SuperKEKB & Belle II

Prof. Dr. Ulrich Nierste Dr. Pablo Goldenzweig

Flavor Physics Lectures X / XII

Winter Semester 2020/2021 10. February, 2021

Reading material and references

Lecture material based on several textbooks and online lectures/notes. Credits for material and figures include:

Literature

Perkins, Donald H. (2000), Introduction to High Energy Physics.

Griffiths, David J. (2nd edition), Introduction to Elementary Particles.

Stone, Sheldon (2nd edition), B decays.

Online Resources

Belle/BaBar Collaborations, The Physics of the B-Factories. http://arxiv.org/abs/1406.6311

Bona, Marcella (University of London), CP Violation Lecture Notes, http://pprc.qmul.ac.uk/ bona/ulpg/cpv/

Richman, Jeremy D. (UCSB), *Heavy Quark Physics and CP Violation*. http://physics.ucsd.edu/students/courses/winter2010/physics222/references/driver_houches12.pdf

Thomson, Mark (Cambridge University), *Particle Physics Lecture Handouts*, http://www.hep.phy.cam.ac.uk/ thomson/partIIIparticles/welcome.html

Grossman, Yuval (Cornell University), Just a Taste. Lectures on Flavor Physics, http://www.lepp.cornell.edu/ pt267/files/notes/FlavorNotes.pdf

Kooijman, P. & Tuning, N., CP Violation, https://www.nikhef.nl/ h71/Lectures/2015/ppII-cpviolation-29012015.pdf

SuperKEKB accelerator

Upgrade for SuperKEKB and Belle II to achieve 40x peak \mathcal{L} under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

World record \mathcal{L}_{inst} in 2020

ACCELERATORS | NEWS KEK reclaims luminosity record

Record breaker The instantaneous luminosity of SuperKEKB measured at 5-minute intervals from late 2019 to 22 June 2020, Values are online measurements and contain an approximate 1% error. Credit: KEK

We can spare no words in thanking KEK for their pioneering work in achieving results that push forward both the accelerator frontier and the related physics frontier Pantaleo Raimondi

$$\rightarrow \mathscr{L} = 2.4 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

The intensity frontier and beyond (with displaced x-axis)

Belle II targets:

Instantaneous luminosity $8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ Integrated luminosity 50ab^{-1} by 2031

Teilchenphysik II

Belle II detector

Targeted improvements: Increase K_S^0 efficiency; Improve IP and secondary vertex resolution, K/π separation, and π^0 efficiency; Particle and μ ID in endcaps.

Teilchenphysik II

SuperKEKB & Belle II

10/2/2021 6/23

Vertex detector

Si pixel (2 layers) and strip (4 layers):

• 1st pixel layer at r = 14mm to IP [Belle at r = 20mm]

> Improves vertex resolution along z-axis

• Larger SVD w/outer layer at r = 135mm. [Belle at r = 88mm]

Higher fraction of K_S ' with vertex hits improves vertex resolution

Tracking detector

Central Drift Chamber:

- Larger outer radius of 1111mm (Belle 863mm) allows for improved p resolution.
- Smaller cells with lower occupancy and capacity for higher hit rate.

Simulated track reconstruction efficiency Stable performance for up to 3x predicted beam BG

Single track Showering event

Full readout of the CDC

Teilchenphysik II

SuperKEKB & Belle II

10/2/2021 8/23

Particle identification

Two RICH systems covering full momentum range

- Barrel: Time of Propagation (TOP) counter (16 modules).
 - \Rightarrow Measure x-y position of Cherenkov γ 's and their arrival time.
- Forward Endcap: Aerogel Ring Imaging Cherenkov detector (ARICH)
 - \Rightarrow Proximity focusing with silica aerogel (4 σ separation at 1 3.5 GeV/c)

Teilchenphysik II

SuperKEKB & Belle II

Electromagmetic calorimeter

Re-usage of Belle's CsI(TI) crystal calorimeter, but with new electronics with 2MHz wave form sampling to compensate for the larger beam-related backgrounds and the long decay time of CsI(TI) signals.

 \Rightarrow Resolution much better at Belle II

Peak energy resolution in the ECL barrel as a function of true photon energy

Run plan

Phase 1: 2011

• Beam background monitor. (No Belle II detector.)

Phase 2: Feb.-July 2018

- First collisions.
- Beam commissioning.
- Physics run without VXD.
- New triggers for exotic dark signatures in low multiplicity events.

Phase 3:

- Luminosity tuning.
- Physics run with partial and then full Belle II VXD.

Phase I - beam background detector

Teilchenphysik II

SuperKEKB & Belle II

Belle II roll-in (April 2011)

Global cosmic run

Phase 2 - Commissioning phase

Motivation for **BEAST II**:

Machine commissioning

Radiation safe environment for the VXD:

Two layers PXD

• Four layers SVD

• Dedicated radiation monitors

Phase 2 - First collision

Phase 2 - First Belle II publication

Axionartige Teilchen

PHYSICAL REVIEW LETTERS 125, 161806 (2020

Search for Axionlike Particles Produced in e+e- Collisions at Belle II

F. Abudinén,⁴² I. Adachi,^{21,18} H. Aihura,¹¹⁵ N. Akopov,¹²¹ A. Aloisio,^{97,35} F. Ameli,³⁹ N. Anh Ky,^{22,11} D. M. Asner,² T. Aushev,²³ V. Aushev,⁷³ V. Babu,⁵ S. Bathinjand,⁴⁰ P. Bambada,²⁷ B. Bambada,²⁶ S. Bamolo,¹⁷ J. Bocker,⁴⁰ P. K. Boheran,²¹ V. Bernier,¹⁸ C. B. Bernier,¹⁸ F. U. Bennich,¹⁰ F. U. Bennich,¹⁰ F. U. Bennich,¹⁰ F. J. M. Bernier,¹⁰ F. M. Bernier,¹⁰

Phase 3 - Partial PXD

(A complete PXD will be installed during a long shutdown in 2022)

Phase 3 - PXD + SVD (half-shell for illustration)

Teilchenphysik II

SuperKEKB & Belle II

10/2/2021 18/23

Phase 3 - VXD cabling nightmare

Phase 3 - VXD & endcap & QCS installation

VXD installation on Nov 21/22

FWD Endcap push-in on Jan 25

Service space conflicts for 2020 w/ full PXD

QCS insertion & RVC closing on Jan17/18

Phase 3 - First collision

Phase 3 - First physics summer 2020

- 13 public documents of rediscoveries and performance on data;
- 9 conference papers uploaded to the arXiv;
- 3 sensitivity studies based on the simulation.
- Summary of all results is publicly accessible here.

Exclusive $B \rightarrow D^*|_V$ Belle II preliminary $\int c dx = 34.616^{-1}$

mass measurement

Inclusive b→u

Beyond the $\Upsilon(4S)$ - Sometime in 2021(?)

A run above the the $\Upsilon(4S)$ would greatly expand the physics program. Physics measurements: $\Upsilon(6S)$ conventional bottonium and exotic states (e.g., Z_b , QCD hybrids in BB^*).

- · Long list of potential analyses
 - $\Upsilon(6S/b) \rightarrow \pi\pi X$ inclusive
 - $\Upsilon(6S/b) \rightarrow \pi\pi\Upsilon(pS)$ exclusive
 - Also π^oπ^o modes
 - $\Upsilon(6S) \rightarrow \gamma W_b \rightarrow \omega \Upsilon(1S)$
 - $\Upsilon(6S/b) \rightarrow \gamma \chi_b$ exclusive
 - $\Upsilon(6S/b) \rightarrow \gamma X$ inclusive
 - Each represents a publication unique to Belle II

SuperKEKB & Belle II

• $\Upsilon(6S/b) \rightarrow \eta X$ inclusive

• $\Upsilon(6S/b) \rightarrow \omega X$ exclusive • $\Upsilon(6S) \rightarrow \phi \chi_b(1P)$ exclusive

• $\Upsilon(6S/b) \rightarrow BB$

• $\Upsilon(6S/b) \rightarrow \eta \Upsilon(pS)$ exclusive

• $\Upsilon(6S/b) \rightarrow \eta' \Upsilon(pS)$ exclusive