

Particle Physics 1 Lecture 4: Detectors

Prof. Dr. Torben FERBER (torben.ferber@kit.edu, he/him), Institute of Experimental Particle Physics (ETP) Winter 2023/2024

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Questions from past lectures

855-857 C. Butler, Nature 160 (1947), Rochester, C. Ū. Credit: G.

Q: How is this picture taken?

• A: Cloud chamber with lead converter plate.

leftover from Lecture 3

Charged particles

- multiple scattering
- Cerenkov radiation
- Transition radiation

Hadronic interactions (charged or neutral)

Electromagnetic showers

Charged Particles: Multiple scattering

- Charged particles in a medium do not only loose energy... they are deflected by many small Coulombscatters: multiple scattering
- Central-limit theorem: After many random scatters, the net scattering angle is approximately Gaussian
- Standard deviation after distance x:

$$\sqrt{\langle \theta_{\text{plane}}^2
angle} = \theta_0 \approx 13.6 \, \text{MeV} \frac{q}{p\beta} \sqrt{\frac{x}{X_0}}$$

030001 (2018) 8 0 0 et al. (Particle Data Group), Phys. Rev. Credit: M. Tanabashi

Charged Particles: Energy loss fluctuations

- Bethe-formulate describe the mean energy loss
- There are sizeable fluctuations in energy loss
 - strongly asymmetric distribution around most probable value described by Landau-Vavilov-distribution
 - too make things worse: mean of the Landau distribution is not defined (see CgDA lecture)

98, 030001 (2018) (Particle Data Group), Phys. Credit: M. Tanabashi et al.

Charged Particles: δ-rays

- Close to maximal energy transfer to a single electron (tail of Landau distribution)
 - called δ-electrons or "knock-on"electrons that have enough energy to ionize material on their own...

Particle Physics 1

BCwebsite/gallery/gal2 chambe n.ch/archiv/HST2005/bubble os://hst-archive.web.cer Credit: h

Charged Particles: energy loss for electrons

- At low energies in addition to Bremsstrahlung and ionization:
 - electrons: Møller scattering
 - positrons: Bhabha scattering, pair annihilation

Charged Particles: Cerenkov radiation

- Radiation emitted by charged particles when passing a **homogenous** dielectric medium at a speed ß greater than the phase velocity of light in that medium ($\beta > 1/n$).
 - caused by polarization of material and subsequent photon emission
 - if particle is slow, destructive interference destroys macroscopic light emission
 - visible if medium is transparent to ~blue light
- Cerenkov angle $\theta_{\rm C}$ depends on material and particle speed: $\cos\theta_{\rm C} = 1/(n\beta).$

National **Credit: Argonn**

Charged Particles: Transition radiation

- Radiation emitted when a charged particle passes through the boundary between two homogenous media with different permittivity ε .
- Classical explanation: Radiation of a time-dependent dipole between the charge and its mirror charge
- Intensity: $I = \alpha q^2 \gamma \frac{\omega_p}{3} \text{ with } \omega_p^2 = \frac{n_e e^2}{\epsilon_r \epsilon_o m_e} \text{ of the}$ medium with larger ω

Charged Particles: Hadronic Interactions

- Strong interactions between hadrons and nuclei
 - production of secondary hadrons (mostly pions), about 1/3 of those will be neutral pions decaying to two photons*
 - delayed nuclear evaporation and spallation
 - production of "invisible" neutrinos in hadron decays
 - production of long lived hadrons carry energy away ("split-offs" or "satellites")
- Huge fluctuations, "missing" energy (from neutrinos) and "extra" energy (e.g. from nuclear fission and evaporation)
- This is a mess!

* This is a good chance to practice how to use the Particle Data Group website

Charged Particles: Hadronic Interactions

Absorption of hadrons in matter is parametrized by hadronic interaction length λ :

$$I(x) = I_0 \exp\left(\frac{x}{\lambda}\right) \text{ with } \lambda = \left(\frac{\sigma_{\text{inel}}}{\lambda}\right)$$

- λ is material dependent and typically 20-30× larger than the radiation length X_0
- λ is tabulated for most used materials

Quantity	Value	Units	Value	Units
Atomic number	26			
Atomic mass	55.845(2)	g mol ⁻¹		
Density	7.874	g cm ⁻³		
Mean excitation energy	286.0	eV		
Minimum ionization	1.451	MeV g ⁻¹ cm ²	11.43	MeV cm ⁻¹
Nuclear interaction length	132.1	g cm ⁻²	16.77	cm
Nuclear collision length	81.7	g cm ⁻²	10.37	cm
Pion interaction length	160.7	g cm ⁻²	20.41	cm
Pion collision length	107.0	g cm ⁻²	13.59	cm
Radiation length	13.84	g cm ⁻²	1.757	cm
Critical energy	21.68	MeV (for e ⁻)	21.00	MeV (for e^+)
Muon critical energy	347.	GeV		
Molière radius	13.53	g cm ⁻²	1.719	cm
Plasma energy $\hbar \omega_p$	55.17	eV		
Melting point	1811.	К	1538.	С
D III I I O I I	0404	V	0004	a

0134.

Boiling point @ 1 atm

2801. C

Charged Particles: Kaons are special

- asymmetry:
 - The detector medium typically only contains protons (and neutrons) but not anti-protons
 - Strangeness is a conserved quantum number
 - Flavour hypercharge Y = B + S must be conserved

• e.g. $K^{-}(\bar{u}s) + p(uud) \rightarrow \pi^{0}(u\bar{u}) + \Lambda(uds)$ allows hyperon*

Interactions of charged low energy (~GeV) Kaons show a strong charge

- production, but $K^+(u\bar{s}) + p(uud) \rightarrow \Delta^{++}(uuu) + K^0(d\bar{s})$ does not!

* Hyperons are baryons that contain strange quarks

Photons, electrons and positrons: Electromagnetic showers

- High energetic photons and electrons (and positrons) can be described by the (very) simplified Heitler model
 - using only two processes: pair production (photons) and bremsstrahlung (electrons), until the energy of the particle is below the critical energy E_C (after which ionization dominates)
 - assume that one of these processes happens after one radiation length X_0

Photons, electrons and positrons: Electromagnetic showers

- Total number of particles: $n = \frac{E_0}{E_C} \propto E_0$
 - Sum of all distances by all particles: $s = \frac{E_0}{E_C} X_0$
 - Particles after t steps: $(t) = 2^t$ and energy per particle at this point $\frac{E_0}{2^t}$
 - Process continues until energy falls below E_C after $E_C = \frac{E_0}{2t_{max}}$
- At this point, no new particles are created, but all generated ones get absorbed. This "maximum shower depth" is given by

$$t_{\text{max}} = \frac{\ln(E_0/E_C)}{\ln 2} \propto \ln E_0 \text{ i.e. the "length"}$$

increases logarithmically with energy!

of a shower only

Photons and electrons: Electromagnetic showers

Photons and electrons: Electromagnetic showers

Particle Physics 1

GEANT4 simulation, Belle II crystals, photons

Photons and electrons: Electromagnetic showers

Longitudinal shower profile parametrization:

$$\frac{dE}{dt} = E_0 \frac{b^a}{\Gamma(a)} t^{a-1} \exp(-bt)$$

Maximum: $t_{\text{max}} = \ln\left(\frac{E_0}{E_C}\right) + \begin{cases} -0.5 & \text{(electrons)} \\ 0.5 & \text{(photons)} \end{cases}$

- Containment: $t_{98\%} \approx t_{max} + 13.6 \pm 2.0$
 - Example for a 5 GeV photon in CsI (Belle II): $t_{98\%} \approx (\ln(5000/11.17) - 0.5 + 13.6) X_0 \approx 19.2 X_0 \approx 36 \text{ cm}$

 $t = x/X_0$

Intermediate summary particle interactions

- Many different processes contribute to the energy loss depending on energy range, material, and particle
 - **Photons:** Photoelectric effect, Compton-scatterung, pair production
 - **Charged particles:** Ionization and to much less extend Cerenkov and transition radiation
 - special case electrons: Bremsstrahlung dominates over ionization at high energies
 - special case **positrons**: Bhabha scattering, pair annihilation
 - **Hadrons**: Nuclear reaction resulting in complicated hadron showers
- Parametrization:
 - Photons and electrons: Radiation length X_0
 - Hadrons: Nuclear interaction length λ

Neutrinos

- Neutrinos can interact only via the weak force
- Cross section are very small (but) they increase with energy)
- Typical absorption length for a a MeV neutrino in lead is ~1 lightyear
- For all collider experiments, the probability to see a neutrino interaction, is zero*

Dark Matter

- Dark matter are hypothetical particles, we do not know the cross section
- From cosmological evidence, we know that the cross section with normal matter must be very small
- We have determined upper limits for cross sections, i.e. maximal values, that are even smaller than for neutrinos
- For all collider experiments, the probability to see a dark matter interaction, can safely be assumed to be zero*

Particle Physics 1

119, 181301 (2017) Phys. Rev. Lett. Credit

"Fred" (by Tristan Brandes)

Learning goals

Basic principles of GEANT4 simulation

Understanding of typical particle physics detector designs Understanding of main sub-detector types used in particle physics

Develop an intuitive understanding of a particle detectors using VR

Simulation

- Before building a (expensive) new prototype of a real detector, detectors are studied and optimized via simulation
- Once an experiment is running, the observation must be compared to an expectation that is typically determined by using simulation

Simulation vs reality

theory calculation

event generator

hadronization (quarks \rightarrow hadrons)

propagation through detector

simulated electronics response

Simulation

digitized and calibrated detector hits

reconstruction

object calibration

user analysis

 \rightarrow e.g. "calorimeter cell 105 has recorded a pulsheight of 234 counts that is calibrated to 12.6 MeV, at clocktick 12 that is calibrated to 2.1ns"

 \rightarrow e.g. multiple calorimeter cells are grouped into a cluster object

 \rightarrow e.g. the reconstructed cluster object energy is corrected for longitudinal leakage

 \rightarrow e.g. reconstruct Higgs mass via $H \rightarrow \gamma \gamma$

Simulation vs reality

Simulation vs reality

response

digitized and calibrated detector hits

reconstruction

object calibration

user analysis

Monte Carlo detector simulation

- Trace every particle from the primary interaction, e.g. the two muons from a collision $e^+e^- \to \mu^+\mu^-$ Calculate the interaction probability for every possible (and relevant) interaction in (small) volume elements of the detector
 - Draw a random number to select a process, for example:
 - additional photon from Bremsstrahlung
 - energy loss via ionisation
 - deflection of a charged particle
 - pair production of an electron/positron pair
 - nuclear interaction
 - ...
 - destroyed or have left the detector
 - Then repeat the process with a new set of primary particles
- energy depositions

Repeat this process until until all particles, including the new ones that may have been created in the above process, are either full

The result is a statistical distribution of number of produced particles and derived quantities like

Monte Carlo detector simulation: Example visualization

Example: Single incoming photon into a CsI crystal (5×5×30 cm³)

Several thousand resulting photons (gray), electrons (red) and positrons (blue)

Monte Carlo detector simulation: Probabilities

interaction length λ : (do not confuse this with the hadronic interaction length or the radiation length!)

$$P(L) = \exp\left(-\int_0^L \frac{dl}{\lambda}\right) = \eta$$

- Probability density via differentiation
- Three things can happen:
 - 1) nothing (or only elastic interactions): "transport" to end of current volume
 - 2) particle decays in flight (independent of material)
 - 3) interaction with material

Probabilities P(L) for (non-)interaction along a step of length L are defined via

h for L:
$$w(L) = \frac{1}{\lambda} \exp\left(-\frac{L}{\lambda}\right)$$

Monte Carlo detector simulation: Decay and interaction **Decay in flight**: $-\ln(\eta) = \frac{L}{\gamma\beta c\tau}$ with velocity $v = \beta c$, Lorentz factor γ and mean lifetime in the particle restframe τ

• Interaction with material: $-\ln(r)$ with $\lambda = \frac{1}{\rho \sum_{i} f_i \sigma_i / m_i}$ (material density ρ , isotope mass m_i , mass fraction f_i , cross section for this isotope σ_i)

$$\eta) = L\rho \sum_{i} f_{i}\sigma_{i}/m_{i} = \frac{L}{\lambda}$$

Monte Carlo detector simulation: Example

Simulation summary

- To simulate a full detector you need:
 - A list of all possible "processes"
 - For each process, you need a "model" that describes the differential cross section behaviour
 - properties of all materials (composition, density, ...)
 - All property boundaries (typically requires CAD drawings)
 - transport rules for 3D B- and E-fields
- You have to simulate every single particle that is created during the steps
- This is one the most computationally **demanding** tasks in particle physics (many approximations, speed-up, parallel processing, generative networks, ...). Simulating a single event can take several ten seconds.

Source: Belle II magnetic field maps used in simulation

Simulation toolkit: GEANT4

- De-facto standard in particle and nuclear physics: GEANT4 (https://geant4.web.cern.ch/) developed since 20+ years
 - Often used synonymously for "simulation" or "Monte Carlo"
- Detector simulation is a tricky business \rightarrow GEANT4 is rather complex
 - written in C++
 - You will find most things discussed before as C++ classes (with sometimes slightly confusing names, don't give up)
 - also provides interfaces to inputs ("event generation") and user-defined outputs and visualization tools

 \rightarrow we have dedicated two exercises to this and provide work environments with running GEANT4

Particle physics at colliders

Credit: DESY

Particle detectors at colliders

- Fixed target:
 - particle beam hits target
 - collision products in forward direction
 - detector: forward-spectrometer (e.g. LHCb)

- Collider:
 - two particle beams collide
 - collision products in all directions
 - detector: cylindrical 4π (e.g. Belle II, CMS)

Particle detectors: Shopping list

- Goal: Measure all properties of all particles
 - identify particle species (π , e, μ , γ , ...)
 - measure momenta and/or energy
 - measure point of origin ("vertex")
- Reject backgrounds
- Cover the full solid angle around the collision point
- Be very fast: Several ten thousand (!) collisions per second
- Technically feasible (including externals constraints like heat dissipation, space, power consumption, radiation damage ...)
- "Low" cost

Particle detectors

Particle interactions in subdetectors (example CMS)

Example: CMS

SILICON TRACKERS

Pixel (100x150 μ m²) ~1.9 m² ~124M channels Microstrips (80–180 μ m) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID

Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16 m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

CMS in pictures

Example: Belle II

Electromagnetic calorimeter (ECL):

CsI(TI) crystals waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD)4 layer double-sided silicon strip detectors (SVD)

Central drift chamber (CDC):

 $He(50\%):C_2H_6$ (50%), small cells, fast electronics

electrons e-

K_L and muon detector (KLM): Resistive Plate Counters (RPC) (outer barrel) Scintillator + WLSF + MPPC (endcaps, inner barrel)

Magnet: 1.5 T superconducting

Positrons e+

Trigger: Hardware: < 30 kHz Software: < 10 kHz

Particle Identification (PID):

Time-Of-Propagation counter (TOP) (barrel)

Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD)

DEPFET: depleted p-channel field-effect transistor WLSF: wavelength-shifting fiber MPPC: multi-pixel photon counter

Particle Physics 1

sics

"Gioia" (by Sandro Stamenkovic)

Tracking detectors

- Mainly used interaction: Ionization by charged particles
- Two main detector types:
 - gas-filled: multi-wire proportional chamber (MWPC), driftchamber, time projection chamber (TPC)
 - solid-state: silicon strip, silicon pixel
- Performance metrics:
 - Relative (transverse) momentum resolution $\Delta p/p$ ("how good can we measure the momentum") Impact parameter resolution ("how precisely can we measure that a particle came from the
 - primary interaction")
 - Track efficiency ("how often do we miss a real track")

Tracking detectors

- Tracks are measured in several sensitive layers
- Electrical signals in each layer: hits
- Track reconstruction:
 - pattern recognition ("track finding"): which hits belong to the same helix (with energy loss)
 - parameter estimation via minimization ("track fitting"): which helix parameters describe the data
 - vertex fitting: find common origin of two or more tracks

Tracking detectors: Gas-based

- Basic principle: proportional counter
 - traversing charged particle ionises inert ga
 - choice of gas: low Z, high dE/dx, high ionisation density, safety (non-flamable) environmental friendly, ...
 - high voltage between anode wire and cathode wall: drift of electrons and heavy ions to respective electrode
 - electric field close to anode large enough for charge amplification (Townsend-avalanche)
 - problem: ions emit UV photons during recombination \rightarrow absorb UV photons by adding a so-called quenching gas with many free parameters that can be excited (e.g. CO₂)

l	3		

,			

Gas		A	ρ	E_{ex}	E_{ion}	Ι	w_i	dE/(ho dx)	dE/dx	n_p	$n_{ m tot}$
			(g/cm^3)	(eV)	(eV)	(eV)	(eV)	$(MeV cm^2/g)$	(keV/cm)	(cm^{-1})	(cm^{-1})
H_2	2	2	$8.38 \cdot 10^{-5}$	10.8	15.4	19.2	37	4.03	0.34	5.2	9.2
He	2	4	$1.66 \cdot 10^{-4}$	19.8	24.5	41.8	41	1.94	0.32	5.9	7.8
N_2	7	28	$1.17\cdot 10^{-3}$	8.1	15.6	82	35	1.68	1.96	(10)	56
O_2	8	32	$1.33\cdot 10^{-3}$	7.9	12.1	95	31	1.69	2.26	22	73
Ne	10	20.2	$8.39\cdot10^{-4}$	16.6	21.6	137	36	1.68	1.41	12	39
Ar	18	39.9	$1.66 \cdot 10^{-3}$	11.5	15.8	188	26	1.47	2.44	29.4	94
Kr	36	83.8	$3.49\cdot10^{-3}$	10.0	14.0	352	24	1.32	4.60	31.6	192
Xe	54	131.3	$5.49\cdot10^{-3}$	8.4	12.1	482	22	1.23	6.76	44	307
CO_2	6,8	44	$1.86 \cdot 10^{-3}$	5.2	13.8	85	33	1.62	3.01	35.5	91
CH_4	6,1	16	$0.71\cdot 10^{-3}$	9.8	15.2	41.7	28	2.21	1.48	25	53
C_2H_6	6,1	30	$1.34\cdot10^{-3}$	8.7	11.7	45.4	27	2.30	1.15	41	111
$i-C_4H_{10}$	6,1	58	$2.59\cdot 10^{-3}$	6.5	10.6	48.3	23	1.86	5.93	84	195
CF_4	6,9	88	$3.78 \cdot 10^{-3}$	12.5	15.9	115	34.3	1.69	7	51	100
$C_{2}H_{6}O$ (DME)	6.1.8	46	$2.2 \cdot 10^{-3}$	6.4	10.0	60	23.9	1.77	3.9	55	160

- a: electron-ion pair
- b: secondary ionisation close to anode
- c: charge separation
- d: lateral electron diffusion (nanoseconds)
- e: droplet-shape ion cloud drift to kathode (milliseconds)

& Kolanoski, **Credit: Wermes**

Tracking detectors: Gas-based

Tracking detectors: multi-wire proportional counter

- Many anode wires in parallel, operated in proportional region: MWPC (nobel prize for Charpak 1992)
 - planar arrangement of proportional counter without separating walls
 - Typical dimensions: $O(100\mu m)$ wires, O(1mm)distances between wires
- Electrical field: radial in vicinity of the wire, homogeneous far away
- Wire that give signal \rightarrow position information
 - single-hit spatial resolution: $d/\sqrt{12}$

Tracking detectors: drift chamber

- Drift time of charge used to determine the distance of a track to a wire: "Isochrones" require precise knowledge of x-t-relation
- Staggered layers of wires to resolve left/ right disambiguities
- Wires rotated to extract third dimension (axial and stereo-wires)
- Charges drift in a complicated combined E and B field (Lorentz-angle α)
- Spatial resolution limited by drifttime variations due to diffusion

Tracking detectors: Example Belle II central drift chamber

~15.000 wires (30µm) in 56 layers

1 sense wire, surrounded by 8 field wires

axial and stereo layers

Particle Physics 1

.

Tracking detectors: Example Belle II central drift chamber

Tracking detectors: Example Belle II central drattichamber

Tracking detectors: semiconductors

- working principle: semiconductor ionization chamber
 - detector: diode in reverse bias
 - most common design: Hybriddetector
 - ionization and charge collection in silicon
 - amplification and readout in separate chip
- Typical segmentation:
 - 1D "strips": pitch 25-200µm, length 10cm
 - 2D "pixels": CMS 100×150 µm², Belle II 50×55 µm²

Tracking detectors: semiconductors

- Boundary between p-n and n-doped semiconductors
 - Majority charge carriers diffuse to other side
 - Charge-density gradient: E-field counteracts diffusion
 - Formation of non-conductive depletion zone ("Verarmungszone") without free charge carriers

Apply reverse bias current:

- Increase depletion zone
- Charged particle traversing depletion zone: Creation of free charges via ionization

Tracking detectors: Example CMS Pixel Sensor

Tracking detectors: Example CMS

CMS tracking detector from silicon: more than 200m² sensitive area

- ~25,000 sensors with ~75,000,000 channels
- Inner layers: pixel sensors with high resolution
- Outer layers: strip detectors with large coverage

Tracking detectors: Hit resolution Binary readout: Sensor hit or sensor

not hit \rightarrow Resolution $\sigma = d/\sqrt{12}$

Calculate variance of a uniform distribution

Beispiele: Kontinuierliche Gleichverteilung $f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{sonst} \end{cases}$ $V[x] = \int_{-\infty}^{\infty} (x - E[x])^2 f(x) dx = E[x^2] - (E[x])^2$ $E[x^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_a^b x^2 \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{1}{3} x^3 \right]_a^b$ $= \frac{b^3 - a^3}{3(b-a)}$ $V[x] = \frac{b^3 - a^3}{3(b-a)} - \frac{(a+b)^2}{4} = \frac{4(b^3 - a^3)}{12(b-a)} - \frac{(a+b)^2 3(b-a)}{12(b-a)}$ $= \frac{4b^3 - 4a^3 + 3a^2b - 3a^3 + 6ab^2 - 6a^2b + 3b^2 - 3b^2a}{12(b-a)}$ $= \frac{-a^3 + 3a^2b - 3ab^2 + b^3}{12(b-a)} = \frac{(b-a)^3}{12}$

Digital readout: additional information about charge or time \rightarrow Resolution better than $\sigma < d/\sqrt{12}$

Tracking detectors: Comparison

gas

high ionisation energy ~30 eV

slow signal ~µs

many hits per track

low granularity

low material budget

ages under high radiation

Design decision (simplified):

- Highest rates: Semiconductors (e.g. CMS, ATLAS)
- Highest precision: Gas (e.g. Belle II, future ILC)
- often: semiconductors in inner layers, gas in outer layers (e.g. Belle II)

semiconductor
low ionisation energy ~3.6eV → larger signal, better S/N
fast(er) signal ~ns
few hits per track
high granularity
high material budget
radiation hard

What questions do you have?

