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Questions from past lectures
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Learning goals
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Understand how the QED Lagrangian is derived


Feynman rules and Feynman graphs


Understand how the QCD Lagrangian is derived


Parity invariance of QED (and QCD)


Explain experimental observations of parity violation
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Local ( , ) phase transformation of a wave function: 
 

 
 




 is a (for now) arbitrary real constant


Is the transformed Lagrange density of the Dirac equation invariant under a 
local phase transformation? (it is under global phase transformations, see 
lecture 8) 
 

 ? 
 

U = U(x) α = α(x)

ψ(x) → ψ(x)′￼ = U(x)ψ(x) = eiqα(x)ψ(x)

ψ̄(x) → ψ̄(x)′￼ = U(x)ψ̄(x) = e−iqα(x)ψ̄(x)
q

ℒ′￼ = ψ̄′￼iγμ∂μψ′￼− mψ̄′￼ψ′￼ = ℒ

Local Symmetries

4
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Local Symmetries
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∂μeiqα(x)ψ (x) = iq (∂μα(x))) eiqα(x)ψ (x) + eiqα(x) (∂μψ (x)) = eiqα (iqψ∂μα(x) + ∂μψ)
mψ̄′￼ψ′￼= mψ̄ ψ

Not invariant under local gauge transformation… 😔

30 advanced particle physics

The total transformed Lagrange density has then the form:

L
0 = ȳ0igµ∂µy0

� mȳ0y0

= e�iqa(x)ȳigµeiqa(x) �∂µy + iqy∂µa(x)
�
� mȳy

= ȳigµ∂µy � mȳy � qȳgµy∂µa(x)

= L� qȳgµy∂µa(x). (6.5)

Since the derivative ∂µy is not invariant, the Lagrange density is also not
invariant under a local U(1) symmetry. But there is a way out to recover
the gauge invariance: the “normal” derivative ∂µy has to be replaced by a
“covariant” derivative Dµy which should transform under a gauge transfor-
mation like:

Dµy ! D0
µy0 = eiqa(x)Dµy. (6.6)

This condition can only be fulfilled if a new vector field Aµ(x) is intro-
duced, and the covariant derivative is defined as

Dµ ⌘ ∂µ + iqAµ(x), (6.7)

with the vector field Aµ(x) transforming like:

Aµ ! A0
µ(x) = Aµ(x)� ∂µa(x). (6.8)

The new (not entirely final) Lagrange density has the form:

L = ȳigµDµ y � mȳy

= ȳigµ∂µy
| {z }
kin. term

� mȳy
| {z }

mass term

� qȳgµyAµ| {z }
new interaction

. (6.9)ψ

ψ

Aµ

Figure 6.2: Postulated interactions
of spin-1/2 particles with Aµ.

The requirement of gauge invariance postulates a new vector field and
the interaction of it with the particles (see figure 6.2 for visualization). Later
we will identify for the QED

• the vector field Aµ with the photon,

• the Dirac field y with a fermion, e.g. electron, muon, tau or quark,

• the constant q with the coupling strength between photon and fermion, i.
e. with the electric charge.

The electric charge for an electron is the elementary charge q = �e, which is
related to the fine structure constant:

aem =
e2

4p
⇡

1
137.036

. (6.10)

In natural units its value is e ⇡ 0.3. However, the interpretation of q is
modified by quantum corrections and the renormalization of the coupling
constant (see chapter 10).

As a last step, we have to prove that ȳigµDµy is invariant:

D0
µy0 = (∂µ + iqA0

µ)y0

= ∂µ

⇣
eiqay

⌘
+ iq(Aµ � ∂µa)eiqay

= eiqa �∂µy + iqy∂µa + iqAµy � iqy∂µa
�

= eiqaDµy (6.11)

So, the whole Lagrange density is invariant under a local U(1) transforma-
tion, and thus also the field equations.
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Covariant derivative

6

Invariance can be achieved by replacing the “normal” derivative with 
the “covariant” derivative:  with arbitrary 
gauge field  and the following U(1) transformation behaviour:

∂μ → Dμ = ∂μ + iqAμ(x)
Aμ(x)

Covariant Derivative
Invariance can be achieved by introducing the
covariant derivative @µ ! Dµ = @µ + iqAµ

with arbitrary gauge field Aµ and transformation behaviour

 (x) !  0(x) = ei↵(x) (x)

 (x) !  
0
(x) =  (x)e�i↵(x)

A(x)µ ! A0(x)µ = A(x)µ �
1
q@µ↵(x)

Proof: L0 =  
0
(i�µD0

µ � m) 0

=  
0
(i�µ(@µ + iqA0

µ)� m) 0

=  e�i↵(x) (i�µ(@µ + iqAµ � i@µ↵(x))� m) ei↵(x) 

=  (i�µ(@µ + i@µ↵(x) + iqAµ � i@µ↵(x))� m) 

=  (i�µDµ � m) =L X
U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !302
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Covariant derivative
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Covariant Derivative
Invariance can be achieved by introducing the
covariant derivative @µ ! Dµ = @µ + iqAµ

with arbitrary gauge field Aµ and transformation behaviour

 (x) !  0(x) = ei↵(x) (x)

 (x) !  
0
(x) =  (x)e�i↵(x)

A(x)µ ! A0(x)µ = A(x)µ �
1
q@µ↵(x)

Proof: L0 =  
0
(i�µD0

µ � m) 0

=  
0
(i�µ(@µ + iqA0

µ)� m) 0

=  e�i↵(x) (i�µ(@µ + iqAµ � i@µ↵(x))� m) ei↵(x) 

=  (i�µ(@µ + i@µ↵(x) + iqAµ � i@µ↵(x))� m) 

=  (i�µDµ � m) =L X
U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !302

Invariant under local gauge transformation! 😃
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Towards the QED Lagrangian
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Covariant derivative introduces gauge vector field 


 couples to property  of the spinor field 


 can be identified with the electrical charge


 can be identified with the photon field

Aμ

Aμ q ψ(x)

q

Aμ

The Gauge Field

Covariant derivative introduces gauge field Aµ

Allows arbitrary phase ↵(x) of  (x) at each space-time point x
Aµ ‘transports’ this information from point to point (physical: no
instantaneous information exchange)

Aµ couples to property q of spinor field  (x)
q can be identified with electric charge

L =  (i�µDµ � m) 

=  (i�µ@µ � m) 
| {z }

free fermion

�q( �µ )Aµ| {z }
interaction

�
1
4Fµ⌫Fµ⌫

Aµ can be identified with photon field

Aµ

 

 

�iq�µ

Dynamics of Aµ given by Fµ⌫ = @µA⌫ � @⌫Aµ = i
q [Dµ,D⌫ ]

Lkin = �
1
4Fµ⌫Fµ⌫ (Proca equation for massless vector boson)

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !303
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The QED Lagrangian
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Missing piece to full Lagrangian: Lagrange density of the vector field 
 itself: 

 

 (see Proca equation)


Is the transformed Lagrange density of the Proca equation invariant 
under the local phase transformation?

Aμ(x)

ℒA = −
1
4

FμνFμν +
1
2

m2AμAμ
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The QED Lagrangian: Photon kinetic term
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Covariant Derivative
Invariance can be achieved by introducing the
covariant derivative @µ ! Dµ = @µ + iqAµ

with arbitrary gauge field Aµ and transformation behaviour

 (x) !  0(x) = ei↵(x) (x)

 (x) !  
0
(x) =  (x)e�i↵(x)

A(x)µ ! A0(x)µ = A(x)µ �
1
q@µ↵(x)

Proof: L0 =  
0
(i�µD0

µ � m) 0

=  
0
(i�µ(@µ + iqA0

µ)� m) 0

=  e�i↵(x) (i�µ(@µ + iqAµ � i@µ↵(x))� m) ei↵(x) 

=  (i�µ(@µ + i@µ↵(x) + iqAµ � i@µ↵(x))� m) 

=  (i�µDµ � m) =L X
U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !302

transformation behaviour

Fμν = ∂μAν − ∂νAμ =
i
q

[Dμ, Dν]

Fμν → F′￼μν = ∂μA′￼ν − ∂νA′￼μ

= ∂μ(Aν − ∂να(x)) − ∂ν(Aμ − ∂μα(x))
= Fμν

field strength tensor

Invariant under local gauge transformation! 😃
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The QED Lagrangian: Photon mass term
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Covariant Derivative
Invariance can be achieved by introducing the
covariant derivative @µ ! Dµ = @µ + iqAµ

with arbitrary gauge field Aµ and transformation behaviour

 (x) !  0(x) = ei↵(x) (x)

 (x) !  
0
(x) =  (x)e�i↵(x)

A(x)µ ! A0(x)µ = A(x)µ �
1
q@µ↵(x)

Proof: L0 =  
0
(i�µD0

µ � m) 0

=  
0
(i�µ(@µ + iqA0

µ)� m) 0

=  e�i↵(x) (i�µ(@µ + iqAµ � i@µ↵(x))� m) ei↵(x) 

=  (i�µ(@µ + i@µ↵(x) + iqAµ � i@µ↵(x))� m) 

=  (i�µDµ � m) =L X
U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !302

m2AμAμ → m2A′￼μA′￼μ = m2 (AμAμ − 2Aμ 1
q

∂μα +
1
q2

∂μα∂μα)

transformation behaviour

Not invariant under local gauge transformation… 😔

… unless we make the vectorfield massless (m=0)!   😃 



Particle Physics 1

The QED Lagrangian
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Lagrange Density of QED

Postulation of local U(1) gauge symmetry leads to Lagrangian of QED

LQED =  (i�µDµ � m) �
1
4Fµ⌫Fµ⌫

=  (i�µ@µ � m) 
| {z }

free fermion

� q( �µ )Aµ| {z }
interaction

�
1
4Fµ⌫Fµ⌫| {z }
gauge field

Euler-Lagrange eq. for A⌫ : @µ
@L

@(@µA⌫)
�

@L
@A⌫

= 0:

@µ
@L

@(@µA⌫)
= @µFµ⌫ = 0

@µ (@µA⌫
� @⌫Aµ) = (@µ@µA⌫

� @⌫ @µAµ

| {z }
) = 0

@µAµ = 0 (Lorenz gauge)

(@µ@
µ
� 0)A⌫ = 0 (Proca eq. for massless vector boson)

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !305
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Summary QED
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Postulation of U(1) local gauge symmetry lead to Lagrangian of QED 
with a massless photon


Start with wave function that represents fermions


Postulate gauge invariance (i.e. gauge transformation  should 
leave theory invariant)


“Unwanted” extra term is created by the derivative


Gauge invariance can be restored by adding a vector-field A(x) (the photon) 
 
 

All currently known models of particle physics incorporate gauge 
symmetry (i.e. local symmetry)

ψ(x) → ψ(x)′￼ = eiqα(x)ψ(x)



Particle Physics 114

Oskar

Eddie  
(aka “Pancakes”)
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From Lagrange density to observables
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Rate of a process given by (Fermi’s golden rule) 
 




All dynamics of the process encoded in matrix element 


Element of scattering matrix  that transforms initial state into outgoing final state


Rules how to compute matrix element in perturbation theory:  
Feynman rules 

Graphical representation (this is **not** reality): Feynman graphs

dN
dt

=
|matrix element|2

flux of incoming particles
⋅ phase space

ℳ
S
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Perturbative series
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Matrix element 


: final state after scattering of initial state 


Example fermion scattering in QED:





Can not be solved analytically 😔


But since  solution can be expanded in orders of coupling constant 😃  
 




 can be computed with Feynman rules


Each term of this perturbation series is associated with a distinct process

ℳ = ℳif = ψ†
f ψscat = ψ†

f 𝒮ψi

ψf ψi

(iγμ∂μ − m)ψscat = − eγμAμψscat

α = e2 ≪ 1

ψscat = 𝒮ψi = [
∞

∑
n=0

αnSn] ψi

Sn
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Feynman rules
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Elements of Feynman rules:

External lines: Incoming/outgoing particles


Vertices: coupling between particles, energy and momentum is conserved at each vertex


Propagators (=internal lines): Exchange of virtual particles during scattering process (Green’s 
function of free field equation in momentum space)

Feynman Rules
Elements of Feynman rules

External lines: incoming/outgoing particles
Vertices: coupling between particles
Propagators (=internal lines): exchange of
virtual particles during scattering process
(Green’s function of free field equation in
momentum space)

For example, e+e�
! µ+µ� scattering

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !309
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Feynman diagrams
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Direction of time is convention (I like left to right)
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Feynman diagrams
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The angles between the different lines have no spatial meaning


The two diagrams on the right are considered identical
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Feynman diagrams
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Once you choose a convention, those diagrams describe different 
physics processes!
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Feynman rules: Examples Bhabha scattering e+e− → e+e−

21
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Process named after the Indian 
physicist Homi Jehangir Bhabha



Particle Physics 122

Oskar

Eddie  
(aka “Pancakes”)
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SU(n)
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Extension of gauge principles to non-Abelian groups SU(n)

In particle physics, in particular SU(2) and SU(3)


These theories are also named Yang-Mills theories


SU(n) transformations 


U is a unitary  matrix


 are * linear independent hermitian  matrices (so called generators),


 are real functions


 (with summation over ) describe all possible rotations


 with structure constants 

ψ → ψ′￼ = U(x)ψ = e
1
2 igαa(x)Taψ

n × n

Ta n2 − 1 n × n

αa(x)

αa(x)Ta a

[Ta, Tb] = if abcTc f abc

A group G consists of elements , inverse elements , a unit 
element 1, and a multiplication rule with the following properties:

1) If  in G →  in G

2) 

3) 

4) 


A group G is called abelian, if 

5)    

a a−1

a, b c = a ⋅ b
a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c
a ⋅ 1 = 1 ⋅ a = a
a ⋅ a−1 = a−1 ⋅ a = 1

a ⋅ b = b ⋅ a

*The condition  removes one generator.det(U) = ± 1
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Covariant derivatives
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Analogue to QED: invariance under local SU(n) transformations by 
introducing covariant derivatives 
 

  
 
 

 

 
 

∂μ → Dμ = ∂μ + igTaAa
μ

Aa
μ → Aa

μ −
1
g

∂μαa(x) − f abcαb(x)Ac
μ

Fa
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μ Ac
ν

∂μ → Dμ = ∂μ + iqAμ(x)
QED:

Aμ → Aμ −
1
q

∂μα

Fμν = ∂μAν − ∂νAμ =
i
q

[Dμ, Dν]
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SU(3): Gell-Mann Matrices
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Totally anti-symmetric structure constant tensor :


, , 


Typical representation of generators  via traceless, hermitian 

matrices  (“Gell-Mann-Matrices”)

f123 = 1 f147 = f246 = f257 = f345 = f 516 = f 637 =
1
2

f 458 = f 678 =
3

2

Ta

λa =
1
2

Ta

Gell-Mann Matrices

Structure constants of SU(3)
f 123 = 1, f 147 = f 246 = f 257 = f 345 = f 516 = f 637 = 1

2 , f 458 = f 678 =
p

3
2

All others: 0

Typical representation of generators ⌧ a: Gell-Mann matrices
8 traceless, hermitian matrices �a = 1

2⌧
a

�1 =

0

@
0 1 0
1 0 0
0 0 0

1

A , �2 =

0

@
0 �i 0
i 0 0
0 0 0

1

A , �3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A , �4 =

0

@
0 0 1
0 0 0
1 0 0

1

A

�5 =

0

@
0 0 �i
0 0 0
i 0 0

1

A , �6 =

0

@
0 0 0
0 0 1
0 1 0

1

A , �7 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , �8 = 1p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !311
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Lagrange density of QCD
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Invariance under local SU(3): QCD

Analogue to electric charge in QED: 3 “colour” charges i = red, green, 
blue


8 vector fields : 8 gluons carry colour charge and colour anti-charge


Additional terms in field-strength tensor (from non-zero commutator): 
self interaction of gluons by their colour charge


Analogue to QED: gluons have to be massless to not break gauge 
invariance

Aa
μ

70 advanced particle physics

We see that one tensor exists for each gluon and the summation in equa-
tion 9.54 runs over all tensors. It is important to note that LG,kin contains
terms which are quadratic in the derivatives in the same way as in QED,
which represents the kinetic energy. However, in addition, LG,kin contains
also higher order terms with ⇠ gs(Ga

µ)
3 and ⇠ g2

s (Ga
µ)

4. These extra terms
represent the interaction of the gluons with themselves. As gluons carry
color charge as well, they can interact with each other. This is not possible
in QED, where the photon is uncharged. This is a fundamental difference
between QED and QCD and is rooted in the non-abelian structure which
means that the tensors do not commutate ( f abc 6= 0). This feature is respon-
sible for the increase of the couplings for large distances, which is also the
reason for the confinement of the quarks and gluons, as we will see later.
This confinement is the reason why quarks do not exist as free particles, but
only bound into hadronic states such as the proton.

We can now write the total QCD Lagrange density defining the strong
interaction taking all contributions into account:

L = ȳ(igµ∂µ � m)y
| {z }

mass and kin. term
of quark

� gsȳ(gµTaGa
µ)y| {z }

quark-gluon
coupling

�
1
4

Ga
µnGaµn

| {z }
gluon kin. energy and
gluon self interaction

(9.56)

An important observation is that the above discussion assumes gluons
to be massless, just as photons are massless. Introducing a mass term into
the Lagrange density is not possible without violating gauge invariance.
Observations confirm that the rest mass of gluons is zero.

9.4 Color Multiplets

In the simple color picture above (equation 9.44 and 9.45) the quarks carry
color, which can be exchanged by gluons. Therefore gluons at a quark-
gluon vertex must must carry two different kinds of color, the color which
is removed from the incoming quark and the color which is added to the
outgoing quark. This is visualized in figure 9.9, where the red quark is
turned into a blue quark by a gluon which carries red and anti-blue.

br̄

r̄

b

Figure 9.9: Quarks carrying color,
exchanged by the gluon.

If we make all combinations, there would be nine different kinds of glu-
ons: rr̄, rb̄, rḡ, br̄, bb̄, bḡ, gr̄, gb̄, gḡ. However, we have already seen above that
the SU(3) has eight generators, which are associated with eight gluon fields
to construct the Lagrange density. So what are the eight gluons and which
one is missing?

Based on the principle of superposition in quantum mechanics we are
allowed to construct nine linearly independent color states. There are vari-
ous mathematical possibilities to construct linearly independent states, one
possibility is the following representation with one “color octet”:

|1i = (rb̄ + br̄)/
p

2 |5i = �i(rḡ � gr̄)/
p

2
|2i = �i(rb̄ � br̄)/

p
2 |6i = (bḡ + gb̄)/

p
2

|3i = (rr̄ � bb̄)/
p

2 |7i = �i(bḡ � gb̄)/
p

2
|4i = (rḡ + gr̄)/

p
2 |8i = (rr̄ + bb̄ � 2gḡ)/

p
6

(9.57)

and one color singlet:

|9i = (rr̄ + bb̄ + gḡ)/
p

3 (9.58)

It is important to note that the color singlet is the only state which is fully
symmetric under color transformations. If, for example, r is exchanged with
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Gluon self interactions
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Gluon self interactions are qualitatively new interactions compared to 

QED from  term:


higher order terms with  and  do not exist in QED (no photon self 
interactions)

1
4

Fa
μνFaμν

∼ gS(Aa
μ)3 ∼ g2

S(Aa
μ)4

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μ Ac
ν
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Feynman rules for QCD

28

72 advanced particle physics

for three-gluon vertices. The gluon momenta (k1, k2, k3) are assumed to
point into the vertex. For momenta pointing outwards, the sign of the
momenta has to be changed. The four-gluon vertex introduces the factor

� g2
s [ f abh f gdh(gµlgnr � gµrgnl) (9.62)

+ f adh f bgh(gµnglr � gµlgnr) (9.63)

+ f agh f dbh(gµrgnl � gµnglr)] (9.64)

for four-gluon vertices.

• The remaining rules, conservation of four-momentum at each vertex,
integration over internal momenta, etc . . . are the same as for QED, which
we have already discussed.

9.5.1 Example: Quark-Antiquark Scattering

We now consider the interaction between two quarks in lowest order of
perturbation theory, in order to understand the short-range behavior of
the strong interaction. The diagram that we want to calculate is shown in
figure 9.13, which represents for example the scattering of up-quarks u with
anti-down quarks d: u + d̄ ! u + d̄. The quark colors are indicated with ci.

Writing down the matrix element, following the Feynman rules gives the
following result:

�iM = [ū3c†
3]
h
�i

gs
2

lagµ
i
[u1c1]

"
�igµndab

q2

#
[v̄2c†

2]
h
�i

gs
2

lbgn
i
[v4c4]

(9.65)

p1, c1

p2, c2

p3, c3

p4, c4

q

Figure 9.13: Quark- antiquark
scattering.

which gives the following

M =
�g2

s
4

1
q2 [ū3gµu1][v̄2gµv4](c

†
3lac1)(c

†
2lac4) (9.66)

Looking carefully at this result, we realize that it is exactly the same as e+e�

scattering (see chapter 8), except for the coupling constant ge ! gs and the
last factor, the color factor f , which we will calculate later:

f =
1
4
(c†

3lac1)(c
†
2lac4). (9.67)

The factor f is simply a number. So we get the same dynamic behavior
in this particular case as in QED, except for the constant factors f and gs,
which is a remarkable result (of course, this is not the case in general. The
dynamics in QCD can be fundamentally different from QED, especially if
we consider higher orders).

We get an interesting observation, if we drag the analogy a bit further
and consider the potential Vqq̄(r) which describes the qq̄ interaction. The
analogy is the Coulomb potential, which is the Fourier transformation of
the photon propagator (and in this case the gluon propagator). It is justified
to use the same potential at small distances because we got the same matrix
element for qq̄ scattering as for e+e� scattering:

Vqq̄(r) = � f
ash̄

r
. (9.68)

We will see that the color factor f can be positive or negative, giving an
attractive or repulsive potential.
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+ f adh f bgh(gµnglr � gµlgnr) (9.63)

+ f agh f dbh(gµrgnl � gµnglr)] (9.64)

for four-gluon vertices.

• The remaining rules, conservation of four-momentum at each vertex,
integration over internal momenta, etc . . . are the same as for QED, which
we have already discussed.

9.5.1 Example: Quark-Antiquark Scattering

We now consider the interaction between two quarks in lowest order of
perturbation theory, in order to understand the short-range behavior of
the strong interaction. The diagram that we want to calculate is shown in
figure 9.13, which represents for example the scattering of up-quarks u with
anti-down quarks d: u + d̄ ! u + d̄. The quark colors are indicated with ci.

Writing down the matrix element, following the Feynman rules gives the
following result:

�iM = [ū3c†
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h
�i

gs
2

lagµ
i
[u1c1]
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Figure 9.13: Quark- antiquark
scattering.

which gives the following

M =
�g2

s
4

1
q2 [ū3gµu1][v̄2gµv4](c

†
3lac1)(c

†
2lac4) (9.66)

Looking carefully at this result, we realize that it is exactly the same as e+e�

scattering (see chapter 8), except for the coupling constant ge ! gs and the
last factor, the color factor f , which we will calculate later:

f =
1
4
(c†

3lac1)(c
†
2lac4). (9.67)

The factor f is simply a number. So we get the same dynamic behavior
in this particular case as in QED, except for the constant factors f and gs,
which is a remarkable result (of course, this is not the case in general. The
dynamics in QCD can be fundamentally different from QED, especially if
we consider higher orders).

We get an interesting observation, if we drag the analogy a bit further
and consider the potential Vqq̄(r) which describes the qq̄ interaction. The
analogy is the Coulomb potential, which is the Fourier transformation of
the photon propagator (and in this case the gluon propagator). It is justified
to use the same potential at small distances because we got the same matrix
element for qq̄ scattering as for e+e� scattering:

Vqq̄(r) = � f
ash̄

r
. (9.68)

We will see that the color factor f can be positive or negative, giving an
attractive or repulsive potential.
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b, the singlet will be exactly the same, while |2i and |3i would change sign,
for example. Even though the states |3i and |8i are colorless, in the sense
that a color is always cancelled by an anti-color, they are not color neutral,
meaning that the states change under arbitrary color transformations.

The singlet gluon |9i is the one that does not exist in nature. Because of
it’s color-neutralness, it would represent a long-distance strong interaction,
similar to the photon in QED. There is no fundamental reason, why QCD
cannot be realized as a U(3) gauge symmetry. It is possible to construct a
full theory based on U(3). In such a theory nine gluons would exist, but
in this case our world would look drastically different, with long-distance
strong interactions with significant implications on the structure of the
universe. Observation shows that color-singlet gluons do not exist and that
SU(3) is the correct basis for this theory.

We also note that hadrons (such as protons and pions) can only exist as
color-singlet states. It is required for free stable particles to be fully color-
neutral (dictated by confinement, see above) which also explains why free
octet-gluons do not exist .

9.5 Feynman Rules for QCD

The Feynman rules for QCD on tree-level can be derived from perturbation
theory as we have done for QED in chapter 7. We don’t derive the Feynman
rules here, instead we quote the most prominent results, followed by a few
example applications.

Figure 9.10: Quark-gluon vertex.

Figure 9.11: Three-gluon vertex.

Figure 9.12: Four-gluon vertex.

• External lines: external quark lines represent the spinors of incoming
and outgoing quarks and anti-quarks, which depend on the momentum
p. They are denoted in a similar way as in QED, but with an additional
color vector c that describes the color configuration of the quark: u(p)c
and v̄(p)c† for incoming quarks and anti-quarks, whereas ū(p)c† and
v(p)c denote outgoing quarks and anti-quarks.

An external gluon of momentum p, polarization e, and color a, we have
to include a factor eµ(p)aa for incoming and e⇤µ(p)aa⇤ for outgoing glu-
ons. Here, the indices µ refer to space-time and a refer to color.

• Propagators: internal quark lines contribute a factor

i(gaqa + m)
q2 � m2 + ie

(9.59)

and internal gluon lines contribute

�igµndab

q2 (9.60)

• Vertices: a quark-gluon vertex (figure 9.10) introduces a factor

�igs
2

lagµ.

Something that does not exist in QED are three-photon vertices. But in
QCD three- and even four-gluon vertices exist (figure 9.11 and 9.12),
which introduce the factor

�gs f abg[gµn(k1 � k2)l + gnl(k2 � k3)µ + glµ(k3 � k1)n] (9.61)
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for three-gluon vertices. The gluon momenta (k1, k2, k3) are assumed to
point into the vertex. For momenta pointing outwards, the sign of the
momenta has to be changed. The four-gluon vertex introduces the factor
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for four-gluon vertices.

• The remaining rules, conservation of four-momentum at each vertex,
integration over internal momenta, etc . . . are the same as for QED, which
we have already discussed.

9.5.1 Example: Quark-Antiquark Scattering

We now consider the interaction between two quarks in lowest order of
perturbation theory, in order to understand the short-range behavior of
the strong interaction. The diagram that we want to calculate is shown in
figure 9.13, which represents for example the scattering of up-quarks u with
anti-down quarks d: u + d̄ ! u + d̄. The quark colors are indicated with ci.

Writing down the matrix element, following the Feynman rules gives the
following result:
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which gives the following

M =
�g2

s
4

1
q2 [ū3gµu1][v̄2gµv4](c

†
3lac1)(c

†
2lac4) (9.66)

Looking carefully at this result, we realize that it is exactly the same as e+e�

scattering (see chapter 8), except for the coupling constant ge ! gs and the
last factor, the color factor f , which we will calculate later:

f =
1
4
(c†

3lac1)(c
†
2lac4). (9.67)

The factor f is simply a number. So we get the same dynamic behavior
in this particular case as in QED, except for the constant factors f and gs,
which is a remarkable result (of course, this is not the case in general. The
dynamics in QCD can be fundamentally different from QED, especially if
we consider higher orders).

We get an interesting observation, if we drag the analogy a bit further
and consider the potential Vqq̄(r) which describes the qq̄ interaction. The
analogy is the Coulomb potential, which is the Fourier transformation of
the photon propagator (and in this case the gluon propagator). It is justified
to use the same potential at small distances because we got the same matrix
element for qq̄ scattering as for e+e� scattering:

Vqq̄(r) = � f
ash̄

r
. (9.68)

We will see that the color factor f can be positive or negative, giving an
attractive or repulsive potential.

color factor
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Color factors in QCD
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Gell-Mann Matrices

Structure constants of SU(3)
f 123 = 1, f 147 = f 246 = f 257 = f 345 = f 516 = f 637 = 1

2 , f 458 = f 678 =
p

3
2

All others: 0

Typical representation of generators ⌧ a: Gell-Mann matrices
8 traceless, hermitian matrices �a = 1

2⌧
a

�1 =

0

@
0 1 0
1 0 0
0 0 0

1

A , �2 =

0

@
0 �i 0
i 0 0
0 0 0

1

A , �3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A , �4 =

0

@
0 0 1
0 0 0
1 0 0

1

A

�5 =

0

@
0 0 �i
0 0 0
i 0 0

1

A , �6 =

0

@
0 0 0
0 0 1
0 1 0

1

A , �7 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , �8 = 1p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !311



Particle Physics 1

Summary QCD

30

SU(3) describes the exact color symmetry of the strong interaction


8 Gell-Mann Matrices λ → 8 bosons (gluons)


Strong coupling constant  

No fundamental reason why QCD cannot be realized as U(3) in nature. 
This would result in an additional colorless 9th gluon… our world 
would be very different!

gS
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Not the whole picture…
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Dynamics of a theory not entirely 
described by Lagrange density 


Fields are quantised: effects due to quantum 
corrections (often called radiative corrections) occur


Taken into account in perturbation series


‘Good’ quantum-field theories, like the 
Standard Model, are 


Anomaly free: symmetries of the Lagrangian not 
destroyed by quantum corrections


Renormalizable: divergencies in quantum 
corrections absorbed in redefined parameters of the 
Lagrangians

Not the Whole Picture. . .

Dynamics of a theory not entirely
described by Lagrange density

Fields are quantised: effects due to
quantum corrections occur
Taken into account in perturbation series

‘Good’ quantum-field theories, like the
Standard Model, are

Anomaly free: symmetries of the
Lagrangian not destroyed by quantum
corrections
Renormalizable: divergencies in
quantum corrections absorbed in
redefined parameters of the Lagrangian

Modifies effective particle
masses (‘running masses’)

Modifies effective couplings
(‘running couplings’)

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !313
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Oskar

Eddie  
(aka “Pancakes”)
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Parity conservation in QED (and QCD)

33

Consider QED process 


Feynman rules for QED: 




Recall parity transformation from last lecture: 
 

 
  

e+e− → μ+μ−

−iℳ = [v̄e(p2)ieγμue(p1)]
−igμν

q2
[ūm(p3)ieγνvm(p4)]

= −
e2

q2
jμ
e gμν jν

m = −
e2

q2
je jm

u → u′￼ = ̂Pu = γ0u
ū = u†γ0 → ( ̂Pu)†γ0 = (γ0u)†γ0 = u†γ0,†γ0 = ūγ0

Feynman Rules
Elements of Feynman rules

External lines: incoming/outgoing particles
Vertices: coupling between particles
Propagators (=internal lines): exchange of
virtual particles during scattering process
(Green’s function of free field equation in
momentum space)

For example, e+e�
! µ+µ� scattering

U. Husemann, M. Schröder – Teilchenphysik I (Wintersemester 2017/18) !309

γ0,† = γ0(ab)† = b†a†

electrons muons
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Parity conservation in QED (and QCD)
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and analogue for 

→ the time like component is unchanged, the space-like changes sign




→ QED matrix element is invariant under parity transformation! 

QCD matrix element has the same form and conserves parity as well

je = ūγμu → ̂Pje = {
̂Pj0
e = ūγ0γ0γ0u = ūγ0u = j0

e , if k = 0
̂Pjk
e = ūγ0γkγ0u = − ūγkγ0γ0u = ūγku = − jk

e , if k = 1,2,3

jm

je jm = j0
e j0

m − jk
e jk

m → ̂Pje jm = j0
e j0

m − (−jk
e)(−jk

m) = je jm

γ0γ0 = 1γ0γμ = − γμγ0

γ0γ0 = 1
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“It doesn't matter how beautiful your theory is.  
If it disagrees with experiment, it's wrong.” 

 
(R. Feymann)
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  puzzleτ − θ
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Reminder (Lecture 2): 

In the early 1950s, experiments observed two 
new particles in cosmic rays:


 and 


The puzzle was: The mass and lifetime of the 
two particles was identical…


The parity of the particle was different 
though since all pions have spin=0 and 
negative parity ( )


Proposal by Yang and Lee: Parity is not 
conserved in these decays and τ and θ are 
the same particle!

θ+ → π+π0 τ+ → π+π−π+

̂P(q) = − P(q̄) = 1

Credit: Brown et al., Nature 163 (1949) 80

τ+ → π+π−π+

θ+ → π0π+
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The Wu-Experiment
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Experiment proposed by Yang and Lee 
(Nobel price1957)


Experiment performed by Chien-Shiung 
Wu at the US National Bureau of 
Standards (now NIST)


Wu was the world-expert for beta decay 
spectroscopy, the NBS team were world-leading 
cryogenic experts (most physicists considered the 
experiment impossible)


This experiment was genius and technically very 
challenging!


Result was totally unexpected: 
 
Parity is violated in weak interactions! C
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The Wu-Experiment
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Measurement of angular distribution of 
emitted  in β-decays of polarized 

 
 
followed by 


Theory: Check that the number of 
electrons emitted in direction of   
spin equals those emitted in opposite 
direction


Experiment: Measure electrons at fixed 
angle, but switch direction of   
spin

e−
60Co → 60Ni* + e− + ν̄e

60Ni* →

60Co

60Co

⃗J → ⃗J′￼ = P( ⃗J) = ⃗J

⃗p → ⃗p′￼ = P( ⃗p) = − ⃗p

Co

θ

e−

Co

180∘ − θ

e−

axial vector

(polar) vector
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The Wu-Experiment
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Requirements:

very high degree of polarization using strong B-
field → Wu and her team achieved ~60% 
polarization


extremely cold temperatures to reduce thermal 
movement using thermal demagnetization → 
magnetic field must be switched off during 
measurement


very precise knowledge of polarization fraction, 
measured using angular spectrum of γ decays of 
excited Ni nuclei → this is pure QED, known to 
conserve parity 

… plus many more small and large experimental 
tricks

Source: Pen88, with English translation by Stigmatella Aurantiaca
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The Wu-Experiment

40 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, “Experimental 
Test of Parity Conservation in Beta Decay”, Phys. Rev. 105, 1413 (1957)
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FIG. 2. Gamma anisotropy and beta asymmetry for
polarizing field pointing up and pointing down.

one unit and no change of parity, it can be given only
by the Gamow-Teller interaction. This is almost im-
perative for this experiment. The thickness of the
radioactive layer used was about 0.002 inch and con-
tained a few microcuries of activity. Upon demagnetiza-
tion, the magnet is opened and a vertical solenoid is
raised around the lower part of the cryostat. The
whole process takes about 20 sec. The beta and gamma
counting is then started. The beta pulses are analyzed
on a 10-channel pulse-height analyzer with a counting
interval of 1 minute, and a recording interval of about
40 seconds. The two gamma counters are biased to
accept only the pulses from the photopeaks in order to
discriminate against pulses from Compton scattering.
A large beta asymmetry was observed. In Fig. 2 we

have plotted the gamma anisotropy and beta asym-
metry vs time for polarizing field pointing up and
pointing down. The time for disappearance of the beta
asymmetry coincides well with that of gamma ani-
sotropy. The warm-up time is generally about 6 minutes,
and the warm counting rates are independent of the
field direction. The observed beta asymmetry does not
change sign with reversal of the direction of the de-
magnetization field, indicating that it is not caused by
remanent magnetization in the sample.

The sign of the asymmetry coeAicient, o., is negative,
that is, the emission of beta particles is more favored in
the direction opposit. e to that of the nuclear spin. This
naturally implies that the sign for Cr and Cr' (parity
conserved and pa. rity not conserved) must be opposite.
The exact evaluation of o. is difficult because of the
many eA'ects involved. The lower limit of n can be
estimated roughly, however, from the observed value
of asymmetry corrected for backscattering. AL velocity
v(c=0.6, the value of n is about 0.4. The value of
(I,)/I can be calculated from the observed anisotropy
of the gamma radiation to be about 0.6. These two
quantities give the lower limit of the asymmetry
parameter P(n P(=I,)/I) approximately equal to 0.7.
In order to evaluate o, accurately, many supplementary
experiments must be carried out to determine the
various correction factors. It is estimated here only to
show the large asymmetry effect. According to I-ee and
Yang' the present experiment indicates not only that
conservation of parity is violated but also that invari-
ance under charge conjugation is violated. 4 Further-
more, the invariance under time reversal can also be
decided from the momentum dependence of the asym-
metry parameter P. This effect will be studied later.
The double nitrate cooling salt has a highly aniso-

tropic g value. If the symmetry axis of a crysial is not
set parallel to the polarizing field, a small magnetic
field vill be produced perpendicular to the latter. To
check whether the beta asymmetry could be caused by
such a magnetic field distortion, we allowed a drop of
CoC12 solution to dry on a thin plastic disk and cemented
the disk to the bottom of the same housing. In this way
the cobalt nuclei should not be cooled su%ciently to
produce an appreciable nuclear polarization, whereas
the housing will behave as before. The large beta asym-
mef. ry was not observed. Furthermore, to investigate
possible internal magnetic effects on the paths of the
electrons as they find their way to the surface of the
crystal, we prepared another source by rubbing CoC1&
solution on the surface of the cooling salt until a
reasonable amount of the crystal was dissolved. AVe then
allowed the solution to dry. No beta asymmetry was
observed with this specimen.
3lore rigorous experimental checks are being initi-

ated, but in view of the important implications of these
observations, we report them now in the hope that they
Diay stimulate and encourage further experimental
investigations on the parity question in either beta or
hyperon and meson decays.
The inspiring discussions held with Professor T. D.

Lee and Professor C. N. Yang by one of us (C. S. Ku)
are gratefully acknowledged.
*YVork partially supported by the U. S. Atomic Energy

Commission.' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
~ Ambler, Grace, Halban, Kurti, Durand, and Johnson, Phil.

Mag. 44, 216 (1953).' Lee, Oehme, and Yang, Phys. Rev. (to be published' ).
warming up with time → 

measured electron rates 
for different 
polarizations 

measured photon 
anisotropy (related to 
polzarization fraction)

“According to Lee and Yang the present 
experiment indicates (…) that conservation 
of parity is violated.” 


As ΔJ=+1 both electron and anti-neutrino 
spin have to point in the same direction


Electrons are emitted opposite to  
spin, they must have negative helicity and 
antineutrinos positive helicity 
 
 
 
 
 

“Goldhaber experiment” later confirmed 
that neutrinos are left-handed; anti-
neutrinos are right-handed

60Co

Co Ni

J = 5
J = 4

s = 1/2 s = 1/2
e− ν̄
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In 1958, the charged pion decay 
into electrons  had 
not been observed


 should be much less likely 
since ΔQ is much smaller for this decay


600 MeV protons on a fixed target 
(  configuration) produces 
127 MeV pions (almost at rest)


Count two pulse (π-e) vs three 
pulse (π-μ-e) events

π+ → e+ + νe

π+ → μ+ + νμ

1234̄

Source: Phys. Rev. Lett. 1 (1958) 247-249
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 (today) 


Two-body decay with both decay products exactly back-to-back in pion 
restframe


Pion has spin 0; Muon, electron, and neutrinos have spin projections  ±1/2

Must be opposite to result in spin=0 configuration

BF(π → eν)
BF(π → μν)

= 1.23 × 10−4

π−μ− ν̄μ

or or Forbidden: Anti-neutrinos must 
have right-handed helicity and 
(because they are massless) 
have right-handed chirality

Since muons are massive, right-
handed helicity has a (small) left-

handed chiral component J=0

LH chiral component of RH helicity spinor:  for pion decay at restℳ ∝ 1 −
| ⃗pμ,e |

Eπ + mμ,e
=

mμ,e

mπ + mμ,e
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Symmetries as basic principle of physics theories


Principle of local gauge invariance 


Postulate invariance of Lagrange density under local gauge symmetry → all interactions (and gauge 
bosons as mediators)


QED: symmetry under U(1) gauge transformation →  photon exchange 


QCD: symmetry under SU(3) gauge transformation → gluon exchange


Feynman rules:

set of rules how to matrix elements


can be read off (at leading order) from Lagrange density


represented by Feynman graphs


Experimental observation of parity violation in the Wu experiment
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QED QCD Weak

Energy ✓ ✓ ✓ 

Charge ✓ ✓ ✓ 

Baryon Number ✓ ✓ ✓ 

Lepton Number ✓ ✓ ✓ *

Isospin (I) ✓ ✓ ✗ (ΔI=1/2 or 1)

Strangeness (S) ✓ ✓ ✗ (ΔS=0 or 1)

Charm (C) ✓ ✓ ✗ (ΔC=0 or 1)

Parity (P) ✓ ✓ ✗ (maximal in CC)

charge-conj. (C) ✓ ✓ ✗ 

CP ✓ ✓ ✗ (small)

CPT ✓ ✓ ✓ 



Particle Physics 145

What questions do you have?


