

Particle Physics 1 Lecture 12: Electroweak precision

Prof. Dr. Torben FERBER (torben.ferber@kit.edu, he/him), Institut für Experimentelle Teilchenphysik (ETP) Wintersemester 2023/2024

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Hardware exercise

Evaluation: Lecture

- Please only evaluate the lecture here, not the exercises. We will share an evaluation link for the exercises during the exercises as well.
- Please use "general questions" to provide constructive feedback, point out good and bad things

Learning goals

- Understand differential cross section of $e^+e^- \rightarrow Z \rightarrow f^+f^-$
- Understand Z mass and width
- Understand concept of radiative corrections
- Understand event display and event categorisation
- Understand how to measure the number of light neutrinos
- Understand how to measure the weak mixing angle
- Understand the concept of global fits

"THE" observable: Fermion pair production

Resonant (s-channel) production of Z bosons in e^+e^- scattering

- Photon and Z boson: same quantum numbers \rightarrow interference
- matrix element² in leading order:

• Cross section $\sigma(e^+e^- \to ff) = \sigma_{\gamma} + \sigma_{\gamma/Z} + \sigma_Z$:

• $\sqrt{s} \ll m_{Z}$: photon exchange dominates

- $\sqrt{s} \approx m_7$: Z boson exchange dominates
- effects have to be corrected for!

However: Careful if the precision of low energy experiments (like Belle II) reaches per-mille level and all such

Fermion pair production: QED total cross section

- For small collision energy: $\sqrt{s} \ll m_{Z}$: photon exchange dominates
- ignoring all radiative corrections:

$$\sigma_{\text{QED}} = N_C Q^2 \frac{4\pi\alpha^2}{3s}$$

- N_C : number of colour degrees of freedom (3 for quarks, 1 for leptons)
- Q : electric charge in units of elementary charge e
 - α : fine structure constant* $\alpha(0) = \frac{e^2}{4\pi} \approx \frac{1}{137}$

* In SU(2)×U(1) this will be replaced by couplings g, g', the weak boson masses and the weak mixing angle

Total cross section decreases with increasing collision energy like 1/s (i.e. inverse to the squared collision energy!) and neglecting all fermion masses and

Fermion pair production: QED differential section

- The differential cross section can be obtained by using the QED Feynman rules or using helicity amplitudes:
 - Remember that
 - chirality is conserved at every vertex
 - for ultra-relativistic particles helicity and chirality are equal
 - a Photon is a spin=1 particle
 - you can decompose QED current in left- and right-handed component: $\bar{u}\gamma^{\mu}u = \bar{u}_{I}\gamma^{\mu}u_{L} + \bar{u}_{R}\gamma^{\mu}u_{R}$

Fermion pair production: QED differential section

Fermion pair production: QED differential section

- The scattering angle is not arbitrary but must conse momentum
 - $d_{1,1}^{1} = d_{-1,-1}^{1} = \frac{1}{2}(1 + \cos\theta) \approx -\frac{u}{s}$ with the Mandelstam variables s + and u
 - components are equally present:

$$|\mathcal{M}|^{2} \sim \left(-\frac{u}{s}\right)^{2} + \left(-\frac{t}{s}\right)^{2} = \frac{u^{2} + t^{2}}{s^{2}}$$
$$\frac{d\sigma}{d\cos\theta} = N_{C}Q^{2}\frac{\pi\alpha^{2}}{2s}(1 + \cos^{2}\theta)$$

 $u \approx -\frac{s}{2}(1+\cos\theta^*)$

In most e^+e^- colliders (like LEP or SuperKEKB) the beams are not polarized and the L and R

Fermion pair production: Bhabha scattering

- Special case Bhabha scattering $e^+e^- \rightarrow e^+e^-$
- Identical particles in initial and final state: tchannel contribution

$$\frac{d\sigma}{d\cos\theta} \sim \frac{1}{\sin^4(\theta/2)}$$

- Extremely asymmetric distribution (scattered e^{-1} in the same direction as incoming e^{-})
- Very large total cross section, dominated by small angle scattering
- Used for luminosity monitoring

Luminosity monitoring

Fermion pair production: Z differential cross section Electroweak interactions are parity violating:

$$\nu_e \right) - \left(\bar{e} \left(\gamma^{\mu} \frac{1}{2} (1 - \gamma^5) \right) e \right) - 2 \sin^2 \theta_W (\bar{e} \gamma^{\mu} e)$$

Fermion pair production: Z differential cross section • Using $g_{L_q} = g_V - g_A g_R g_R g_R = g_V + g_A g_R$ $\frac{\mathrm{d}\sigma(e_L^-e_R^+\to f_R)}{\mathrm{d}\cos\theta}$ Left-right:

Right-left:

Left-left:

 $\mathsf{d}\sigma(e_R^-e_L^+ o f_L$ $d\cos\theta$ $\mathsf{d}\sigma(e_L^-e_R^+
ightarrow f_L$ $d\cos\theta$

Right-right:

 $d\sigma(e_R^-e_L^+
ightarrow f_F$ $d\cos\theta$

Differential cross section for Z-boson exchange:

 $\frac{d\sigma}{d\cos\theta} = \frac{3}{8} \frac{\sigma_f}{\sigma_f} \begin{bmatrix} \theta + \cos^2\theta + 2A_\ell A \\ \theta + \cos^2\theta \end{bmatrix} + \frac{2A_\ell A}{\cos^2\theta}$ $d\cos\theta$ $\cos \theta$

$$g_A$$
:

$$\frac{\overline{f}_R \overline{f}_L}{\overline{f}_R} \sim (g_L^{\ell})^2 (g_R^{f})^2 (1 - \cos \theta)^2$$

$$\frac{\overline{f}_L \overline{f}_R}{\overline{f}_R} \sim (g_R^{\ell})^2 (g_L^{f})^2 (1 - \cos \theta)^2$$

$$\frac{\overline{f}_L \overline{f}_R}{\overline{f}_L} \sim (g_L^{\ell})^2 (g_L^{f})^2 (1 + \cos \theta)^2$$

$$\frac{\overline{f}_R \overline{f}_L}{\overline{f}_R} \sim (g_R^{\ell})^2 (g_R^{f})^2 (1 + \cos \theta)^2$$

$$\begin{array}{l} \left\{ \begin{array}{l} \cos \theta \right] & \text{with } \mathcal{A}_f = \frac{(g_L^f)^2 - (g_R^f)^2}{(g_L^f)^2 + (g_R^f)^2} = \frac{2 \, g_V^f / g_A^f}{1 + \left(g_V^f / g_A^f \right)^2} \\ \text{metric in} & \text{so } \theta \end{array} \end{array}$$

Angular distributions for $\sqrt{s} \ll m_Z$

vZ interference

$$\frac{2s}{\pi} \frac{1}{N_c^f} \frac{d\sigma_{ew}}{d\cos\theta} (e^+ e^- \to f\bar{f}) = \frac{|\alpha(s)Q_f|^2 (1 + \cos^2\theta)}{\sigma^{\gamma}} \\ - 8\Re \left\{ \alpha^*(s)Q_f\chi(s) \left[\mathcal{G}_{Ve}\mathcal{G}_{Vf}(1 + \cos^2\theta) + 2\mathcal{G}_{Ae}\mathcal{G}_{Af}\cos\theta \right] \right\}}{\gamma - Z \text{ interference}} \\ + 16|\chi(s)|^2 \left[(|\mathcal{G}_{Ve}|^2 + |\mathcal{G}_{Ae}|^2) (|\mathcal{G}_{Vf}|^2 + |\mathcal{G}_{Af}|^2) (1 + \cos^2\theta) \\ + 8\Re \left\{ \mathcal{G}_{Ve}\mathcal{G}_{Ae}^* \right\} \Re \left\{ \mathcal{G}_{Vf}\mathcal{G}_{Af}^* \right\} \cos\theta \right]}{\sigma^Z}$$

with:

$$\chi(s) = \frac{G_{\rm F} m_{\rm Z}^2}{8\pi\sqrt{2}} \frac{s}{s - m_{\rm Z}^2 + is\Gamma_{\rm Z}/m_{\rm Z}},$$

Angular distributions for $\sqrt{s} \approx m_Z$

"forward" and "backward" are defined with respect to the scattering angle of the outgoing fermion

Forward-backward asymmetry:

0

 $d \sigma / d \cos \theta [nb]$

$$A_{\mathsf{FB}} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

https://arxiv.org/abs/hep-ex/0509008

Angular distributions for $\sqrt{s} \approx m_Z$

https://arxiv.org/abs/hep-ex/0509008

Z-Pole

• Propagator: Z-boson unstable \rightarrow resonance in scattering amplitude

- Wave function for stable particle at rest: $\psi \sim \exp(-imt)$
- Unstable particle $\psi^*\psi \sim \exp(-t/\tau) \rightarrow \psi \sim \exp(-imt)\exp(\Gamma t/2)$
- Decay width is inverse of the lifetime: $\Gamma = 1/\tau$
- Breit-Wigner prescription: Replace m by $m i\Gamma/2$ in the propagator (QFT: scattering amplitude contains a pole on the complex plane)

Z-Pole

Lecture end 05.12.2023

Hadronic cross section

- Precision measurement of Z-resonance in hadronic events:
 - Energy scan (varying collision energy in LEP)
 - Correction of data for radiative effects
- Observables:
 - position of peak $\rightarrow M_Z$
 - height of the peak $\rightarrow \sigma_{had}^0$
 - width of the peak (FWHM) $\rightarrow \Gamma_{7}$
- Many observables are correlated, complicated electroweak fitting frameworks developed: ZFITTER and others

Z pole parameters

relative uncertainty: 2.3×10⁻⁵

relative uncertainty: 9.2×10⁻⁴

relative uncertainty: 8.9×10⁻⁴

Source: Phys. Rep. 427 (2006) 257

Decay width

- Total width Γ_z of the Z resonance:
 - Sum of partial decay widths
 - Consider all possible Z-boson decays in the standard model:

$$\Gamma_{Z} = \sum_{f} \Gamma_{f} = \sum_{q=u,d,s,c,b} \Gamma_{q} + \sum_{\ell=e,\mu,\tau} \Gamma_{\ell} + \sum_{\nu=\nu_{e},\nu_{\mu},\nu_{\tau}} \Gamma_{\nu}$$

Partial width in the standard model (without corrections):

$$\Gamma(Z \to f\bar{f}) = N_C^f \frac{G_F m_Z^3}{6\sqrt{2}\pi} \left((g_V^f)^2 + (g_A^f)^2 \right) \text{ with } g_V^f = I_3^f - 2Q_f \sin^2 \theta_W \text{ and } g_A^f = I_3^f$$

Standard model predicts lepton universality*: $\Gamma_e = \Gamma_\mu = \Gamma_\tau$ and $\Gamma_{\nu_e} = \Gamma_{\nu_\mu} = \Gamma_{\nu_\tau}$

5 quarks (u, d, s, c, b) - the top quark is too heavy, 3 charged leptons, 3 neutrinos

*Different lepton masses lead to small deviations from this universality.

Number of light neutrinos: History

Source: https://twitter.com/martinmbauer/status/1547987138112659456/photo/1

Colliders and astrophysical observations in the 1980 narrowed the number of active neutrino species down \rightarrow A large number of neutrino species would have made the Z peak invisible!

Source: D. Denegri et al, Rev.Mod.Phys. 62 (1990) 1-42

Number of light neutrinos

Total cross section for $ee \to Z \to \bar{f}f$ at Z-peak (ignoring Breit-Wigner term): $\sigma = \frac{12\pi}{m_{\pi}^2} \frac{\Gamma_e \Gamma_f}{\Gamma_{\pi}^2} \text{ (with } \Gamma_e = \Gamma_{\ell} \text{ for lepton flavour universality)}$

Using $\Gamma_{Z} = \Gamma_{inv} + 3\Gamma_{\ell} + \Gamma_{had}$ and defi $R_{inv}^{0} = \frac{\Gamma_{Z}}{\Gamma_{P}} - 3 - R_{\ell}^{0} \text{ with } R_{\ell}^{0} = \frac{\Gamma_{had}}{\Gamma_{P}} = 20.767 \pm 0.025$

$$\sigma_{had}^{0} = \frac{12\pi}{m_Z^2} \frac{\Gamma_{\ell} \Gamma_{had}}{\Gamma_Z^2} \quad \leftrightarrow \quad \frac{\Gamma_Z}{\Gamma_{\ell}} = \sqrt{\frac{12\pi}{m_Z^2}} \frac{R_{\ell}^0}{\sigma_{had}^0} \quad \rightarrow R_{inv}^0 = \sqrt{\frac{12\pi}{m_Z^2}} \frac{R_{\ell}^0}{\sigma_{had}^0} - 3 - R_{inv}^0$$

Fining the ratio
$$R_{inv}^0 = rac{\Gamma_{inv}}{\Gamma_{\ell}}$$
:

Invisible ratio can be determined by measuring charged leptonic and hadronic widths, Z-boson mass, and hadronic cross section!

Summary: Number of light neutrinos

Source: Phys. Rep. 427 (2006) 257

 $\frac{12\pi}{m_Z^2} \frac{R_\ell^0}{\sigma_{had}^0} - 3 - R_\ell^0 = N_\nu \frac{\Gamma_{\nu\nu}}{\Gamma_{\ell\ell}}$ R_{inv}^0

$N_{\nu} = 2.9840 \pm 0.0082$

Radiative corrections

- Precision of LEP and SLC is sensitive to higher order corrections
 - Real emissions of photons
 - Loop corrections
 - Consequence (among others): Running of QED coupling constant $\alpha(m_Z^2) \approx \frac{1}{128} \approx \frac{1}{128} = \frac{1}{128} (\theta) \approx \frac{1}{137}$
- LEP electroweak working group defined so called pseudo-observables to compare to theory predictions, o denoted "effective" in the variable frames

Summary: Decay width

	Branching fraction (PDG22) [%]	Detection channel
left-handed neutrinos	20.00 ± 0.06	none (indirect)
charged leptons	3.3632 ± 0.0042 (e) 3.3662 ± 0.0066 (μ) 3.3696 ± 0.0083 (τ)	e and μ straight forward, τ in different decay modes
hadrons	69.911 ± 0.056	inclusive jets
up-type quarks (u, c) in three colors (top too heavy!)	11.6 ± 0.6 12.03 ± 0.21 (c)	jets (c with c-tagging)
down-type quarks (d, s, b) in three colors	15.6 ± 0.4 15.12 ± 0.05 (b)	jets (b with b-tagging)

Test of lepton-flavour universality: $\frac{\Gamma(\mu^+\mu^-)}{\Gamma(e^+e^-)} = 1.0001 \pm 0.0024$

$$\frac{\Gamma(\tau^+\tau^-)}{\Gamma(e^+e^-)} = 1.0020 \pm 0.0032$$

Event displays

Solution: Event displays 1

$$e^+e^- \rightarrow Z \rightarrow e^+e^-$$

 $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$

Interactive: Event displays 2

Solution: Event displays 2

Interactive: Event displays 3

Solution: Event displays 3

$$e^+e^- \to Z \to \bar{q}q$$

 $e^+e^- \rightarrow Z \rightarrow \bar{q}qg$

Interactive: Event displays 4

Run:event 4302: 75672 Date 930717 Time 225034 Ctrk (N= 4 Sump= 72.1) Ecal (N= 14 SumE= 23.7) Heal (N= 9 SumE= 46 Ebeam 45.610 Evis 121.9 Emiss -30.7 Vtx (-0.04, 0.04, 0.29) Muon(N= 1) Sec Vtx(N= 0) Fdet(N= 0 SumE= Bz=4.350 Thrust=0.9993 Apian=0.0001 Obiat=0.0061 Spher=0.0006

Solution: Event displays 4

$$e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$$

Run:event 4302: 75672 Date 930717 Time 225034 Ctrk (N= 4 Sump= 72.1) Ecal (N= 14 SumE= 23.7) Heal (N= 9 SumE= 46 Ebeam 45.610 Evis 121.9 Emiss -30.7 Vtx (-0.04, 0.04, 0.29) Muon(N= 1) Sec Vtx(N= 0) Fdet(N= 0 SumE= Bz=4.350 Thrust=0.9993 Apian=0.0001 Obiat=0.0061 Spher=0.0006

Neutrino-electron scattering

- Experiments at CERN SPS neutrino beam (1970s and 1980s)
- Example: CDHS
 - CERN-Dortmund- Heidelberg-Saclay (Warsaw) collaboration
 - Iron-scintillator sampling calorimeter → hadron calorimeter and spectrometer at the same time
 - Calorimeter interleaved with drift chambers
 - Later: Added 31m³ hydrogen target in front of spectrometer to measure $\nu_{\mu} + H \rightarrow \mu^{-} + X$ in addition to $\nu_{\mu} + Fe \rightarrow \mu^{-} + X$

https://knobloch

Neutrino-electron scattering

Charged current (CC)

• Difference between ν_e and ν_u :

• ν_{μ} only Z-exchange (NC)

• ν_e on e: W-boson exchange (CC)

Couplings:

• Neutrinos pure V-A couplings ($g_V = g_A = 1$)

Electrons: $g_V \neq g_A \neq 1$

Neutrino-electron scattering

Total cross sections: $\sigma(
u_{\mu} e^{-} \rightarrow
u_{\mu} e^{-})$ $= \frac{G_F^2 s}{3\pi} \left[(g_V^{\ell})^2 + g_V^{\ell} g_A^{\ell} + (g_A^{\ell})^2 \right]$ $\sigma(\overline{\nu}_{\mu}\boldsymbol{e}^{-}\rightarrow\overline{\nu}_{\mu}\boldsymbol{e}^{-})$ $= \frac{G_F^2 s}{3\pi} \left[(g_V^{\ell})^2 - g_V^{\ell} g_A^{\ell} + (g_A^{\ell})^2 \right]$ $\sigma(\nu_e e^- \to \nu_e e^-)$ $=\frac{G_F^2 s}{2\pi} \left[(g_V^\ell + 1)^2 + (g_V^\ell + 1)(g_A^\ell + 1) + (g_A^\ell + 1)^2 \right]^{\frac{1}{2}}$ $\sigma(\overline{\nu}_{e}e^{-} \rightarrow \overline{\nu}_{e}e^{-})$ $=\frac{G_F^2 s}{3\pi}\left[(g_V^\ell+1)^2-(g_V^\ell+1)(g_A^\ell+1)+(g_A^\ell+1)^2\right]$

Weak mixing angle θ_W • Given by electroweak theory: $\sin^2 \theta_{W,eff}^f = \frac{I_{3,f}}{2Q_f} \left(1 - \frac{g_V^f}{g_A^f}\right) = 1$

At LEP and SLC, the highest precision comes from

measurements of $A_{FB} =$

with $\mathscr{A}_f = \frac{2g_V^f/g_A^f}{1 + (g_V^f/g_A^f)^2}$

 $\frac{J}{\Lambda} \mathcal{A}_{e} \mathcal{A}_{f}$

Summary: Weak mixing angle θ_W

- Most precise single measurement from A_{FR}^{b}
- Rather large discrepancy between leptonic and hadronic final states (~ 3σ)
- Yet another large discrepancy between NuTev (neutrino-nucleon scattering) (~3σ)

How many free parameters does the standard model have?

- 12 fermion masses (if $m_{\nu} \neq 0$, else 9 fermion masses) or 12 (9) Yukawa couplings
 - As of 2022, the only not measured particle of the Standard Model is the anti-tau-neutrino!
- 3 couplings constants (g, g', g_s)
- m_H
- mz or mw
- 3 rotation angles and one CP violating phase (CKM matrix) (\rightarrow later)
- 3 rotation angles and one CP violating phase (PMNS matrix) (if $m_{\nu} \neq 0$) (→ later)
- 1 CP violating angle θ (→ later)
 - \rightarrow 26 free parameters (19 if $m_{\nu} = 0$), the representation can be chosen differently

Having determined this finite number of parameters from experiments, any Standard Model observable can in principle be predicted to any desired accuracy!

Global fits

- The electroweak part of the Standard Model can be checked by performing a global fit, including all results from LEP, SLC, Tevatron, and the LHC
- Pulls: deviation of measurement from global fit, divided by uncertainty of measurement

The SM is very consistent!

What questions do you have?

