facts/
https://www.nobelprize.org/prizes/physics/2013/higgs/facts/
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Need a mechanism to introduce gauge boson mass terms in 
Lagrangian without violating gauge invariance


Brout, Englert; Higgs: spontaneous symmetry breaking (SSB)

SSB: ground state (“vacuum”) of electroweak theory does not follow symmetry of Lagrangian


SSB by adding new scalar field to Lagrangian


Goldstone theorem: each generator of a broken symmetry is accompanied by a massless 
boson (“Nambu-Goldstone boson”)


Exception if SSB is applied to theories with local gauge invariance: use freedom of gauge 
choice to “gauge away” Nambu–Goldstone boson


Consequence: degrees of freedom of Nambu-Goldstone bosons transferred to gauge bosons 
(gauge bosons “eat up NG bosons”)  → massive gauge bosons
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Postulate existence of a new complex scalar field 

Symmetric under under SU(2)L× U(1)Y


SU(2)L doublet 


scalar = spin 0 → only spin 0 field of the standard model (i.e. propagation is described by 
Klein-Gordon equation and not the Dirac equation)


complex: four degrees of freedom

ϕ

ϕ = (ϕ+

ϕ0) = (ϕ1 + iϕ2

ϕ3 + iϕ4)
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I3 Y Q
f+ 1/2 1 1
f0 -1/2 1 0

One component of the scalar field is not charged so that the vacuum can
be chosen to be neutral, as we will see later. It is worth to note that this is
the only fundamental spin 0 field in the Standard Model. The doublet has
four degrees of freedom because the components can be complex:

f =

 
f+

f0

!
=

 
f1 + if2

f3 + if4

!
. (13.2)

In the following we will often use expressions which are symmetric in all
four components so we can use the notation

|f|2 = f†f = (f+, f0)⇤
 

f+

f0

!
= |f+

|
2 + |f0

|
2 = f2

1 + f2
2 + f2

3 + f2
4, (13.3)

where we have to distinguish between the + and † signs. We have assumed
that the spin of the doublet is 0, so the propagation is governed by the
Klein-Gordon equation (instead of the Dirac equation for spin 1/2 parti-
cles). The Lagrange density that we used for deriving the Klein-Gordon
equation has been introduced in chapter 3. We can write

Lf = (Dµf)†(Dµf)� V(f) = |Dµf|2 � V(f), (13.4)

where we use the covariant derivative of the SU(2)L ⌦ U(1)Y

Dµ = ∂µ + igTaWa
µ + ig0

Y
2

Bµ. (13.5)

Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.

The minimum (ground state) of the potential is not at |f| = 0 anymore.
The minimum is at |f| = v, where v has the vacuum expectation value

v =

r
�µ2

l
. (13.7)
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where we have to distinguish between the + and † signs. We have assumed
that the spin of the doublet is 0, so the propagation is governed by the
Klein-Gordon equation (instead of the Dirac equation for spin 1/2 parti-
cles). The Lagrange density that we used for deriving the Klein-Gordon
equation has been introduced in chapter 3. We can write

Lf = (Dµf)†(Dµf)� V(f) = |Dµf|2 � V(f), (13.4)

where we use the covariant derivative of the SU(2)L ⌦ U(1)Y
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Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.

The minimum (ground state) of the potential is not at |f| = 0 anymore.
The minimum is at |f| = v, where v has the vacuum expectation value

v =
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l
. (13.7)
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Covariant derivative (identical to EW): 
 
 

Lagrange density: 
 
 

Postulate potential that is invariant under gauge transformations (rotations and 
changes of complex phases → can only depend on  and . 

 and higher are not renormalizable (here without proof) 
 
 

|ϕ |2 |ϕ |4

|ϕ |6
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where we have to distinguish between the + and † signs. We have assumed
that the spin of the doublet is 0, so the propagation is governed by the
Klein-Gordon equation (instead of the Dirac equation for spin 1/2 parti-
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Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.

The minimum (ground state) of the potential is not at |f| = 0 anymore.
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the only fundamental spin 0 field in the Standard Model. The doublet has
four degrees of freedom because the components can be complex:

f =

 
f+

f0

!
=

 
f1 + if2

f3 + if4

!
. (13.2)

In the following we will often use expressions which are symmetric in all
four components so we can use the notation

|f|2 = f†f = (f+, f0)⇤
 

f+

f0

!
= |f+

|
2 + |f0

|
2 = f2

1 + f2
2 + f2

3 + f2
4, (13.3)

where we have to distinguish between the + and † signs. We have assumed
that the spin of the doublet is 0, so the propagation is governed by the
Klein-Gordon equation (instead of the Dirac equation for spin 1/2 parti-
cles). The Lagrange density that we used for deriving the Klein-Gordon
equation has been introduced in chapter 3. We can write
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where we use the covariant derivative of the SU(2)L ⌦ U(1)Y

Dµ = ∂µ + igTaWa
µ + ig0

Y
2

Bµ. (13.5)

Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.
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The minimum is at |f| = v, where v has the vacuum expectation value

v =

r
�µ2

l
. (13.7)

120 advanced particle physics

I3 Y Q
f+ 1/2 1 1
f0 -1/2 1 0

One component of the scalar field is not charged so that the vacuum can
be chosen to be neutral, as we will see later. It is worth to note that this is
the only fundamental spin 0 field in the Standard Model. The doublet has
four degrees of freedom because the components can be complex:
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In the following we will often use expressions which are symmetric in all
four components so we can use the notation

|f|2 = f†f = (f+, f0)⇤
 

f+

f0

!
= |f+

|
2 + |f0

|
2 = f2

1 + f2
2 + f2

3 + f2
4, (13.3)

where we have to distinguish between the + and † signs. We have assumed
that the spin of the doublet is 0, so the propagation is governed by the
Klein-Gordon equation (instead of the Dirac equation for spin 1/2 parti-
cles). The Lagrange density that we used for deriving the Klein-Gordon
equation has been introduced in chapter 3. We can write

Lf = (Dµf)†(Dµf)� V(f) = |Dµf|2 � V(f), (13.4)

where we use the covariant derivative of the SU(2)L ⌦ U(1)Y

Dµ = ∂µ + igTaWa
µ + ig0

Y
2

Bµ. (13.5)

Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.

The minimum (ground state) of the potential is not at |f| = 0 anymore.
The minimum is at |f| = v, where v has the vacuum expectation value

v =
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l
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Winter Semester 2017/2018Particle Physics I (4022031) – Lecture #8

SSB Illustrated

Example: complex scalar field % with Lagrangian 

Potential minimum: 
 

µ2 < 0: potential has infinitely many minima (along “brim of hat") 
Motion in minimum → massless Nambu–Goldstone bosons 
Motion perpendicular to minimum → massive particles

!326

Re(&)

Im(&)

Re(&)

Im(&)

V(&) V(&)

µ2 > 0 µ2 < 0 “Mexican-Hat potential”

L = (@µ�)⇤(@µ�) � µ2�⇤�� �(�⇤�)2

@V
@�⇤ = 0 ) |�| =

(
0 für µ2 > 0q

�µ2

2� für µ2 < 0

 (potential stable only for λ > 0)

Motion in minimum → massless Nambu–Goldstone bosons


Motion perpendicular to minimum → massive particles

minimum (=ground state) at 
 |ϕ | = 0

minimum after symmetry 
breaking at 

|ϕ | =
−μ2

2λ



Particle Physics 1

Vacuum expectation value (vev)

36

Make specific choice for the ground state, e.g. the neutral one: 
 

 with , i.e. only  remains after SU(2) 

gauge transformation in which all  are chosen so that 



For the quantization of the field, expand field around minimum : 
 

, where the excitation are interpreted as real 

Higgs particles

ϕvac =
1

2 (0
v) v =

−μ2

2λ
ϕ3

α(x)
ϕ1 = ϕ2 = ϕ4 = 0

v

ϕvac =
1

2 ( 0
v + H(x))
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Recall potential: 


Insert the field into the potential: 
 
 
 
 
 

As usual, we will identify terms with  with the Higgs mass term, and 
terms with  and  as Higgs self-interactions with three and four 
Higgs vertices

H2

H3 H4
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One component of the scalar field is not charged so that the vacuum can
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where we have to distinguish between the + and † signs. We have assumed
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Note that the potential V(f) has been postulated instead of being derived
from a gauge theory. The potential is required to be invariant under gauge
transformations. This means that the potential must be invariant under
rotations of f+ and f0 and under changes of the complex phase. There-
fore the potential must be symmetric in all four components and can only
depend on |f|2, so we can make the ansatz

V(f) = µ2
|f|2 + l|f|4 (13.6)

where µ2 and l are two new real parameters (natural constants) of the
theory. Other forms for V would lead to inconsistent theories, because
terms with |f|n with n > 4 would not be renormalizable (see chapter 10).
In addition, we need l > 0 such that the potential is positive for large
values of |f|, otherwise the vacuum would not be stable. The form of ?? is
therefore the most general choice. What remains to be decided is the sign
for µ2.

If µ2 is positive (µ2 > 0), the ground state remains at |f| = 0. How-
ever, we obtain a spontaneously broken symmetry if µ2 < 0. The potential
acquires then the shape shown in figure ??, which is the famous “Mexican
hat” shape.

The minimum (ground state) of the potential is not at |f| = 0 anymore.
The minimum is at |f| = v, where v has the vacuum expectation value
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l
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Figure 13.2: Higgs potential for
µ2 > 0 (left) and µ2 < 0 (right).
The minimum is a continuum of
minima in four dimensions.

In four dimensions this is not a single minimum, but a continuum of degen-
erate ground states. We can make a particular choice for the ground state, e.
g. the neutral one:

fvacuum =
1
p

2

 
0
v

!
. (13.8)

In this case only one real component f3 remains, which can be achieved by
a SU(2) gauge transformation

f(x) ! f(x)0 = eigaa(x)Ta
f(x) (13.9)

in which the arbitrary functions a(x) are chosen in such a way that all the
other components f1, f2 and f4 are zero. As the Lagrange density is invari-
ant under such a gauge transformations, the physics does not change and
for simplicity we can choose this particular ground state.

For the quantization, we develop the field around the minimum v such
that we get the excitations interpreted as the real physical Higgs particle:

f =
1
p

2

 
0

v + H(x)

!
. (13.10)

We insert this into the potential V(x) and obtain

V(f) =
1
2

µ2(v + H)2 +
1
4

l(v + H)4

= (µ2 + lv2)vH +
1
2
(µ2 + 3lv2)H2 + lvH3 +

1
4

lH4. (13.11)

With v =
p
�µ2/l we get

V(f) = �µ2H2 + lvH3 +
1
4

lH4. (13.12)

The term with H2 can be interpreted as the mass of the Higgs particle,
which becomes clear if we compare this with the Lagrange density of the
Klein-Gordon equation (see eq. 3.27):

mH =
q
�2µ2 (13.13)

The terms with H3 and H4 can be interpreted as the self-interaction of the
Higgs particle, so that we get three- and four-Higgs vertices.
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with

mH = −2μ2
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Reminder: Massive gauge boson were forbidden in unbroken SU(2)×U(1)


But Higgs Lagrangian introduces terms with both Higgs and Gauge 
bosons: 
 
 
 

Use Pauli-matrices and insert expansion of Higgs field:
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13.2 Interaction Between Gauge Bosons and the Higgs

To understand the interactions between the gauge bosons and the Higgs
we need to identify terms in the Lagrange density in which both gauge and
Higgs particles appear together. For this we look at the covariant derivative
in more detail:

Lf = (Dµf)†
�

Dµf
�
� V(f) =

��Dµf
��2 � V(f)

=

����

✓
∂µ + igTaWa

µ + ig0
Y
2

Bµ

◆
f

����
2
� V(f). (13.14)

Let us write out Dµf explicitly using the Pauli matrices and further taking
the Higgs field expansion around its vacuum ?? we obtain

Dµf =

✓
∂µ + igTaWa

µ + ig0
Y
2

Bµ

◆
1
p

2

 
0

v + H

!

=
1
p

2

 
i g

2 (W
1
µ � iW2

µ)(v + H)

∂µH(x)� i
2 (gW3

µ � g0Bµ)(v + H)

!
, (13.15)

where we have used that ∂µ(v + H(x)) = ∂µH(x). Now we take the hermi-
tian conjugate and multiply the two vectors1:1 The mixed terms for the lower

component are vanishing because
of: (a + ib) · (a � ib) = a2 + b2

(Dµf)†
�

Dµf
�

=
1
2
(∂µH)(∂µH)

+
1
8

g2(v + H)2
⇣

W1,µ
� iW2,µ

⌘ ⇣
W1

µ � iW2
µ

⌘

+
1
8
(v + H)2

⇣
g0Bµ

� gW3,µ
⌘ ⇣

g0Bµ � gW3
µ

⌘
.

(13.16)

This expression can be rewritten as

(Dµf)†
�

Dµf
�

=
1
2
(∂µH)(∂µH)

+
1
4

g2(v + H)2W+,µW�
µ

+
1
8
(v + H)2

⇣
W3,µ, Bµ

⌘ g2 �gg0

�gg0 g02

! 
W3

µ

Bµ

!
.

(13.17)

The second and third term will be later identified with mass terms, however
the later one has a non-diagonal mass matrix. We can rewrite this mass
term using the mass eigenvalues

m̃A = 0 and m̃Z =
1
2

q
g2 + g02 (13.18)

and the mass eigenstates

Aµ =
g0W3

µ + gBµp
g2 + g02

and Zµ =
gW3

µ � g0Bµp
g2 + g02

(13.19)

as
(v + H)2(

1
2

m̃2
ZZµZµ +

1
2

m̃2
A Aµ Aµ). (13.20)

Finally the Lagrange density Lf can be written as

Lf =
1
2
(∂µH)(∂µH)+

1
4

g2(v+ H)2W+,µW�
µ +

1
2
(g2 + g02)(v+ H)2ZµZµ �V(f).

(13.21)
We can interpret the various terms in equation ?? in the following way:

insert covariant 
derivative
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use:
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Multiply the two vectors after taking the hermitian conjugate: 
 
 
 
 

Rewrite using  instead of :W± W1,2
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The mixed terms for the lower vector 
components vanish because 
(a + ib)(a − ib) = a2 + b2
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• 1
2 (∂

µH)(∂µH): this is the kinetic energy for a single real scalar field H.
The excitation quantum of this field is the Higgs particle.

• 1
4 g2v2W+,µW�

µ + 1
2 (g2 + g02)v2ZµZµ = m2

WW+,µW�
µ + 1

2 m2
ZZµZµ: this

means that the masses of the W and Z bosons are fixed by the weak
coupling constants and the Higgs potential to be

mW =
1
2

gv and mZ =
1
2

v
q

g2 + g02. (13.22)

• 1
2 g2vW+,µW�

µ H + 1
4 (g2 + g02)vZµZµH: these are interactions between the

Higgs and the W and Z bosons. Comparing to the mass terms above, we
see that the couplings are proportional to the W, Z boson masses.

• 1
4 g2W+,µW�

µ HH + 1
2 (g2 + g02)ZµZµHH: these are four-vertices between

bosons and Higgs particle.

• V(f): as we have seen the potential is responsible for the mass and the
self-interactions of the Higgs bosons:

mH =
q
�2µ2. (13.23)

It is important to note that the mass of the Higgs boson is therefore a free
parameter and is not predicted by the theory.

A short calculation using ?? and ?? also shows the relation between mZ
and mW :

m2
Z =

1
4

v2(g2 + g02) =
m2

W
cos2 qW

(13.24)

mW
mZ

= cos qW . (13.25)

Finally, we can also calculate the expectation value of the vacuum

v = 246 GeV. (13.26)

13.3 Interaction Between the Fermions and the Higgs

We have seen in section ?? that the Lagrange density for free fermions vi-
olates SU(2)L symmetry if explicit mass terms are included. The reason
was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =

 
uL
dL

!
, uR, dR. (13.27)

We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
Higgs field after spontaneous symmetry breaking

f =
1
p

2

 
0

v + H(x)

!
(13.29)
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component are vanishing because
of: (a + ib) · (a � ib) = a2 + b2
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This expression can be rewritten as
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The second and third term will be later identified with mass terms, however
the later one has a non-diagonal mass matrix. We can rewrite this mass
term using the mass eigenvalues

m̃A = 0 and m̃Z =
1
2

q
g2 + g02 (13.18)

and the mass eigenstates

Aµ =
g0W3

µ + gBµp
g2 + g02

and Zµ =
gW3

µ � g0Bµp
g2 + g02

(13.19)

as
(v + H)2(

1
2

m̃2
ZZµZµ +

1
2

m̃2
A Aµ Aµ). (13.20)

Finally the Lagrange density Lf can be written as

Lf =
1
2
(∂µH)(∂µH)+

1
4

g2(v+ H)2W+,µW�
µ +

1
2
(g2 + g02)(v+ H)2ZµZµ �V(f).

(13.21)
We can interpret the various terms in equation ?? in the following way:
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• 1
2 (∂

µH)(∂µH): this is the kinetic energy for a single real scalar field H.
The excitation quantum of this field is the Higgs particle.

• 1
4 g2v2W+,µW�

µ + 1
2 (g2 + g02)v2ZµZµ = m2

WW+,µW�
µ + 1

2 m2
ZZµZµ: this

means that the masses of the W and Z bosons are fixed by the weak
coupling constants and the Higgs potential to be

mW =
1
2

gv and mZ =
1
2

v
q

g2 + g02. (13.22)

• 1
2 g2vW+,µW�

µ H + 1
4 (g2 + g02)vZµZµH: these are interactions between the

Higgs and the W and Z bosons. Comparing to the mass terms above, we
see that the couplings are proportional to the W, Z boson masses.

• 1
4 g2W+,µW�

µ HH + 1
2 (g2 + g02)ZµZµHH: these are four-vertices between

bosons and Higgs particle.

• V(f): as we have seen the potential is responsible for the mass and the
self-interactions of the Higgs bosons:

mH =
q
�2µ2. (13.23)

It is important to note that the mass of the Higgs boson is therefore a free
parameter and is not predicted by the theory.

A short calculation using ?? and ?? also shows the relation between mZ
and mW :

m2
Z =

1
4

v2(g2 + g02) =
m2

W
cos2 qW

(13.24)

mW
mZ

= cos qW . (13.25)

Finally, we can also calculate the expectation value of the vacuum

v = 246 GeV. (13.26)

13.3 Interaction Between the Fermions and the Higgs

We have seen in section ?? that the Lagrange density for free fermions vi-
olates SU(2)L symmetry if explicit mass terms are included. The reason
was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =

 
uL
dL

!
, uR, dR. (13.27)

We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
Higgs field after spontaneous symmetry breaking

f =
1
p

2

 
0

v + H(x)

!
(13.29)
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was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation
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We can now write terms with f, QL and d in the Lagrange density:
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where we have introduced an unknown constant cd which corresponds to
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4 (g2 + g02)vZµZµH: these are interactions between the

Higgs and the W and Z bosons. Comparing to the mass terms above, we
see that the couplings are proportional to the W, Z boson masses.

• 1
4 g2W+,µW�

µ HH + 1
2 (g2 + g02)ZµZµHH: these are four-vertices between

bosons and Higgs particle.

• V(f): as we have seen the potential is responsible for the mass and the
self-interactions of the Higgs bosons:

mH =
q
�2µ2. (13.23)

It is important to note that the mass of the Higgs boson is therefore a free
parameter and is not predicted by the theory.

A short calculation using ?? and ?? also shows the relation between mZ
and mW :
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Z =

1
4

v2(g2 + g02) =
m2

W
cos2 qW

(13.24)

mW
mZ

= cos qW . (13.25)

Finally, we can also calculate the expectation value of the vacuum

v = 246 GeV. (13.26)

13.3 Interaction Between the Fermions and the Higgs

We have seen in section ?? that the Lagrange density for free fermions vi-
olates SU(2)L symmetry if explicit mass terms are included. The reason
was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =

 
uL
dL

!
, uR, dR. (13.27)

We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
Higgs field after spontaneous symmetry breaking

f =
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The masses of Z and W, and the vev are not independent:
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Higgs and the W and Z bosons. Comparing to the mass terms above, we
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4 g2W+,µW�
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It is important to note that the mass of the Higgs boson is therefore a free
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Finally, we can also calculate the expectation value of the vacuum

v = 246 GeV. (13.26)
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We have seen in section ?? that the Lagrange density for free fermions vi-
olates SU(2)L symmetry if explicit mass terms are included. The reason
was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =
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dL
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We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
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Solved:

SU(2)L and U(1)Y are parity violating 


Structure of field strength tensor lead triple (TGC) and quartic (QGC) gauge couplings for 
SU(2)L like in QCD


2 charged bosons , one neutral boson , one neutral boson  (with identical properties 
as the QED photon)


Massive gauge bosons   and , massless γ 

Remaining problem:

Fermions must be massless, which contradicts experimental findings

W± Z0 γ

W± Z0
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Remember left and right handed fields: , 




Postulate fermion-Higgs interactions, gauge invariant under 
SU(2)L×U(1)Y with a Yukawa-type coupling : 


Insert Higgs fields after SBB: 

L = QL = (νe
e )L

, . . . , (u
d)L

R = e−
R , . . . uR, dR, . . .

ψ̄ϕψ
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Higgs and the W and Z bosons. Comparing to the mass terms above, we
see that the couplings are proportional to the W, Z boson masses.
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4 g2W+,µW�

µ HH + 1
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It is important to note that the mass of the Higgs boson is therefore a free
parameter and is not predicted by the theory.
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Finally, we can also calculate the expectation value of the vacuum

v = 246 GeV. (13.26)
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was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =
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We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
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It is important to note that the mass of the Higgs boson is therefore a free
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We have seen in section ?? that the Lagrange density for free fermions vi-
olates SU(2)L symmetry if explicit mass terms are included. The reason
was that left-handed doublet components yL combine with right-handed
singlets yR which transform differently. With the Higgs we now have an
isospin doublet that can be connected with the fermion doublets and sin-
glets in such a way that mass terms become gauge invariant. As an example
we use the quarks of the first generation

yL = QL =
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We can now write terms with f, QL and d in the Lagrange density:

�cd(Q̄LfdR + d̄Rf†QL) (13.28)

where we have introduced an unknown constant cd which corresponds to
the coupling of the Higgs field with the fermion fields. When we insert the
Higgs field after spontaneous symmetry breaking
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we obtain

L = �cd
1
p

2
(d̄L(v + H)dR + d̄R(v + H)dL)

= �cd
v
p

2
(d̄LdR + d̄RdL)� cd

1
p

2
H(d̄LdR + d̄RdL). (13.30)

This can be rewritten as

L = �mdd̄d �
md
v

Hd̄d (13.31)

which includes mass terms of the well known form, and we interpret the
mass of the d-Quark

md = cd
v
p

2
. (13.32)

We see from the above discussion that the fermions acquire mass due to
the interaction with the Higgs field. The Higgs couples preferably to heav-
ier particles. We also see that the mass value is defined by a free parameter
cd, which is not predicted or constrained by the theory. The theory explains
how masses of fermions can be generated consistently within the theory,
but does not allow to calculate them from first principles. This is differ-
ent for the masses of the W and Z bosons, which can be calculated from
the coupling constants g and g0 which appear in other context as well, for
example in decay rates of weak processes.

There is another term Hd̄d in equation ?? which corresponds to processes
such as

dR + H ! dL and dL + H ! dR, (13.33)

which are chirality changing processes in which both I3 and Y are con-
served. However, as v has quite a large value of ⇠ 246 GeV, these processes
have a very small coupling so that these processes are rare.

The above discussion explaines how the masses of down-type quarks
are generated, but not those of the up-type quarks. For up-type quarks
one needs to consider the charge conjugate of the Higgs doublet fC with
hypercharge Y = �1. This charge conjugate is built in the same way as any
charge conjugate of isospin doublets2. It can be written as2 In general the charge conjugates

of isospin doublets are obtained

by C
✓

u
d

◆
=

✓
d̄
�ū

◆
due to the

requirement that the hypercharge
of both components in the isospin
doublet must be the same and due
to the transformation properties of
the SU(2).

fC = �is2f⇤ =

 
f0†

�f+†

!
. (13.34)

Then we can write

L = �cu(Q̄LfCuR + ūRf†
CQL) (13.35)

and after spontaneous symmetry breaking,

fC =
1
p

2

 
v + H(x)

0

!
, (13.36)

we get

L = �muūu �
mu
v

Hūu (13.37)

with the masses of the quarks

mu = cu
v
p

2
. (13.38)

124 advanced particle physics

we obtain

L = �cd
1
p

2
(d̄L(v + H)dR + d̄R(v + H)dL)

= �cd
v
p

2
(d̄LdR + d̄RdL)� cd

1
p

2
H(d̄LdR + d̄RdL). (13.30)

This can be rewritten as

L = �mdd̄d �
md
v

Hd̄d (13.31)

which includes mass terms of the well known form, and we interpret the
mass of the d-Quark

md = cd
v
p

2
. (13.32)
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cd, which is not predicted or constrained by the theory. The theory explains
how masses of fermions can be generated consistently within the theory,
but does not allow to calculate them from first principles. This is differ-
ent for the masses of the W and Z bosons, which can be calculated from
the coupling constants g and g0 which appear in other context as well, for
example in decay rates of weak processes.

There is another term Hd̄d in equation ?? which corresponds to processes
such as

dR + H ! dL and dL + H ! dR, (13.33)

which are chirality changing processes in which both I3 and Y are con-
served. However, as v has quite a large value of ⇠ 246 GeV, these processes
have a very small coupling so that these processes are rare.

The above discussion explaines how the masses of down-type quarks
are generated, but not those of the up-type quarks. For up-type quarks
one needs to consider the charge conjugate of the Higgs doublet fC with
hypercharge Y = �1. This charge conjugate is built in the same way as any
charge conjugate of isospin doublets2. It can be written as2 In general the charge conjugates
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Hūu (13.37)

with the masses of the quarks

mu = cu
v
p

2
. (13.38)



Particle Physics 1

Fermion masses

44

Fermions acquire mass due to interactions with the Higgs field


Coupling is proportional to the mass of the particle - but these masses 
themselves are not predicted by the theory


This is conceptually different from the boson masses, whose masses are predicted by the 
theory via the couplings g and g’ that can be measured in weak decays


Neutrinos (“up-type leptons”) are massless


Up-type quarks require charge-conjugate Higgs doublet with 
hypercharge Y=-1 which then works identically:
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Hūu (13.37)

with the masses of the quarks

mu = cu
v
p

2
. (13.38)



Particle Physics 1

Weak interactions and SBB: Summary

45

Solved:

SU(2)L and U(1)Y are parity violating 


Structure of field strength tensor lead triple (TGC) and quartic (QGC) gauge couplings for SU(2)L


2 charged bosons , one neutral boson , one neutral boson  (with identical properties as 
the QED photon)


After SBB: Photon massless, charged bosons  and one neutral boson  are massive, 
Higgs boson massive. Boson mass values are predicted by SM and given by coupling 
constants. Higgs mass value is not predicted by SM but must be measured


After SBB: Neutrinos massless, all other fermions massive by interaction with the Higgs field. 
Fermion mass values are not predicted by SM but must be measured  

Two ingredients missing: Neutrino mixing and Quark mixing (later)

W± Z0 γ

W± Z0
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What questions do you have?


