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First exercise

Shift forward by one week:


Will be assigned on 31. Oct.


Reviewed on 07. Nov.


No tutorial session next week (31. Oct.) 
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Hardware exercise: New slots

Two slots clash with the Tuesday 

14:00-15:30 lecture 

We will NOT have lecture on these 

days 

We will use the contingency days in 

2025 to make up the lectures
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Advanced seminar

Hauptseminar “Teilchenphysik”  

(Husemann, Ferber, Klute, Müller) 

4013214 (SS and WS) 

Preparatory meeting and topic assignment: 

Friday, 25.10.2023, 14:00-15:00, room 9/1 in 30.23

https://ilias.studium.kit.edu/ilias.php?

baseClass=ilrepositorygui&cmdNode=xe:lq&cmdClass=ilObjCourseG

UI&ref_id=2498057&redirectSource=ilCourseRegistrationGUI

Preparatory meeting today
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What do you expect from this lecture?

Thanks for letting us know! 

Please keep adding responses
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Literature

M. Thomson: Modern Particle 
Physics, Cambridge UP (2013) 

D. Griffith: Introduction to Elementary 
Particles, Wiley (2008) 

A. Bettini: Introduction to Elementary 
Particle Physics, Cambridge UP (2008)


C. Berger: Elementarteilchenphysik, 
Springer (2006)


P. Schmüser: Feynman-Graphen und 
Eichtheorien für Experimentalphysiker, 
Springer (1995)

PDF uploaded 

to ILIAS

Please read the 

sections assigned 

at the end of each 

lecture
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PINGO: Luminosity

By 10/2023, the Belle II experiment at the e+e- KEKB collider in 
Japan had collected a dataset of about 0.92ab-1. The cross section 

to produce tau pairs,  is about 1nb. Approximately 
how many tau pairs had Belle II recorded at this time?*


about 1 Thousand  (103)


about 1 Million (106)


about 1 Billion (109)


about 1 Trillion  (1012)

σ(e+e− → τ+τ−)
*assuming an efficiency of ε=1

From L01
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PINGO: Luminosity Solution
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PINGO:  

Session: Particle Physics 1 (WS 24/25). 

Accession number: 559016 

Link: https://pingo.coactum.de/events/559016

PINGO: Fixed target collision
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PINGO: Fixed target collision

10

If LHC was a fixed target collider, what would the center of mass 
energy be if the proton beam has an energy of 7 TeV and the target is a 
proton at rest?


about 14 TeV


about 7 TeV


about 0.01 TeV
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Other questions from L01?

11
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Today

12

Non-relativistic 

QM

Relativistic 

QM

Classical 

mechanics 

Quantum 

mechanics 
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Notation

Vectors


3-vectors: 


4-vectors: 


Contravariant vector  and the covariant vector  are related by the 

metric tensor : 


, i.e.: 

xa = ⃗x, a = (1,2,3)

xμ = (t, ⃗x), μ = (0,1,2,3)

xμ xμ

gμν xμ = gμνxν

g =

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

x0 → x0, x1 → − x1, x2 → − x2, x3 → − x3
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Covariant vs. invariant

14

Covariant does not mean invariant! (2 different concepts)


Covariant applies to an equation 


Invariant applies to a quantity which has the same numerical value 
in any reference frame


 is a covariant equation


 is an invariant quantity

AμAμ = b

AμAμ

Covariant form is extremely useful since 

equation manifestly holds true in any 

reference frame (both sides get identical 

Lorentz boosts; one  per available index)Λμ
ν
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Notation
P

energy-momentum: pµ = (E ,~p)

time-space: xµ = (t,~x)

4-gradient: @µ = ∂

∂µ
=

⇣

∂

∂t
,�~r

⌘

D’Alembert operator ⇤ = @µ@µ = ∂
2

∂t2 �r
2

4-current jµ = (⇢,~j)

electromagnetic 4-potential: Aµ = (�,~A)

field-strength tensor: Fµν = @µAν
� @νAµ

electric scalar
magnetic vector

∇ = (
∂

∂x
,

∂

∂y
,

∂

∂z )
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Classical 

mechanics 

Quantum 

mechanics 

“God does not play dice”  

“The Lord is subtle but not malicious” 

—Einstein

“Einstein, stop telling God what to do” 

- Bohr

Photograph by Paul Ehrenfest: https://history.aip.org/exhibits/einstein/ae63.htm

Suggested reading
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Schrödinger equation

Classical energy-momentum of a free particle: 


Quantize by promoting  and  to operators:  and 

and applying the resulting operator on a wave function :

E =
1

2
mv2 =

p2

2m

E P E → i
∂

∂t
p → − i ⃗∇

ψ( ⃗x, t)

−
1

2m
∇2ψ = i

∂ψ

∂t

Schrödinger equation is not Lorentz-invariant

Recall:


is the probability of 

finding the particle at  

ψ( ⃗x, t)
2

( ⃗x, t)

 order derivative 

in space

2nd  order derivative 

in time

1st Different dependence on the 

time and space coordinates 
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Non-relativistic 

QM

Relativistic 

QM
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Klein-Gordon equation

Relativistic energy-momentum of a free particle:  


Canonical operator replacement (in 4-vector notation)  and 

application of the resulting operator on a wave function :  
 

                                     

pμpμ = E2 − ⃗p2 = m2

pμ = i∂μ

ψ( ⃗x, t)

∂μ∂μψ + m2ψ = 0

∂2ψ

∂t2
− ∇2ψ + m2ψ = 0 ↔ ( □ + m2) ψ = 0

Start over

 order derivative 

in space

2nd order derivative 

in time

2nd

Klein-Gordon equation is Lorentz-invariant

(Today identified as the correct solution for spin 0 particles)
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Solutions to the K-G equation

Plane wave solutions   





Negative energy solutions cannot be dismissed in QM since all 
solutions are required to form a complete set of states. 

ψ( ⃗x, t) = Nei( ⃗p⋅ ⃗x−Et)

E = ± p2 + m2
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Two problems with the K-G equation

21

Negative energy solutions of the K-G equation have unphysical 
negative probability densities.


The K-G equation does not account for the spin degree of freedom. 


(Recall that earlier we said that the K-G equation is identified as the solution for spin 0 
particles only) 
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Probability density & probability current

22

Recall the continuity equation for the conservation of QM probability:

× · j +
ερ

εt
= 0.

ρ(x, t) = ψ∗(x, t)ψ(x, t).Probability density:

Probability flux density 


(aka curent):
denoted j(x, t),

by j · dS

Assuming the particle does not 
decay or interact, its associated 
total probability will be constant 

In non-relativistic QM:
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Now see what happens with the K-G equation
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Dirac equation

24

To be physically satisfactory, it must:


1. Give the correct energy momentum relation  for a 
free particle (i.e., satisfy the K-G equation)


2. Allow a probabilistic interpretation of the wave function 


3. Be Lorentz covariant (i.e., true in any reference frame)

E2 = p2 + m2

ψ( ⃗x, t)

̂Eψ = ( ⃗α ⋅ ̂p + βm)ψ

Start over

Proposed solution: try an equation linear in derivatives
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i
γ

γt
ψ =

(

−iαx

γ

γx
− iαy

γ

γy
− iαz

γ

γz
+ βm

)

ψ.

̂Eψ = ( ⃗α ⋅ ̂p + βm)ψ

α2ψ

αt2
= α2

x

α2ψ

αx2
+ α2
y

α2ψ

αy2
+ α2

z

α2ψ

αz2
− β2m2ψ

+ (αxαy + αyαx)
α2ψ

αxαy
+ (αyαz + αzαy)

α2ψ

αyαz
+ (αzαx + αxαz)

α2ψ

αzαx

+ i(αxβ + βαx)m
αψ

αx
+ i(αyβ + βαy)m

αψ

αy
+ i(αzβ + βαz)m

αψ

αz
. (4.8)

This part needs to survive so as to 

reduce to the K-G equation

Start with the Dirac equation: 


Write in terms of the operators: 


Square it:

Condition 1: Satisfy E2 = p2 + m2
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α2ψ

αt2
= α2

x

α2ψ

αx2
+ α2
y

α2ψ

αy2
+ α2

z

α2ψ

αz2
− β2m2ψ

+ (αxαy + αyαx)
α2ψ

αxαy
+ (αyαz + αzαy)

α2ψ

αyαz
+ (αzαx + αxαz)

α2ψ

αzαx

+ i(αxβ + βαx)m
αψ

αx
+ i(αyβ + βαy)m

αψ

αy
+ i(αzβ + βαz)m

αψ

αz
. (4.8)

This part needs to survive so as to 

reduce to the K-G equation

α2
x = α

2
y
= α2

z = β
2
= I,

α j β + β α j = 0,

α j αk + αk α j = 0 ( j ! k),
Not possible if the  and 

 are normal numbers 

αi

β

Need the following:

Condition 1: Satisfy E2 = p2 + m2
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α2
x = α

2
y
= α2

z = β
2
= I,

α j β + β α j = 0,

α j αk + αk α j = 0 ( j ! k),
Not possible if the  and 

 are normal numbers 

αi

β

Need the following:

The simplest objects that can satisfy these relations are anti-commuting        

{ } =  matrices with properties: 


Trace 


Eigenvalues 


Even dimension


Hermitian (since  must be hermitian to have real eigenvalues) 

a, b ab + ba

= 0

= ± 1

ĤD

Condition 1: Satisfy E2 = p2 + m2
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ψ =



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪



ψ1

ψ2

ψ3

ψ4



⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎨

⎧

.Dirac spinor

 and  are 4 mutually anticommuting Hermitian matrices of even 

dimension and trace 0. 

The lowest-D object that can represent  and  are  

matrices. Do you see why? 

The Dirac hamiltonian  is a  matrix of operators 

that must act on a 4-component wave function:

αx, αy, αz β

αx, αy, αz β 4 × 4

ĤD = ⃗α ⋅ ̂p + βm 4 × 4

Condition 1: Satisfy E2 = p2 + m2
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α2
x = α

2
y
= α2

z = β
2
= I,

α j β + β α j = 0,

α j αk + αk α j = 0 ( j ! k),

The algebra is fully 

defined by these 

relations

Use the Pauli-Dirac representation, based on the Pauli spin matrices: 

β =

(

I 0

0 −I

)

and αi =

(

0 σi

σi 0

)

,

with

I =

(

1 0

0 1

)

, σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

and σz =

(

1 0

0 −1

)

.

Condition 1: Satisfy E2 = p2 + m2
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Condition 2: Probabilistic interpretation

30

Follow the same procedure as that used for the Schrödinger and 

Klein-Gordon equations (S19-20), but note that  must be 

replaced by the Hermitian conjugate , since the 
wavefunctions are now 4-component Dirac spinors.

ψ*
ψ† = (ψ*)T

−iαx

εψ

εx
− iαy

εψ

εy
− iαz

εψ

εz
+ mβψ = +i

εψ

εt
,

+i
εψ†

εx
α†x + i

εψ†

εy
α†
y
+ i
εψ†

εz
α†z + mψ†β† = −i

εψ†

εt
.

(1) Dirac equation

(2) Hermitian conjugate

× · j +
ερ

εt
= 0.

ψ† × (1) − ψ × (2) × · (ψ†αψ) +
ε(ψ†ψ)

εt
= 0,

∗

ρ = ψ†ψ and j = ψ†αψ.

Identify probability density and probability current

All solutions of the Dirac equation have +probability density
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Relation to spin

31

The Dirac equation provides a natural description of spin-half 
particles.


Spin emerges as a direct consequence of requiring the wavefunction 
to satisfy the Dirac equation 

Read at home: Thomson Section 4.4

dO

dt
=

d

dt
⃝Ô′ = i⃝ψ|[Ĥ, Ô]|ψ′.

QM basics: Time dependence of an 

observable corresponding to an 

operator  is given by Ô

If the operator for an observable 

commutes with the , it is a 

constant of the motion

H

[ĤD, L̂] = −iα × p̂.

[ĤD, Ŝ] = iα × p̂.

[

ĤD, Ĵ
]

≡

[

ĤD, L̂ + Ŝ
]

= 0.



Particle Physics 132

Condition 3: Must be Lorentz covariant

i
γ

γt
ψ =

(

−iαx

γ

γx
− iαy

γ

γy
− iαz

γ

γz
+ βm

)

ψ.

Start with the Dirac equation: 


Quantize it:


Multiply by :β

̂Eψ = ( ⃗α ⋅ ̂p + βm)ψ

iβαx

γψ

γx
+ iβαy

γψ

γy
+ iβαz

γψ

γz
+ iβ
γψ

γt
− β2mψ = 0.

(iγ µγµ − m)ψ = 0,

Covariant form of the Dirac equation

Define , and use :
γμ ≡ (β, βαi) β2 = I

iγ0 γψ

γt
+ iγ1 γψ

γx
+ iγ2 γψ

γy
+ iγ3 γψ

γz
− mψ = 0.
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Condition 3: Must be Lorentz covariant

Straightforward to obtain the properties of the  matrices from 

those of the  and  matrices 








 for 

γ
α β

(γ0)2 = 1

(γ1)2 = (γ2)2 = (γ3)2 = − 1

γμγν + γνγμ = 0 μ ≠ ν

{γμ, γν} = 2gμν}



Particle Physics 134

 is not a four-vector, but the same in each coordinate 

system


Usually use the Dirac-Pauli (or chiral) representation: 
 

 and  

 

 

with Pauli matrices , , , 


Special combination  with  and 

γμ = (γ0, γ1, γ2, γ3)

γ0 =

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

= (I 0

0 −I) γa = (
0 σa

−σa 0 )

σ1 = (0 1

1 0) σ2 = (0 −i

i 0 ) σ3 = (1 0

0 −1) [σa, σb] = 2iϵa,b,c

γ5 ≡ iγ0γ1γ2γ3 {γ5, γ0} = 0 (γ5)
2

= 1

 Matrices (Key points):γ
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Covariant current

Probability density:


Probability current:

× · j +
ερ

εt
= 0.

Derived on S27
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Adjoint spinor
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PINGO:  

Session: Particle Physics 1 (WS 24/25). 

Accession number: 559016 

Link: https://pingo.coactum.de/events/559016

PINGO: Dirac equation
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PINGO: Dirac equation

38

Which particles can be described by the Dirac equation?


Higgs Boson(s)


Charged leptons


Photons


Quarks


Neutrinos
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Summary

Relativistic quantum mechanics incorporates relativistic energy- momentum 

relation: 


Canonical operator replacement  (  and )


Klein-Gordon equation of motion  for spin-0 particles 

(scalars)


Dirac equation : equation of motion for relativistic 

spin-1/2
 
particles 


Next time we’ll see that the 4D spinor  simultaneously describes particles and anti-particles with spin 
up/down

pμpμ = E2 − ⃗p2 = m2

pμ = i∂μ E → i
∂

∂t
p → − i ⃗∇

(∂μ∂μ + m2) ϕ = 0

(iγμ∂μ − m) ψ = 0

ψ
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Reading assignment

Modern particle physics (Mark Thomson)


Chap. 2


2.3.1-2.3.3 


Chap. 4


4.1-4.5.1
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What questions do you have?


