

Teilchenphysik II - W, Z, Higgs am Collider

Lecture 06: Higgs Mechanism

PD Dr. K. Rabbertz, Dr. Nils Faltermann | 26. Mai 2023

www.kit.edu

Recap: Electroweak Theory

Interactions as consequence of local gauge invariance

- Invariance requires introduction of gauge fields
- Geometrical interpretation: gauge bosons transport phase information between space-time points
- Extension to non-Abelian gauge theories \rightarrow Electroweak gauge group SU(2)_L \times U(1)_Y
 - Physical gauge boson (W[±], Z, γ) superposition of underlying gauge fields W^a (from SU(2)_L) and B (from U(1)_Y)
 - Chiral theory: interaction different for left- and right-handed states

Status Electroweak Theory

So far very successful in describing observed phenomena:

- Unification of weak and electromagnetic force at higher energy scales
- Left- and Right-handed coupling structure for the weak interaction

Status Electroweak Theory

- So far very successful in describing observed phenomena:
 - Unification of weak and electromagnetic force at higher energy scales
 - Left- and Right-handed coupling structure for the weak interaction

BUT, there are also problems:

- 1) Gauge-boson mass terms violate gauge invariance
 - $\rightarrow\,$ a problem of gauge theories in general
- 2) Fermion mass terms violate invariance under electroweak $(SU(2)_L \times U(1)_Y)$ symmetry
 - ightarrow follows from the chiral structure
- 3) Longitudinal WW boson scattering violates unitarity
 - $\rightarrow\,$ cross section diverges with higher energy

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions
- Example QED: from invariance under local U(1) transformations
 - Vector field (photon) transforms as $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q} \partial_{\mu} \alpha$
 - Transformation of mass terms

$$rac{1}{2}m_{\mathrm{A}}^{2}\mathrm{A}_{\mu}\mathrm{A}^{\mu}
ightarrow rac{1}{2}m_{\mathrm{A}}^{2}\mathrm{A}_{\mu}^{\prime}\mathrm{A}^{\prime\mu}$$

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions
- Example QED: from invariance under local U(1) transformations
 - Vector field (photon) transforms as $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q} \partial_{\mu} \alpha$
 - Transformation of mass terms

$$\begin{split} \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} &\to \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}^{\prime}\mathsf{A}^{\prime\mu} \\ &= \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} - \frac{1}{q}m_{A}^{2}\left(\mathsf{A}_{\mu}\partial^{\mu}\alpha + \mathsf{A}^{\mu}\partial_{\mu}\alpha\right) + \frac{1}{2q^{2}}m_{A}^{2}\partial_{\mu}\alpha\partial^{\mu}\alpha \\ &\neq \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} \end{split}$$

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions
- Example QED: from invariance under local U(1) transformations
 - Vector field (photon) transforms as $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q} \partial_{\mu} \alpha$
 - Transformation of mass terms

$$\begin{split} \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} &\to \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}^{\prime}\mathsf{A}^{\prime\mu} \\ &= \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} - \frac{1}{q}m_{A}^{2}\left(\mathsf{A}_{\mu}\partial^{\mu}\alpha + \mathsf{A}^{\mu}\partial_{\mu}\alpha\right) + \frac{1}{2q^{2}}m_{A}^{2}\partial_{\mu}\alpha\partial^{\mu}\alpha \\ &\neq \frac{1}{2}m_{A}^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} \end{split}$$

- X Gauge-boson mass terms break local gauge invariance
 - Property of all gauge-field theories
- X Fundamental problem: W and Z bosons have masses!

Problem of Massive Fermions ...?

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions

Problem of Massive Fermions ...?

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - \rightarrow cause of interactions
- Example QED: from invariance under local U(1) transformations
 - Spinor transforms as $\psi \to \psi' = e^{i\alpha}\psi$ and $\overline{\psi} \to \overline{\psi}' = \overline{\psi}e^{-i\alpha}$
 - Transformation of mass terms ("Dirac mass" term):

$$m_t \overline{\psi} \psi \longrightarrow m_t \overline{\psi}' \psi' = m_t \overline{\psi} \psi$$

Problem of Massive Fermions ...?

- Invariance of L under local gauge transformation achieved by introduction of vector field(s) with specific transformation behaviour
 - ightarrow cause of interactions
- Example QED: from invariance under local U(1) transformations
 - Spinor transforms as $\psi \to \psi' = e^{i\alpha}\psi$ and $\overline{\psi} \to \overline{\psi}' = \overline{\psi}e^{-i\alpha}$
 - Transformation of mass terms ("Dirac mass" term):

 $m_f \overline{\psi} \psi \longrightarrow m_f \overline{\psi}' \psi' = m_f \overline{\psi} \psi$

- \checkmark No problem with fermion masses for U(1) transformations
- ✓ Similarly, no problem in SU(3) (non-Abelian gauge group)

Problem of Massive Fermions!

- $SU(2)_L \times U(1)_Y$ transformations act differently on chiral components
- Decomposition of mass term

$$m_{\rm f}\overline{\psi}\psi=m_{\rm f}\left(\overline{\psi}_{\rm R}\psi_{\rm L}+\overline{\psi}_{\rm L}\psi_{\rm R}\right)$$

Problem of Massive Fermions!

- $SU(2)_L \times U(1)_Y$ transformations act differently on chiral components
- Decomposition of mass term

$$m_{f}\overline{\psi}\psi = m_{f}\left(\overline{\psi}_{R}\psi_{L} + \overline{\psi}_{L}\psi_{R}\right)$$

Left- and right-handed components transform differently!

$$\psi_L \rightarrow \psi'_L = e^{i\alpha^a \tau^a + i\alpha Y} \psi_L$$
 (component of isospin doublet, $I = \frac{1}{2}$)
 $\psi_R \rightarrow \psi'_R = e^{i\alpha Y} \psi_R$ (isospin singlet, $I = 0$)

Problem of Massive Fermions!

- $SU(2)_L \times U(1)_Y$ transformations act differently on chiral components
- Decomposition of mass term

$$m_{f}\overline{\psi}\psi = m_{f}\left(\overline{\psi}_{R}\psi_{L} + \overline{\psi}_{L}\psi_{R}\right)$$

Left- and right-handed components transform differently!

$$\psi_L \rightarrow \psi'_L = e^{i\alpha^a \tau^a + i\alpha Y} \psi_L$$
 (component of isospin doublet, $I = \frac{1}{2}$)
 $\psi_R \rightarrow \psi'_R = e^{i\alpha Y} \psi_R$ (isospin singlet, $I = 0$)

× Left- and right-handed fermions transform differently under $SU(2)_L \times U(1)_Y$

X Fermion mass terms in chiral theory are not gauge invariant

7/57 26.5.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

 W^+

 W^+

KIT -ETP

\rightarrow theory becomes non-renormalizable

 $W^ W^ W^ W^ W^ W^ W^-$

• Several Standard Model scattering cross-sections violate unitarity, i. e. become divergent at large \sqrt{s}

 W^+

 W^+

• $e^+e^- \rightarrow$ WW (for $m_e \neq 0$) • WW \rightarrow WW scattering

Unitarity Violation

 W^+

 W^+

Concept of spontaneous symmetry breaking (SSB)

 Applied to the Standard Model: the Higgs mechanism (1960s)

- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Higgs Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
 - Higgs, P. W. (1964)
 "Broken symmetries, massless particles and gauge fields" Physics Letters. 12 (2): 132–201.
 - Englert, F.; Brout, R. (1964)
 "Broken symmetry and the mass of gauge vector mesons" Physical Review Letters. 13 (9) 321–23.
 - Higgs, P. W. (1964)

"Broken symmetries and the masses of gauge bosons" Physical Review Letters. 13 (16): 508–09.

Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. (1964)
 "Global conservation laws and massless particles"
 Physical Review Letters. 13 (20): 585–87.

- New background field that has non-zero amplitude v in ground state everywhere
 - Particles interact with the field and get 'slowed down': movement as if they have mass
 - Mass explained as restoring force

 $m \propto v$ (*v* = field amplitude)

Higgs Mechanism

New background field that has non-zero amplitude v in ground state

everywhere

- Particles interact with the field and get 'slowed down': movement as if they have mass
- Mass explained as restoring force

How to Solve the Problems?

(v = field amplitude) $m \propto v$

Higgs Mechanism

Higgs Particles

Weak interactions themselves have infinite range and are described by

How to Solve the Problems?

Mass explained as restoring force

everywhere

they have mass

In the Standard Model

gauge-invariant theory

 $m \propto v$

Interactions are screened by background field: effective masses for the gauge bosons

Particles interact with the field and get 'slowed down': movement as if

(v = field amplitude)

 SSB: field spontaneously takes ground-state which does not have symmetry

New background field that has non-zero amplitude v in ground state Higgs Mechanism

SSB in Classical Mechanics

- Symmetry is present in the system (i. e. the Lagrangian)
- But it is broken in the energy ground-state

- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
- Introduce a background field with a specific potential that
 - Keeps the full Lagrangian invariant under $SU(2)_L \times U(1)_Y$,
 - But will make the energy ground-state not invariant under this symmetry

- Concept of spontaneous symmetry breaking (SSB)
 - Applied to the Standard Model: the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (1960s)
- Introduce a background field with a specific potential that
 - Keeps the full Lagrangian invariant under $SU(2)_L \times U(1)_Y$,
 - But will make the energy ground-state not invariant under this symmetry

ightarrow Higgs mechanism

- Solves all the discussed problems
- Introduces a fundamental scalar particle: the Higgs boson

- Illustrate idea of Higgs field and spontaneous symmetry breaking
- Real scalar field $\phi(x)$ in specific potential $V(\phi)$

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \phi(x) \right) \left(\partial^{\mu} \phi(x) \right)}_{\mathcal{T}(\phi)} - \underbrace{\left[\frac{1}{2} \mu^{2} \phi^{2}(x) + \frac{1}{4} \lambda \phi^{4}(x) \right]}_{V(\phi)}$$

- Illustrate idea of Higgs field and spontaneous symmetry breaking
- Real scalar field $\phi(x)$ in specific potential $V(\phi)$

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \phi(x) \right) \left(\partial^{\mu} \phi(x) \right)}_{T(\phi)} - \underbrace{\left[\underbrace{\frac{1}{2} \mu^{2} \phi^{2}(x) + \frac{1}{4} \lambda \phi^{4}(x) \right]}_{V(\phi)} \right]}_{V(\phi)}$$

- $\mathcal L$ symmetric under global phase transformation $\phi(x) o -\phi(x)$
- $\lambda > 0$: *V* has absolute minimum
- $\hfill Two possibilities for sign of <math display="inline">\mu^2$

- Illustrate idea of Higgs field and spontaneous symmetry breaking
- Real scalar field $\phi(x)$ in specific potential $V(\phi)$

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \phi(\mathbf{x}) \right) \left(\partial^{\mu} \phi(\mathbf{x}) \right)}_{T(\phi)} - \underbrace{\left[\frac{1}{2} \mu^{2} \phi^{2}(\mathbf{x}) + \frac{1}{4} \lambda \phi^{4}(\mathbf{x}) \right]}_{V(\phi)}$$

- ${\mathcal L}$ symmetric under global phase transformation $\phi(x) o -\phi(x)$
- $\lambda > 0$: *V* has absolute minimum
- $\hfill Two possibilities for sign of <math display="inline">\mu^2$
- Investigate particle spectrum: investigate L around energy ground-state (vacuum expectation value or short vacuum)

Energy ground-state at minimum of Hamiltonian density

$$\mathcal{H} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi)} (\partial_0 \phi) - \mathcal{L} = \frac{1}{2} [(\partial_0 \phi)^2 + (\nabla \phi)^2] + V(\phi)$$

Lowest energy if $\phi(x) = \phi_0 = \text{const}$ and $V(\phi_0)$ minimal

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

$$\mathcal{L} = rac{1}{2} \left(\partial_{\mu} \phi
ight) \left(\partial^{\mu} \phi
ight) - \left[rac{1}{2} \mu^{2} \phi^{2} + rac{1}{4} \lambda \phi^{4}
ight]$$

• Case $\mu^2 > 0$:

- Minimum of $V(\phi)$ at $\phi(x) = \phi_0 = 0$: ground state
- Ground state retains symmetry in $\phi \rightarrow -\phi$

$$\mathcal{L} = \underbrace{\left[\frac{1}{2}\left(\partial_{\mu}\phi\right)\left(\partial^{\mu}\phi\right) - \frac{1}{2}\mu^{2}\phi^{2}\right]}_{\text{free particle, mass }\mu} - \underbrace{\frac{1}{4}\lambda\phi^{4}}_{\text{interaction}}$$

free particle, mass μ

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$$

■ Case $\mu^2 > 0$:

- Minimum of $V(\phi)$ at $\phi(x) = \phi_0 = 0$: ground state
- $\hfill \ensuremath{\,\,^{\circ}}$ Ground state retains symmetry in $\phi \to -\phi$

$$\mathcal{L} = \underbrace{\left[\frac{1}{2}\left(\partial_{\mu}\phi\right)\left(\partial^{\mu}\phi\right) - \frac{1}{2}\mu^{2}\phi^{2}\right]}_{\text{free particle, mass }\mu} - \underbrace{\frac{1}{4}\lambda\phi^{4}}_{\text{interaction}}$$

- ightarrow free scalar particle with mass μ and four-point self-interaction
 - Mass = excitation against "restoring force"

- $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$
- Case $\mu^2 < 0$: particle with imaginary mass?

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

• Case $\mu^2 < 0$: particle with imaginary mass?

- No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)
- Ground state(s) located at $\phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v$
- Study states close to minimum:

 $\phi(x) \equiv v + \eta(x)$ (perturbations $\eta(x)$ around v)

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

• Case $\mu^2 < 0$: particle with imaginary mass?

- No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)
- Ground state(s) located at $\phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v$
- Study states close to minimum:

 $\phi(x) \equiv v + \eta(x)$ (perturbations $\eta(x)$ around v)

Kinetic term:
$$T = \frac{1}{2} \left[\partial_{\mu} (\nu + \eta) \partial^{\mu} (\nu + \eta) \right]$$
$$= \frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) , \qquad \text{since } \partial_{\mu} \nu = 0$$
Potential term:
$$V = \frac{1}{2} \mu^{2} (\nu + \eta)^{2} + \frac{1}{4} \lambda (\nu + \eta)^{4}$$
$$= \lambda \nu^{2} \eta^{2} + \lambda \nu \eta^{3} + \frac{1}{4} \lambda \eta^{4} - \underbrace{\frac{1}{4} \lambda \nu^{4}}_{\text{const}}, \text{ since } \mu^{2} = -\lambda \nu^{2}$$

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

• Case $\mu^2 < 0$: particle with imaginary mass?

- No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)
- Ground state(s) located at $\phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v$
- Study states close to minimum:

$$\mathcal{L} = \left[rac{1}{2}\left(\partial_{\mu}\eta
ight)\left(\partial^{\mu}\eta
ight) - \lambda \mathbf{v}^{2}\eta^{2}
ight] - \lambda \mathbf{v}\eta^{3} - rac{1}{4}\lambda\eta^{4}$$

	•
V(ø)	v
	(
\vee	η

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

• Case $\mu^2 < 0$: particle with imaginary mass?

- No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)
- Ground state(s) located at $\phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v$
- Study states close to minimum:

$$\mathcal{L} = \left[rac{1}{2}\left(\partial_{\mu}\eta
ight)\left(\partial^{\mu}\eta
ight) - \lambda extsf{v}^{2}\eta^{2}
ight] - \lambda extsf{v}\eta^{3} - rac{1}{4}\lambda\eta^{4}$$

- Scalar particle η with mass $\left| \frac{1}{2}m_{\eta}^2 \equiv \lambda v^2 = -\mu^2 \Rightarrow m_{\eta} = \sqrt{2\lambda v^2} \right|$
- Additional 3- and 4-point self-interactions

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \left[\frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{4} \lambda \phi^{4} \right]$

• Case $\mu^2 < 0$: particle with imaginary mass?

- No stable minimum of $V(\phi)$ at $\phi(x) = 0$ (perturbation theory will not converge)
- Ground state(s) located at $\phi_0 = \sqrt{-rac{\mu^2}{\lambda}} \equiv v$
- Study states close to minimum:

$$\mathcal{L} = \left[rac{1}{2}\left(\partial_\mu\eta
ight)\left(\partial^\mu\eta
ight) - \lambda {m v}^2\eta^2
ight] - \lambda {m v}\eta^3 - rac{1}{4}\lambda\eta^4$$

- Scalar particle η with mass $\left| \frac{1}{2}m_{\eta}^2 \equiv \lambda v^2 = -\mu^2 \Rightarrow m_{\eta} = \sqrt{2\lambda v^2} \right|$
- Additional 3- and 4-point self-interactions

Symmetry in ϕ retained but ground state not symmetric in η : $\mathcal{L}(\eta) \neq \mathcal{L}(-\eta)$ \rightarrow spontaneous symmetry breaking (SSB)

Intermediate Summary - SSB

- Lagrangian for scalar field φ without mass terms + potential V(φ) with minimum (= ground-state of system) at φ ≡ v ≠ 0
- Particle spectrum obtained by investigating $\mathcal L$ close to the minimum: expansion of ϕ around the minimum v
- Adding V leads to massive scalar particle (consequence of 'restoring force' in potential) with self-interaction
 - Keeps the full Lagrangian invariant under the original symmetry (here: global phase transformation)
 - But the energy ground-state is not invariant under this symmetry
 - → "spontaneous symmetry breaking"
- $\rightarrow \,$ tools needed for the Higgs mechanism

• Example: complex scalar field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$

• Higgs potential $V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$

- Lagrangian $\mathcal{L} = (\partial_{\mu}\phi^{*})(\partial^{\mu}\phi) V(\phi)$
- $V = V(|\phi|^2) \rightarrow \text{invariant under global U(1)}$ transformations

$$\begin{array}{l} \phi & \rightarrow {\rm e}^{i\alpha}\phi \\ \phi^* & \rightarrow {\rm e}^{-i\alpha}\phi^* \end{array} \quad \alpha = {\rm cons} \end{array}$$

- $\mu^2 > 0$: ground state at $|\phi_0| = 0$
 - \rightarrow 2 massive scalar particles with additional self-interaction

• Example: complex scalar field $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$

• Higgs potential $V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$

- Lagrangian $\mathcal{L} = (\partial_{\mu}\phi^{*})(\partial^{\mu}\phi) V(\phi)$
- $V = V(|\phi|^2) \rightarrow \text{invariant under global U(1)}$ transformations

$$\begin{array}{l} \phi & \rightarrow {\rm e}^{i\alpha}\phi \\ \phi^* & \rightarrow {\rm e}^{-i\alpha}\phi^* \end{array} \quad \alpha = {\rm const} \end{array}$$

• $\mu^2 < 0$: infinitely many ground states on circle with

$$|\phi| = \sqrt{\frac{1}{2}(\phi_1^2 + \phi_2^2)} = \sqrt{\frac{-\mu^2}{2\lambda}} \equiv \frac{\nu}{\sqrt{2}}$$

Choose real ground state (U(1) symmetry!)

$$\phi_0 = \frac{v}{\sqrt{2}} = \sqrt{\frac{-\mu^2}{2\lambda}}$$

- Study perturbation around ϕ_0 :
 - $\phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta(\mathbf{x}) + i\zeta(\mathbf{x}) \right)$
 - $\eta(x), \zeta(x)$: infinitesimal field amplitudes

Choose real ground state (U(1) symmetry!)

$$\phi_0 = \frac{v}{\sqrt{2}} = \sqrt{\frac{-\mu^2}{2\lambda}}$$

- Study perturbation around ϕ_0 :
- $$\begin{split} \phi(\mathbf{x}) &= \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta(\mathbf{x}) + i\zeta(\mathbf{x}) \right) \\ \eta(\mathbf{x}), \zeta(\mathbf{x}): \text{ infinitesimal field amplitudes} \\ T &= \frac{1}{2} \partial_{\mu} (\mathbf{v} + \eta i\zeta) \partial^{\mu} (\mathbf{v} + \eta + i\zeta) \\ &= \frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) + \frac{1}{2} \left(\partial_{\mu} \zeta \right) \left(\partial^{\mu} \zeta \right), \quad \partial_{\mu} \mathbf{v} = \mathbf{0} \\ V &= \mu^{2} |\phi|^{2} + \lambda |\phi|^{4} \\ &= -\frac{1}{2} \lambda \mathbf{v}^{2} \left[(\mathbf{v} + \eta)^{2} + \zeta^{2} \right] + \frac{1}{4} \lambda \left[(\mathbf{v} + \eta)^{2} + \zeta^{2} \right]^{2}, \quad \mu^{2} = -\lambda \mathbf{v}^{2} \\ &= +\lambda \mathbf{v}^{2} \eta^{2} + \mathcal{O}(\eta^{3}, \eta^{4}, \zeta^{4}, \eta\zeta^{2}, \eta^{2}\zeta^{2}, \ldots) \end{split}$$

• Full Lagrangian after symmetry breaking

$$\mathcal{L} = \underbrace{\frac{1}{2} \left(\partial_{\mu} \eta \right) \left(\partial^{\mu} \eta \right) - \lambda v^{2} \eta^{2}}_{\text{massive scalar particle}} + \underbrace{\frac{1}{2} \left(\partial_{\mu} \zeta \right) \left(\partial^{\mu} \zeta \right)}_{\text{massless scalar particle}} + \underbrace{\underbrace{\text{higher-order terms}}_{\text{self interaction}}$$

• Full Lagrangian after symmetry breaking

- η : massive scalar particle with $m_{\eta} = \sqrt{2\lambda v^2}$
 - Consequence of 'restoring force' in radial direction
- ζ: massless scalar particle "Goldstone Boson"
 - No restoring force in azimuth, consequence of the global U(1) symmetry

• Full Lagrangian after symmetry breaking

- η : massive scalar particle with $m_{\eta} = \sqrt{2\lambda v^2}$
 - Consequence of 'restoring force' in radial direction
- ζ: massless scalar particle "Goldstone Boson"
 - No restoring force in azimuth, consequence of the global U(1) symmetry

Goldstone Theorem For each generator of a spontaneously broken¹ continuous symmetry², a massless spin-zero particle will appear

¹ a symmetry of $\mathcal L$ that is not present in the ground state

² that 'connects' the ground states

Intermediate Summary

Spontaneously breaking a continuous global symmetry leads to the appearance of a massless Goldstone boson

Example QED: local U(1) symmetry

Example QED: local U(1) symmetry

Invariance under local U(1) gauge transformations

$$\psi(\mathbf{x}) \rightarrow \psi'(\mathbf{x}) = \mathrm{e}^{i\alpha(\mathbf{x})}\psi(\mathbf{x})$$

achieved by introduction of covariant derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$$
 with $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha(x)$

Example QED: local U(1) symmetry

Invariance under local U(1) gauge transformations

$$\psi(\mathbf{x}) \rightarrow \psi'(\mathbf{x}) = e^{i\alpha(\mathbf{x})}\psi(\mathbf{x})$$

achieved by introduction of covariant derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$$
 with $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha(x)$

• Adding a **complex scalar Higgs field** $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$ (also transforms under U(1)!)

Example QED: local U(1) symmetry

Invariance under local U(1) gauge transformations

$$\psi(\mathbf{x}) \rightarrow \psi'(\mathbf{x}) = e^{i\alpha(\mathbf{x})}\psi(\mathbf{x})$$

achieved by introduction of covariant derivative

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$$
 with $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha(x)$

- Adding a complex scalar Higgs field $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$ (also transforms under U(1)!)
- Local-U(1) gauge-invariant Lagrangian for Higgs and photon field (omitting fermion terms)

$$\mathcal{L} = \left(\mathcal{D}_{\mu} \phi
ight)^{\dagger} \left(\mathcal{D}^{\mu} \phi
ight) - \mathcal{V}(\phi) - rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u}$$

with Higgs potential $V(\phi)=\mu^2|\phi|^2+\lambda|\phi|^4$ with $\mu^2<0$

• Higgs field $\phi = \frac{1}{\sqrt{2}} (v + \eta + i\zeta)$ close to ground state $v = \sqrt{-\mu^2/\lambda}$

Higgs Mechanism: Breaking Local Symmetry

- Higgs field $\phi = \frac{1}{\sqrt{2}} (v + \eta + i\zeta)$ close to ground state $v = \sqrt{-\mu^2/\lambda}$
- Kinetic and potential term of Lagrangian

$$T = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi)$$

= $\frac{1}{2} [(\partial_{\mu} - iqA_{\mu}) (v + \eta - i\zeta)] [(\partial^{\mu} + iqA^{\mu}) (v + \eta + i\zeta)]$

Higgs Mechanism: Breaking Local Symmetry

- Higgs field $\phi = \frac{1}{\sqrt{2}} (v + \eta + i\zeta)$ close to ground state $v = \sqrt{-\mu^2/\lambda}$
- Kinetic and potential term of Lagrangian

$$T = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi)$$

= $\frac{1}{2} [(\partial_{\mu} - iqA_{\mu}) (v + \eta - i\zeta)] [(\partial^{\mu} + iqA^{\mu}) (v + \eta + i\zeta)]$
= $\frac{1}{2} [(\partial_{\mu}\eta) (\partial^{\mu}\eta) + (\partial_{\mu}\zeta) (\partial^{\mu}\zeta)$
+ $q^{2} ((v + \eta)^{2} + \zeta^{2}) A_{\mu}A^{\mu} + 2qvA_{\mu} (\partial^{\mu}\zeta)]$ + higher orders

Higgs Mechanism: Breaking Local Symmetry

- Higgs field $\phi = \frac{1}{\sqrt{2}} (v + \eta + i\zeta)$ close to ground state $v = \sqrt{-\mu^2/\lambda}$
- Kinetic and potential term of Lagrangian

 $T = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi)$ = $\frac{1}{2} [(\partial_{\mu} - iqA_{\mu}) (v + \eta - i\zeta)] [(\partial^{\mu} + iqA^{\mu}) (v + \eta + i\zeta)]$ = $\frac{1}{2} [(\partial_{\mu}\eta) (\partial^{\mu}\eta) + (\partial_{\mu}\zeta) (\partial^{\mu}\zeta)$ + $q^{2} ((v + \eta)^{2} + \zeta^{2}) A_{\mu}A^{\mu} + 2qvA_{\mu} (\partial^{\mu}\zeta)]$ + higher orders

 $V = +\lambda v^2 \eta^2 + higher orders$ (see previous example)

Higgs Mechanism: Breaking Local Symmetry

- Higgs field $\phi = \frac{1}{\sqrt{2}} (v + \eta + i\zeta)$ close to ground state $v = \sqrt{-\mu^2/\lambda}$
- Kinetic and potential term of Lagrangian

$$T = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi)$$

$$= \frac{1}{2} [(\partial_{\mu} - iqA_{\mu}) (v + \eta - i\zeta)] [(\partial^{\mu} + iqA^{\mu}) (v + \eta + i\zeta)]$$

$$= \frac{1}{2} [(\partial_{\mu}\eta) (\partial^{\mu}\eta) + (\partial_{\mu}\zeta) (\partial^{\mu}\zeta)$$

$$+ q^{2} ((v + \eta)^{2} + \zeta^{2}) A_{\mu}A^{\mu} + 2qvA_{\mu} (\partial^{\mu}\zeta)] + \text{higher orders}$$

$$V = +\lambda v^{2}\eta^{2} + \text{higher orders} \quad (\text{see previous example})$$

$$\rightarrow \mathcal{L} = \underbrace{\frac{1}{2} (\partial_{\mu}\eta)^{2} - \lambda v^{2}\eta^{2}}_{\text{massive scalar boson}} + \underbrace{\frac{1}{2} (\partial_{\mu}\zeta)^{2}}_{\text{Goldstone boson}} - \underbrace{\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} q^{2} v^{2} A_{\mu}A^{\mu}}_{\text{photon with mass term}}$$

$$+ \underbrace{\frac{qvA_{\mu} (\partial^{\mu}\zeta)}{2}}_{?} + \text{ interaction } \eta/\zeta A_{\mu} + \text{ self-interaction } \eta/\zeta$$

• Terms involving ζ and A_{μ} :

$$\int_{\frac{1}{2}}^{\mu} (\partial_{\mu}\zeta)^{2} + \frac{1}{2}q^{2}v^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} + qv\mathsf{A}_{\mu}\left(\partial^{\mu}\zeta\right) = \frac{1}{2}q^{2}v^{2}\left[\mathsf{A}_{\mu} + \frac{1}{qv}\left(\partial^{\mu}\zeta\right)\right]^{2}$$

• Terms involving ζ and A_{μ} :

$$\frac{1}{2}\left(\partial_{\mu}\zeta\right)^{2} + \frac{1}{2}q^{2}v^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} + q\mathsf{v}\mathsf{A}_{\mu}\left(\partial^{\mu}\zeta\right) = \frac{1}{2}q^{2}v^{2}\left[\mathsf{A}_{\mu} + \frac{1}{q\mathsf{v}}\left(\partial^{\mu}\zeta\right)\right]^{2}$$

- Exploiting local gauge invariance
 - A_{μ} fixed up to a term $\frac{1}{q}\partial_{\mu}\alpha(x)$ (because $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q}\partial_{\mu}\alpha(x)$)

• Terms involving ζ and A_{μ} :

$$\frac{1}{2}\left(\partial_{\mu}\zeta\right)^{2} + \frac{1}{2}q^{2}v^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} + qv\mathsf{A}_{\mu}\left(\partial^{\mu}\zeta\right) = \frac{1}{2}q^{2}v^{2}\left[\mathsf{A}_{\mu} + \frac{1}{qv}\left(\partial^{\mu}\zeta\right)\right]^{2} = \frac{1}{2}q^{2}v^{2}\left(\mathsf{A}_{\mu}^{\prime}\right)^{2}$$

- Exploiting local gauge invariance
 - A_{μ} fixed up to a term $\frac{1}{q}\partial_{\mu}\alpha(x)$ (because $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \frac{1}{q}\partial_{\mu}\alpha(x)$)
 - Gauge transformation with $\alpha(x) = -\frac{1}{v}\zeta(x)$ (unitary gauge)

$$\begin{aligned} \mathsf{A}'_{\mu} &= \mathsf{A}_{\mu} + \frac{1}{qv} \left(\partial_{\mu} \zeta \right) \\ \phi' &= \mathsf{e}^{i\alpha} \phi = \mathsf{e}^{-i \frac{1}{v} \zeta} \phi \\ &= \mathsf{e}^{-i \frac{1}{v} \zeta} \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta + i \zeta \right) \end{aligned}$$

• Terms involving ζ and A_{μ} :

$$\frac{1}{2}\left(\partial_{\mu}\zeta\right)^{2} + \frac{1}{2}q^{2}v^{2}\mathsf{A}_{\mu}\mathsf{A}^{\mu} + qv\mathsf{A}_{\mu}\left(\partial^{\mu}\zeta\right) = \frac{1}{2}q^{2}v^{2}\left[\mathsf{A}_{\mu} + \frac{1}{qv}\left(\partial^{\mu}\zeta\right)\right]^{2} = \frac{1}{2}q^{2}v^{2}\left(\mathsf{A}_{\mu}^{\prime}\right)^{2}$$

Exploiting local gauge invariance

•
$$A_{\mu}$$
 fixed up to a term $\frac{1}{q}\partial_{\mu}\alpha(x)$ (because $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha(x)$)

• Gauge transformation with
$$\alpha(x) = -\frac{1}{v}\zeta(x)$$
 (unitary gauge)

$$\begin{aligned} \mathbf{A}'_{\mu} &= \mathbf{A}_{\mu} + \frac{1}{qv} \left(\partial_{\mu} \zeta \right) \\ \phi' &= \mathbf{e}^{i\alpha} \phi = \mathbf{e}^{-i\frac{1}{v}\zeta} \phi \\ &= \mathbf{e}^{-i\frac{1}{v}\zeta} \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta + i\zeta \right) \\ &\approx \left(1 - i\frac{1}{v}\zeta \right) \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta + i\zeta \right) \\ &\approx \frac{1}{\sqrt{2}} \left(\mathbf{v} + \eta \right) \end{aligned}$$

(for simplicity, from now on writing: $\phi'=\phi,$ $\mathsf{A}'_{\mu}=\mathsf{A}_{\mu})$

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi)$$

= $\frac{1}{2} \left[\left(\partial_{\mu} - iqA_{\mu} \right) \left(v + \eta \right) \right] \left[\left(\partial^{\mu} + iqA^{\mu} \right) \left(v + \eta \right) \right] - V(\phi)$

(for simplicity, from now on writing: $\phi'=\phi,$ $\mathsf{A}'_{\mu}=\mathsf{A}_{\mu})$

$$\begin{aligned} \mathcal{L} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi) \\ &= \frac{1}{2} \left[\left(\partial_{\mu} - iq \mathsf{A}_{\mu} \right) \left(v + \eta \right) \right] \left[\left(\partial^{\mu} + iq \mathsf{A}^{\mu} \right) \left(v + \eta \right) \right] - V(\phi) \\ &= \frac{1}{2} (\partial_{\mu}\eta)^{2} + \frac{1}{2}q^{2}(v + \eta)^{2}\mathsf{A}_{\mu}^{2} - \underbrace{ \left(\lambda v^{2}\eta^{2} + \lambda v\eta^{3} + \frac{1}{4}\lambda \eta^{4} - \frac{1}{4}\lambda v^{4} \right) }_{= V(\phi)} \end{aligned}$$

(for simplicity, from now on writing: $\phi'=\phi,$ $\mathsf{A}'_{\mu}=\mathsf{A}_{\mu})$

$$\begin{split} \mathcal{L} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi) \\ &= \frac{1}{2} \left[\left(\partial_{\mu} - iqA_{\mu} \right) \left(v + \eta \right) \right] \left[\left(\partial^{\mu} + iqA^{\mu} \right) \left(v + \eta \right) \right] - V(\phi) \\ &= \frac{1}{2} (\partial_{\mu}\eta)^{2} + \frac{1}{2}q^{2}(v + \eta)^{2}A_{\mu}^{2} - \underbrace{ \left(\lambda v^{2}\eta^{2} + \lambda v\eta^{3} + \frac{1}{4}\lambda\eta^{4} - \frac{1}{4}\lambda v^{4} \right) }_{=V(\phi)} \\ &= \frac{1}{2} (\partial_{\mu}\eta)^{2} - \lambda v^{2}\eta^{2} + \frac{1}{2}q^{2}v^{2}A_{\mu}^{2} + q^{2}vA_{\mu}^{2}\eta + \frac{1}{2}q^{2}A_{\mu}^{2}\eta^{2} - \lambda v\eta^{3} - \frac{1}{4}\lambda\eta^{4} \end{split}$$

- Expansion of φ → φ(η, ζ) around energy ground-state of Higgs potential generates mass term m_A = qv for gauge field A_μ from coupling q²|φ|²A²_μ by covariant derivative
- **Requires non-vanishing** *v*: particular shape of potential ($\mu^2 < 0$)

- Expansion of φ → φ(η, ζ) around energy ground-state of Higgs potential generates mass term m_A = qv for gauge field A_μ from coupling q²|φ|²A²_μ by covariant derivative
- **Requires non-vanishing** *v*: particular shape of potential ($\mu^2 < 0$)
- From point-of-view of the gauge field, two interpretations
 - 1. Photon field interacts with external background (Higgs) field: *dynamic* mass term
 - 2. Background field unknown: interpretation as massive photon field

- What about the massless ζ field (Goldstone boson)?
 - Removed by gauge transformation (absorbed into A'_µ)
 - Responsible for longitudinal component of massive vector field

- What about the massless ζ field (Goldstone boson)?
 - Removed by gauge transformation (absorbed into A[']_µ)
 - Responsible for longitudinal component of massive vector field

w/o ϕ -A $_{\mu}$ interaction	with ϕ -A $_{\mu}$ interaction
1 η field, $m_{\eta} = \sqrt{2\lambda v^2}$ 1 ℓ field, $m_{\ell} = 0$	1 η field, $m_\eta = \sqrt{2\lambda v^2}$
2 states of A_{μ} (helicity \pm 1)	3 states of A $_\mu$ (helicity \pm 1, 0)

- What about the massless ζ field (Goldstone boson)?
 - Removed by gauge transformation (absorbed into A[']_µ)
 - Responsible for longitudinal component of massive vector field

w/o ϕ -A $_{\mu}$ interaction	with ϕ -A $_{\mu}$ interaction
1 η field, $m_\eta = \sqrt{2\lambda v^2}$ 1 ζ field, $m_\zeta = 0$	1 η field, $m_\eta = \sqrt{2\lambda v^2}$
2 states of A_{μ} (helicity \pm 1)	3 states of A $_{\mu}$ (helicity \pm 1, 0)

"The gauge boson has eaten up the Goldstone boson and has become fat on it."

• Higgs mechanism predicts massive scalar particle η (Higgs boson) with self interaction

• Higgs mechanism predicts massive scalar particle η (Higgs boson) with self interaction

• NB: Gauge boson mass acquired by interaction with Higgs background field, not with Higgs boson!

• Higgs mechanism predicts massive scalar particle η (Higgs boson) with self interaction

• NB: Gauge boson mass acquired by interaction with Higgs background field, not with Higgs boson!

• Higgs mechanism predicts massive scalar particle η (Higgs boson) with self interaction

• NB: Gauge boson mass acquired by interaction with Higgs background field, not with Higgs boson!

This is not the Complete Story

- Previous discussion was just an example to illustrate the Higgs mechanism: Apparently, there is no charged Higgs field with v > 0 because the photon is massless!
- But principle can be applied to $SU(2)_L \times U(1)_Y$ symmetry of the Standard Model

The Standard-Model Higgs Field ϕ

• \mathcal{L}_{SM} should retain all gauge symmetries: add Higgs field ϕ as left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

*L*_{SM} should retain all gauge symmetries: add Higgs field φ as
 left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

Lagrangian for the Higgs field

$$egin{aligned} \mathcal{L}_{\mathsf{Higgs}} &= (\partial_\mu \phi^\dagger) (\partial^\mu \phi) - \mathit{V}(\phi) \ \mathcal{V}(\phi) &= \mu^2 |\phi|^2 + \lambda |\phi|^4 \end{aligned}$$

with $\mu^2 < 0$ (SSB!)

• \mathcal{L}_{SM} should retain all gauge symmetries: add Higgs field ϕ as left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

Lagrangian for the Higgs field

$$egin{aligned} \mathcal{L}_{\mathsf{Higgs}} &= (\partial_\mu \phi^\dagger) (\partial^\mu \phi) - V(\phi) \ V(\phi) &= \mu^2 |\phi|^2 + \lambda |\phi|^4 \end{aligned}$$

with $\mu^2 < 0$ (SSB!)

The Standard-Model Lagrangian becomes

$$\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{kin}} + \mathcal{L}_{\text{CC}} + \mathcal{L}_{\text{NC}} + \mathcal{L}_{\text{gauge}} + \frac{\mathcal{L}_{\text{Higgs}}}{\mathcal{L}_{\text{Higgs}}}$$

• \mathcal{L}_{SM} should retain all gauge symmetries: add Higgs field ϕ as left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

 \blacksquare Invariance of \mathcal{L}_{Higgs} under local $SU(2)_L \times U(1)_Y$ transformations

$$\phi(\mathbf{x}) \to \mathrm{e}^{[i\frac{g}{2}\alpha^{a}(\mathbf{x})\tau^{a}]}\mathrm{e}^{[i\frac{g'}{2}\alpha(\mathbf{x})Y_{\phi}]}\phi(\mathbf{x})$$

enforced by covariant derivative

$$\partial_{\mu} \rightarrow \partial_{\mu} + i \frac{g}{2} \tau_a W^a_{\mu} + i \frac{g'}{2} Y_{\phi} B_{\mu}$$

• \mathcal{L}_{SM} should retain all gauge symmetries: add Higgs field ϕ as left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

 \blacksquare Invariance of \mathcal{L}_{Higgs} under local $SU(2)_L \times U(1)_Y$ transformations

$$\phi(\mathbf{x}) \to \mathrm{e}^{[i\frac{g}{2}\alpha^{a}(\mathbf{x})\tau^{a}]}\mathrm{e}^{[i\frac{g'}{2}\alpha(\mathbf{x})Y_{\phi}]}\phi(\mathbf{x})$$

enforced by covariant derivative

$$\begin{array}{l} \partial_{\mu} & \rightarrow \partial_{\mu} + i \frac{g}{2} \tau_{a} W^{a}_{\mu} + i \frac{g'}{2} Y_{\phi} B_{\mu} \\ W^{a}_{\mu} & \rightarrow W^{a}_{\mu} - \partial_{\mu} \alpha^{a}(x) - g \epsilon^{abc} \alpha_{b}(x) W_{c,\mu} \\ B_{\mu} & \rightarrow B_{\mu} - \partial_{\mu} \alpha(x) \end{array}$$

• \mathcal{L}_{SM} should retain all gauge symmetries: add Higgs field ϕ as left-chiral weak-isospin doublet of two complex fields

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

 \blacksquare Invariance of \mathcal{L}_{Higgs} under local $SU(2)_L \times U(1)_Y$ transformations

$$\phi(\mathbf{x}) \to \mathrm{e}^{[i\frac{g}{2}\alpha^{a}(\mathbf{x})\tau^{a}]}\mathrm{e}^{[i\frac{g'}{2}\alpha(\mathbf{x})Y_{\phi}]}\phi(\mathbf{x})$$

enforced by covariant derivative

$$\begin{array}{l} \partial_{\mu} & \rightarrow \partial_{\mu} + i \frac{g}{2} \tau_{a} W^{a}_{\mu} + i \frac{g'}{2} Y_{\phi} B_{\mu} \\ W^{a}_{\mu} & \rightarrow W^{a}_{\mu} - \partial_{\mu} \alpha^{a}(x) - g \epsilon^{abc} \alpha_{b}(x) W_{c,\mu} \\ B_{\mu} & \rightarrow B_{\mu} - \partial_{\mu} \alpha(x) \end{array}$$

 ${
m SU}(2) imes {
m U}(1)$ hypercharges of ϕ

field	Y_{ϕ}	<i>I</i> ₃	Q
$\phi^+ \ \phi^0$	+1	+1/2 -1/2	+1 0

 $Q = I_3 + \frac{Y}{2}$ (Gell-Mann–Nishijima)

Karlsruhe Institute of Technology

Choice of Vacuum

- Ground state ϕ_0 with non-zero amplitude $\phi_0 \equiv v/\sqrt{2} ~(\rightarrow \text{SSB})$
- Choose ground state with $I_3 = -\frac{1}{2}$, Q = 0 (i.e. $\phi^+ = 0$):

$$\phi_{0} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}_{0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} , \ v = \sqrt{-\frac{\mu^{2}}{\lambda}}$$

Choice of Vacuum

- Ground state ϕ_0 with non-zero amplitude $\phi_0 \equiv v/\sqrt{2} (\rightarrow SSB)$
- Choose ground state with $I_3 = -\frac{1}{2}$, Q = 0 (i. e. $\phi^+ = 0$):

$$\phi_0 = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \ v = \sqrt{-\frac{\mu^2}{\lambda}}$$

Any state with $(\phi^+)^2 + (\phi^0)^2 = v^2$ possible, but $|\phi^+| \neq 0$ together with $Y_{\phi} = +1$ leads to massive photon

Choice of Vacuum

KIT - ETP

- Ground state ϕ_0 with non-zero amplitude $\phi_0 \equiv v/\sqrt{2} (\rightarrow SSB)$
- Choose ground state with $I_3 = -\frac{1}{2}$, Q = 0 (i.e. $\phi^+ = 0$):

$$\phi_0 = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \ v = \sqrt{-\frac{\mu^2}{\lambda}}$$

• Expansion of ϕ around ground state in **unitarity gauge**

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{H} \end{pmatrix}$$

Vacuum expectation value $v \neq 0$: gauge-boson masses

Radial excitation: the Higgs boson

Goldstone boson (term $i\zeta$) eliminated by gauge transformation

Any state with $(\phi^+)^2 + (\phi^0)^2 = v^2$ possible, but $|\phi^+| \neq 0$ together with $Y_{\phi} = +1$ leads to massive photon

Covariant derivative will give rise to

- Masses for gauge bosons ($\propto v$)
- Interactions between gauge bosons and Higgs boson ($\propto \nu H, \propto H^2$)

$$(D_{\mu}\phi) = \frac{\partial_{\mu}}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} + \frac{i}{\sqrt{2}} \left[\frac{g}{2} \tau_{a} W_{\mu}^{a} + \frac{g'}{2} Y_{\phi} B_{\mu} \right] \begin{pmatrix} 0 \\ v + H \end{pmatrix}$$

Covariant derivative will give rise to

- Masses for gauge bosons ($\propto v$)
- Interactions between gauge bosons and Higgs boson ($\propto \nu$ H, \propto H²)

$$\begin{aligned} (D_{\mu}\phi) &= \frac{\partial_{\mu}}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} + \frac{i}{\sqrt{2}} \left[\frac{g}{2} \tau_{a} \mathsf{W}_{\mu}^{a} + \frac{g'}{2} \mathsf{Y}_{\phi} \mathsf{B}_{\mu} \right] \begin{pmatrix} 0\\ v+H \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu} \mathsf{H} \end{pmatrix} + \frac{i}{\sqrt{8}} \begin{pmatrix} g(\mathsf{W}_{\mu}^{1} - i\mathsf{W}_{\mu}^{2})\\ -g\mathsf{W}_{\mu}^{3} + g' \mathsf{Y}_{\phi} \mathsf{B}_{\mu} \end{pmatrix} (v+\mathsf{H}) \end{aligned}$$

$$\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$
$$\tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 \rightarrow Pauli matrices

• Covariant derivative will give rise to

- Masses for gauge bosons ($\propto v$)
- Interactions between gauge bosons and Higgs boson ($\propto \nu$ H, \propto H²)

$$(D_{\mu}\phi) = \frac{\partial_{\mu}}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} + \frac{i}{\sqrt{2}} \begin{bmatrix} \frac{g}{2}\tau_{a}W_{\mu}^{a} + \frac{g'}{2}Y_{\phi}B_{\mu} \end{bmatrix} \begin{pmatrix} 0\\ v+H \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu}H \end{pmatrix} + \frac{i}{\sqrt{8}} \begin{pmatrix} g(W_{\mu}^{1} - iW_{\mu}^{2})\\ -gW_{\mu}^{3} + g'Y_{\phi}B_{\mu} \end{pmatrix} (v+H)$$

$$(D^{\mu}\psi)^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu}H \end{pmatrix} = \frac{i}{\sqrt{8}} \begin{pmatrix} (w)^{\dagger} + i + w^{2}\psi \\ -gW_{\mu}^{3} + g'Y_{\phi}B_{\mu} \end{pmatrix} (v+H)$$

$$(\mathcal{D}^{\mu}\phi)^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \partial^{\mu} H \end{pmatrix} - \frac{i}{\sqrt{8}} \Big(g(\mathsf{W}^{1,\mu} + i\mathsf{W}^{2,\mu}) & -g\mathsf{W}^{3,\mu} + g'Y_{\phi}B^{\mu} \Big) \Big(\mathbf{v} + H \Big)$$

• Covariant derivative will give rise to

- Masses for gauge bosons ($\propto v$)
- Interactions between gauge bosons and Higgs boson ($\propto \nu H, \propto H^2$)

$$\begin{aligned} (D_{\mu}\phi) &= \frac{\partial_{\mu}}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} + \frac{i}{\sqrt{2}} \left[\frac{g}{2} \tau_{a} \mathsf{W}_{\mu}^{a} + \frac{g'}{2} \mathsf{Y}_{\phi} \mathsf{B}_{\mu} \right] \begin{pmatrix} 0\\ v+H \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu} \mathsf{H} \end{pmatrix} + \frac{i}{\sqrt{8}} \begin{pmatrix} g(\mathsf{W}_{\mu}^{1} - i\mathsf{W}_{\mu}^{2})\\ -g\mathsf{W}_{\mu}^{3} + g' \mathsf{Y}_{\phi} \mathsf{B}_{\mu} \end{pmatrix} (v+\mathsf{H}) \end{aligned}$$

$$(D^{\mu}\phi)^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \partial^{\mu}\mathsf{H} \end{pmatrix} - \frac{i}{\sqrt{8}} \Big(g(\mathsf{W}^{1,\mu} + i\mathsf{W}^{2,\mu}) & -g\mathsf{W}^{3,\mu} + g'Y_{\phi}B^{\mu} \Big) \Big(\mathsf{v} + \mathsf{H} \Big)$$

• Full dynamic term $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in $\mathcal{L}_{\text{Higgs}}$

$$\frac{1}{2} \left(\partial_{\mu} \mathsf{H} \right)^{2} + \frac{g^{2}}{8} (v + \mathsf{H})^{2} \left(|\mathsf{W}^{1}|^{2} + |\mathsf{W}^{2}|^{2} \right) + \frac{1}{8} (v + \mathsf{H})^{2} \left| -g \mathsf{W}_{\mu}^{3} + g' Y_{\phi} B_{\mu} \right|^{2}$$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**:

$$\frac{1}{2}\partial^{\mu}\mathsf{H}\partial_{\mu}\mathsf{H} + \frac{g^{2}}{8}(v+\mathsf{H})^{2}\left(|\mathsf{W}^{1}|^{2} + |\mathsf{W}^{2}|^{2}\right) + \frac{1}{8}(v+\mathsf{H})^{2}\left|-g\mathsf{W}_{\mu}^{3} + g'Y_{\phi}B_{\mu}\right|^{2}$$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**:

$$\frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \frac{g^{2}}{8}(\nu+H)^{2}\left(|\mathsf{W}^{1}|^{2} + |\mathsf{W}^{2}|^{2}\right) + \frac{1}{8}(\nu+H)^{2}\left|-g\mathsf{W}_{\mu}^{3} + g'Y_{\phi}B_{\mu}\right|^{2}$$

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^{1}_{\mu} \mp i W^{2}_{\mu} \right) \quad \Rightarrow \quad |W^{1}|^{2} + |W^{2}|^{2} = |W^{+}|^{2} + |W^{-}|^{2}$$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**

$$\tfrac{1}{2}\partial^{\mu}\mathsf{H}\partial_{\mu}\mathsf{H} + \tfrac{g^{2}}{8}(v+\mathsf{H})^{2}\left(|\mathsf{W}^{+}|^{2}+|\mathsf{W}^{-}|^{2}\right) + \tfrac{1}{8}(v+\mathsf{H})^{2}\left|-g\mathsf{W}_{\mu}^{3}+g'Y_{\phi}B_{\mu}\right|^{2}$$

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^{1}_{\mu} \mp i W^{2}_{\mu} \right) \quad \Rightarrow \quad |W^{1}|^{2} + |W^{2}|^{2} = |W^{+}|^{2} + |W^{-}|^{2}$$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**

$$\frac{1}{2}\partial^{\mu}\mathsf{H}\partial_{\mu}\mathsf{H} + \frac{g^{2}}{8}(v+\mathsf{H})^{2}\left(|\mathsf{W}^{+}|^{2}+|\mathsf{W}^{-}|^{2}\right) + \frac{1}{8}(v+\mathsf{H})^{2}\left|-g\mathsf{W}_{\mu}^{3}+g'Y_{\phi}B_{\mu}\right|^{2}$$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**

$$\frac{1}{2}\partial^{\mu}\mathsf{H}\partial_{\mu}\mathsf{H} + \frac{g^{2}}{8}(v+\mathsf{H})^{2}\left(|\mathsf{W}^{+}|^{2}+|\mathsf{W}^{-}|^{2}\right) + \frac{1}{8}(v+\mathsf{H})^{2}\left|-g\mathsf{W}_{\mu}^{3}+g'Y_{\phi}\mathcal{B}_{\mu}\right|^{2}$$

• Weinberg rotation: photon and Z boson

$$\begin{pmatrix} \mathsf{Z}_{\mu} \\ \mathsf{A}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} - \sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} \mathsf{W}_{\mu}^{3} \\ \mathsf{B}_{\mu} \end{pmatrix}$$
$$\underbrace{\sin \theta_{W} \equiv \frac{g'}{\sqrt{g^{2} + g'^{2}}}, \qquad \cos \theta_{W} \equiv \frac{g}{\sqrt{g^{2} + g'^{2}}} \\ -g\mathsf{W}_{\mu}^{3} + g'\mathsf{B}_{\mu} \end{pmatrix} = -\sqrt{g^{2} + g'^{2}}\mathsf{Z}_{\mu} + \mathsf{0} \cdot \mathsf{A}_{\mu}$$

Karlsruhe Institute of Technology

Dynamic Term in $\mathcal{L}_{\text{Higgs}}$

• Re-writing $(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi)$ in terms of **physical bosons**

$$\frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \frac{g^{2}}{8}(v+H)^{2}\left(|W^{+}|^{2} + |W^{-}|^{2}\right) + \frac{g^{2} + g^{'2}}{8}(v+H)^{2}|Z|^{2}$$

• Weinberg rotation: photon and Z boson

$$\begin{pmatrix} \mathsf{Z}_{\mu} \\ \mathsf{A}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} - \sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} \mathsf{W}_{\mu}^{3} \\ \mathsf{B}_{\mu} \end{pmatrix}$$
$$\underbrace{\sin \theta_{W} \equiv \frac{g'}{\sqrt{g^{2} + g'^{2}}}, \qquad \cos \theta_{W} \equiv \frac{g}{\sqrt{g^{2} + g'^{2}}}$$
$$\begin{pmatrix} -g\mathsf{W}_{\mu}^{3} + g'\mathsf{B}_{\mu} \end{pmatrix} = -\sqrt{g^{2} + g'^{2}}\mathsf{Z}_{\mu} + \mathsf{0} \cdot \mathsf{A}_{\mu}$$

• Higgs doublet and choice of specific ground state leads to

$$(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) = \frac{1}{2}(\partial_{\mu}H)(\partial_{\mu}H) \\ + \frac{1}{2}\underbrace{\frac{g^{2}}{4}(v+H)^{2}}_{=}(|W^{+}|^{2}+|W^{-}|^{2}) + \frac{1}{2}\underbrace{\frac{g^{2}+g^{'2}}{4}(v+H)^{2}|Z|^{2}}_{=} \\ m_{W} \equiv \frac{1}{2}gv \qquad m_{Z} \equiv \frac{1}{2}\sqrt{g^{2}+g^{'2}}v$$

• Higgs doublet and choice of specific ground state leads to

$$D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) = \frac{1}{2}(\partial_{\mu}H)(\partial_{\mu}H) \\ + \frac{1}{2}\underbrace{\frac{g^{2}}{4}(v+H)^{2}(|W^{+}|^{2}+|W^{-}|^{2})}_{m_{W}} + \frac{1}{2}\underbrace{\frac{g^{2}+g^{'2}}{4}(v+H)^{2}|Z|^{2}}_{m_{Z}} \\ m_{W} \equiv \frac{1}{2}gv \qquad m_{Z} \equiv \frac{1}{2}\sqrt{g^{2}+g^{'2}}v$$

Mass terms for the W^\pm and Z bosons No mass term for the photon

• Higgs doublet and choice of specific ground state leads to

$$D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) = \frac{1}{2}(\partial_{\mu}H)(\partial_{\mu}H) \\ + \frac{1}{2}\underbrace{\frac{g^{2}}{4}(v+H)^{2}(|W^{+}|^{2}+|W^{-}|^{2})}_{m_{W}} + \frac{1}{2}\underbrace{\frac{g^{2}+g^{'2}}{4}(v+H)^{2}|Z|^{2}}_{m_{Z}} \\ m_{W} \equiv \frac{1}{2}gv \qquad m_{Z} \equiv \frac{1}{2}\sqrt{g^{2}+g^{'2}}v$$

Mass terms for the W^\pm and Z bosons No mass term for the photon

Results depend on choice of Higgs-sector structure (v = 0 for ϕ^+)

Absolute masses of gauge bosons not predicted but their relation

$$\rho = \frac{m_{\rm W}}{m_{\rm Z}\cos\theta_{\rm W}} = 1 \quad \Rightarrow \quad m_{\rm Z} > m_{\rm W}$$

Vacuum Expectation Value v

• Higgs mechanism does not predict value of ${m v}=\sqrt{-\mu^2/\lambda}$

Vacuum Expectation Value v

- Higgs mechanism does not predict value of ${m v}=\sqrt{-\mu^2/\lambda}$
- But estimate from relation to W-boson mass possible

 $m_{
m W}^2 = \left(rac{1}{2}gv
ight)^2$ (from Higgs mechanism) $m_{
m W}^2 = rac{\sqrt{2}g^2}{8G_F}$ (from Fermi theory)

•
$$G_F = (1.16639 \pm 0.00002) \cdot 10^{-5} \text{ GeV}^{-2}$$
 from muon-lifetime measurement

Vacuum Expectation Value v

- Higgs mechanism does not predict value of $v = \sqrt{-\mu^2/\lambda}$
- But estimate from relation to W-boson mass possible

 $m_{W}^{2} = \left(\frac{1}{2}gv\right)^{2}$ (from Higgs mechanism) $m_{W}^{2} = \frac{\sqrt{2}g^{2}}{8Gr}$ (from Fermi theory)

• $G_F = (1.16639 \pm 0.00002) \cdot 10^{-5} \text{ GeV}^{-2}$ from muon-lifetime measurement

 $v = 246.22 \,\text{GeV}$ sets the scale of electroweak symmetry breaking

• Adding ϕ as SU(2)_L doublet with specific non-zero ground-state

$$\begin{split} \mathcal{L}_{\mathsf{Higgs}} &= \frac{1}{2} \left(\partial_{\mu} \mathsf{H} \right) \left(\partial^{\mu} \mathsf{H} \right) - \lambda v^{2} \mathsf{H}^{2} + \lambda v \mathsf{H}^{3} - \frac{1}{4} \lambda \mathsf{H}^{4} \\ &+ \frac{1}{2} m_{\mathsf{Z}}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{m_{\mathsf{Z}}^{2}}{v} \mathsf{H} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{1}{2} \frac{m_{\mathsf{Z}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} \\ &+ m_{\mathsf{W}}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + 2 \frac{m_{\mathsf{W}}^{2}}{v} \mathsf{H} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + \frac{m_{\mathsf{W}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} \end{split}$$

(Here, the equality $|W^+|^2 + |W^-|^2 = 2W^+W^-$ was used)

• Adding ϕ as SU(2)_L doublet with specific non-zero ground-state

$$\begin{split} \mathcal{L}_{\mathsf{Higgs}} &= \frac{1}{2} \left(\partial_{\mu} \mathsf{H} \right) \left(\partial^{\mu} \mathsf{H} \right) - \lambda v^{2} \mathsf{H}^{2} + \lambda v \mathsf{H}^{3} - \frac{1}{4} \lambda \mathsf{H}^{4} \\ &+ \frac{1}{2} m_{\mathsf{Z}}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{m_{\mathsf{Z}}^{2}}{v} \mathsf{H} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{1}{2} \frac{m_{\mathsf{Z}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} \\ &+ m_{\mathsf{W}}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + 2 \frac{m_{\mathsf{W}}^{2}}{v} \mathsf{H} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + \frac{m_{\mathsf{W}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} \end{split}$$

• Masses (mass terms) for the gauge bosons W^{\pm} and Z

w/o ϕ -W/Z interaction: d.o.f	-	with ϕ -W/Z interaction: d.o.f.
4 massless vector fields W ^a , B 2 complex Higgs fields:	: 8 4	$\left \begin{array}{cc} 3 \text{ massive vector fields } W^{\pm}, Z: \ 9 \\ 1 \text{ massless vector field } A: \ 2 \\ 1 \text{ massive scalar:} \ 1 \end{array} \right.$
total number d.o.f.:	12	total number d.o.f.: 12

• Adding ϕ as SU(2)_L doublet with specific non-zero ground-state

$$\begin{split} \mathcal{L}_{\text{Higgs}} &= \frac{1}{2} \left(\partial_{\mu} \mathsf{H} \right) \left(\partial^{\mu} \mathsf{H} \right) - \frac{1}{2} m_{\text{H}} \mathsf{H}^{2} + \frac{m_{\text{H}}^{2}}{2 \nu} \mathsf{H}^{3} - \frac{m_{\text{H}}^{2}}{8 \nu^{2}} \mathsf{H}^{4} \\ &+ \frac{1}{2} m_{\text{Z}}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{m_{\text{Z}}^{2}}{\nu} \mathsf{H} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{1}{2} \frac{m_{\text{Z}}^{2}}{\nu^{2}} \mathsf{H}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} \\ &+ m_{\text{W}}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + 2 \frac{m_{\text{W}}^{2}}{\nu} \mathsf{H} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + \frac{m_{\text{W}}^{2}}{\nu^{2}} \mathsf{H}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} \end{split}$$

- $\hfill Masses$ (mass terms) for the gauge bosons W^\pm and Z
- A massive scalar particle H (Higgs boson) with self-interaction
 - Higgs-boson mass $m_{\rm H} = \sqrt{2\lambda v^2}$ HHHThree-point Higgs-boson self-couplingH $---- \epsilon \propto \frac{m_{\rm H}^2}{v}$ HFour-point Higgs-boson self-couplingHH

• Adding ϕ as SU(2)_L doublet with specific non-zero ground-state

$$\begin{split} \mathcal{L}_{\mathsf{Higgs}} &= \frac{1}{2} \left(\partial_{\mu} \mathsf{H} \right) \left(\partial^{\mu} \mathsf{H} \right) - \frac{1}{2} m_{\mathsf{H}} \mathsf{H}^{2} + \frac{m_{\mathsf{H}}^{2}}{2v} \mathsf{H}^{3} - \frac{m_{\mathsf{H}}^{2}}{8v^{2}} \mathsf{H}^{4} \\ &+ \frac{1}{2} m_{\mathsf{Z}}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{m_{\mathsf{Z}}^{2}}{v} \mathsf{H} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} + \frac{1}{2} \frac{m_{\mathsf{Z}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} \\ &+ m_{\mathsf{W}}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + 2 \frac{m_{\mathsf{W}}^{2}}{v} \mathsf{H} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} + \frac{m_{\mathsf{W}}^{2}}{v^{2}} \mathsf{H}^{2} \mathsf{W}_{\mu}^{+} \mathsf{W}^{-,\mu} \end{split}$$

- $\hfill Masses$ (mass terms) for the gauge bosons W^\pm and Z
- A massive scalar particle H (Higgs boson) with self-interaction
- $\hfill \ensuremath{\,^{\pm}}$ Interactions of the Higgs boson with the W^\pm and Z bosons
 - V-Higgs three-point interaction
 - V-Higgs four-point interaction

Reminder: Problem of Massive Fermions

- $SU(2)_L \times U(1)_Y$ transformations act differently on chiral components
- Decomposition of mass term

$$m_{f}\overline{\psi}\psi = m_{f}\left(\overline{\psi}_{R}\psi_{L} + \overline{\psi}_{L}\psi_{R}\right)$$

Left- and right-handed components transform differently!

$$\psi_L \rightarrow \psi'_L = e^{i\alpha^a \tau^a + i\alpha Y} \psi_L$$
 (component of isospin doublet, $I = \frac{1}{2}$)
 $\psi_R \rightarrow \psi'_R = e^{i\alpha Y} \psi_R$ (isospin singlet, $I = 0$)

× Left- and right-handed fermions transform differently under $SU(2)_L \times U(1)_Y$

X Fermion mass terms in chiral theory are not gauge invariant

$SU(2)_L \times U(1)_Y$ Invariant Fermion-Mass Term

- Higgs field can also be used to generate mass terms for fermions!
- \blacksquare Terms as the following are gauge invariant under $SU(2)_L \times U(1)_Y$

 $\left| \mathcal{L}_{\text{Yukawa}} = -y_f \overline{\psi}_L \phi \psi_R - y_f \overline{\psi}_R \phi^{\dagger} \psi_L \right| \quad y_f$: "Yukawa coupling"

$SU(2)_L \times U(1)_Y$ Invariant Fermion-Mass Term

- Higgs field can also be used to generate mass terms for fermions!
- Terms as the following are gauge invariant under $SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{\mathsf{Yukawa}} = -y_f \overline{\psi}_L \phi \psi_R - y_f \overline{\psi}_R \phi^{\dagger} \psi_L \left| y_f$$
: "Yukawa coupling"

$$\begin{split} \overline{\psi}_{L}\phi\psi_{R} &\to \left(\overline{\psi}_{L}A_{Y_{L}}^{\dagger}B^{\dagger}\right)\left(A_{Y_{\phi}}B\phi\right)\left(A_{Y_{R}}\psi_{R}\right) \\ &= A_{Y_{L}}^{\dagger}A_{Y_{\phi}}A_{Y_{R}}\overline{\psi}_{L}B^{\dagger}B\phi\psi_{R} \\ &= e^{i\frac{g'}{s}\left(-Y_{L}+Y_{\phi}+Y_{R}\right)\alpha(x)}\overline{\psi}_{L}\underbrace{B_{=1}^{\dagger}B}_{=1}\phi\psi_{R} \\ &= e^{i\frac{g'}{s}\left(-(-1)+(+1)+(-2)\right)\alpha(x)}\overline{\psi}_{L}\phi\psi_{R} \\ &= \overline{\psi}_{L}\phi\psi_{R} \end{split}$$

... and analogously for $\overline{\psi}_{B}\phi^{\dagger}\psi_{L}$

Transformations:

$$U(1)_{Y} : A_{Y} \equiv e^{i\frac{g'}{2}Y_{\alpha}(x)}$$

SU(2)_L : B = $e^{i\frac{g}{2}\tau^{a}\alpha^{a}(x)}$

Hypercharges Y, e.g. for e:

e_L	-1
e _R	-2
ϕ	+1

$SU(2)_L \times U(1)_Y$ Invariant Fermion-Mass Term

- Higgs field can also be used to generate mass terms for fermions!
- Terms as the following are gauge invariant under $SU(2)_L \times U(1)_Y$

 $\left| \mathcal{L}_{\mathsf{Yukawa}} = -y_f \overline{\psi}_L \phi \psi_R - y_f \overline{\psi}_R \phi^{\dagger} \psi_L \right| \quad y_f$: "Yukawa coupling"

• Summary: under $SU(2)_L \times U(1)_Y$ transformations

Dirac mass terms	$m_f(\overline{\psi}_L\psi_B+\overline{\psi}_B\psi_L)$	break invariance
Yukawa mass terms	$y_f(\overline{\psi}_L\phi\psi_R+\overline{\psi}_R\phi^\dagger\psi_L)$	are invariant

Coupling to Higgs field restores gauge invariance!

... and how does this help?

• Expand
$$\phi$$
 around vacuum $|\phi_0| = \frac{v}{\sqrt{2}}$: $\phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$
 $\mathcal{L}^{e}_{Yukawa} = -y_e \overline{\psi}_L \phi e_R - y_e \overline{e}_R \phi^{\dagger} \psi_L$

,

• Expand
$$\phi$$
 around vacuum $|\phi_0| = \frac{v}{\sqrt{2}}$: $\phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$
 $\mathcal{L}^{e}_{Yukawa} = -y_e \overline{\psi}_L \phi e_R - y_e \overline{e}_R \phi^{\dagger} \psi_L$
 $= -y_e \frac{1}{\sqrt{2}} \left[(\overline{\nu} \quad \overline{e})_L \begin{pmatrix} 0 \\ v + H \end{pmatrix} e_R + \overline{e}_R (0 \quad v + H) \begin{pmatrix} \nu \\ e \end{pmatrix}_L \right]$

• Expand
$$\phi$$
 around vacuum $|\phi_0| = \frac{v}{\sqrt{2}}$: $\phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$
 $\mathcal{L}^{e}_{Y_{Ukawa}} = -y_e \overline{\psi}_L \phi e_R - y_e \overline{e}_R \phi^{\dagger} \psi_L$
 $= -y_e \frac{1}{\sqrt{2}} \left[(\overline{\nu} \quad \overline{e})_L \begin{pmatrix} 0 \\ v + H \end{pmatrix} e_R + \overline{e}_R (0 \quad v + H) \begin{pmatrix} \nu \\ e \end{pmatrix}_L \right]$
 $= -\frac{y_e}{\sqrt{2}} (v + H) [\overline{e}_L e_R + \overline{e}_R e_L]$

• Expand
$$\phi$$
 around vacuum $|\phi_0| = \frac{v}{\sqrt{2}}$: $\phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$
 $\mathcal{L}_{Y_{Ukawa}}^e = -y_e \overline{\psi}_L \phi e_R - y_e \overline{e}_R \phi^{\dagger} \psi_L$
 $= -y_e \frac{1}{\sqrt{2}} \left[(\overline{\nu} \quad \overline{e})_L \begin{pmatrix} 0 \\ v + H \end{pmatrix} e_R + \overline{e}_R (0 \quad v + H) \begin{pmatrix} \nu \\ e \end{pmatrix}_L \right]$
 $= -\frac{y_e}{\sqrt{2}} (v + H) [\overline{e}_L e_R + \overline{e}_R e_L]$
 $= -\frac{y_e}{\sqrt{2}} v \overline{e} e - \frac{y_e}{\sqrt{2}} H \overline{e} e \equiv -m_e \overline{e} e - \frac{m_e}{v} H \overline{e} e$
 $H \overline{e} e \text{ interaction}$

Example: Electron Mass

• Expand
$$\phi$$
 around vacuum $|\phi_0| = \frac{v}{\sqrt{2}}$: $\phi \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}$
 $\mathcal{L}_{Y_{Ukawa}}^e = -y_e \overline{\psi}_L \phi e_R - y_e \overline{e}_R \phi^{\dagger} \psi_L$
 $= -y_e \frac{1}{\sqrt{2}} \left[(\overline{\nu} \quad \overline{e})_L \begin{pmatrix} 0 \\ v + H \end{pmatrix} e_R + \overline{e}_R (0 \quad v + H) \begin{pmatrix} \nu \\ e \end{pmatrix}_L \right]$
 $= -\frac{y_e}{\sqrt{2}} (v + H) [\overline{e}_L e_R + \overline{e}_R e_L]$
 $= -\frac{y_e}{\sqrt{2}} v \overline{e} e - \frac{y_e}{\sqrt{2}} H \overline{e} e \equiv -m_e \overline{e} e - \frac{m_e}{v} H \overline{e} e$
 $H \overline{e} e \text{ interaction}$

- Yukawa coupling of electron with Higgs field
 - Electron-mass term (cf. Dirac equation) in gauge-invariant way! Electron mass: $m_e = \frac{y_e}{\sqrt{2}}v$
- In addition: interaction of electron with Higgs boson $\propto m_e$
- No prediction of electron mass: free parameter y_e

Fermion Masses

- $\overline{\psi}_L \phi \psi_R + \overline{\psi}_R \phi^\dagger \psi_L$: masses only for 'down'-type fermions
- Additional term for 'up'-type fermions:

$$\overline{\psi}_{L}\phi^{c}\psi_{R}, \qquad \phi^{c} \equiv i\tau_{2}\phi^{*} = \begin{pmatrix} \phi^{0*} \\ -\phi^{-*} \end{pmatrix}$$

 ϕ^c : charge conjugate of $\phi Y_{\phi^c} = -1$

• Conjugate ϕ^c transforms in same way as ϕ under SU(2)_L × U(1)_Y: above terms are gauge invariant

Fermion Masses

- $\overline{\psi}_L \phi \psi_R + \overline{\psi}_R \phi^{\dagger} \psi_L$: masses only for 'down'-type fermions
- Additional term for 'up'-type fermions:

$$\overline{\psi}_L \phi^c \psi_R \,, \qquad \phi^c \equiv i \tau_2 \phi^* \stackrel{\rm SSB}{=} \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{v} \\ \mathbf{0} \end{pmatrix}$$

 ϕ^{c} : charge conjugate of $\phi Y_{\phi^{c}} = -1$

Fermion Masses

- $\overline{\psi}_L \phi \psi_R + \overline{\psi}_R \phi^{\dagger} \psi_L$: masses only for 'down'-type fermions
- Additional term for 'up'-type fermions:

$$\overline{\psi}_{L}\phi^{c}\psi_{R}\,,\qquad\phi^{c}\equiv i\tau_{2}\phi^{*}\stackrel{\rm SSB}{=}\frac{1}{\sqrt{2}}\left(\begin{matrix} \mathbf{v}\\ \mathbf{0} \end{matrix} \right)$$

$$\phi^{c}$$
: charge conjugate of $\phi Y_{\phi^{c}} = -1$

• Fermion-mass terms (without *h.c.* terms):

d-type:
$$-y_d(\overline{u}_L \quad \overline{d}_L)\phi d_R = -\frac{y_d}{\sqrt{2}}(\overline{u}_L \quad \overline{d}_L)\begin{pmatrix} 0\\v \end{pmatrix} d_R = -\frac{y_d}{\sqrt{2}}v\overline{d}_L d_R$$

u-type: $-y_u(\overline{u}_L \quad \overline{d}_L)\phi^c u_R = -\frac{y_u}{\sqrt{2}}(\overline{u}_L \quad \overline{d}_L)\begin{pmatrix} v\\0 \end{pmatrix} u_R = -\frac{y_u}{\sqrt{2}}v\overline{u}_L u_R$

/ \lambda

• \mathcal{L}_{Yukawa} for generation *i* (massless neutrinos)

$$\mathcal{L}_{\text{Yukawa}} = -y_i^d \overline{Q}_{Li} \phi d_{Ri} - y_i^u \overline{Q}_{Li} \phi^c u_{Ri} - y_i^l \overline{L}_{Li} \phi I_{Ri} - h.c.$$

Quark Masses

• Most general case: $y_i \rightarrow G_{ij}$ complex matrices

$$\mathcal{L}_{\text{Yukawa}}^{\text{quarks}} = \textit{G}_{ij}\overline{\psi}_{Li}\phi\psi_{\textit{R}j} = -\textit{G}_{ij}^{\textit{d}}\overline{\textit{Q}}_{Li}^{\prime}\phi\textit{d}_{\textit{R}j}^{\prime} - \textit{G}_{ij}^{\textit{u}}\overline{\textit{Q}}_{Li}^{\prime}\phi^{\textit{c}}\textit{u}_{\textit{R}j}^{\prime} - \textit{h.c.}$$

■ *d*′, ...: states in flavour (= SU(2)-interaction) base

Quark Masses

• Most general case: $y_i \rightarrow G_{ij}$ complex matrices

$$\mathcal{L}_{\text{Yukawa}}^{\text{quarks}} = \textit{G}_{ij}\overline{\psi}_{Li}\phi\psi_{\textit{R}j} = -\textit{G}_{ij}^{\textit{d}}\overline{\textit{Q}}_{Li}^{\prime}\phi\textit{d}_{\textit{R}j}^{\prime} - \textit{G}_{ij}^{\textit{u}}\overline{\textit{Q}}_{Li}^{\prime}\phi^{\textit{c}}\textit{u}_{\textit{R}j}^{\prime} - \textit{h.c.}$$

- d', ...: states in flavour (= SU(2)-interaction) base
- For example, first term (after electroweak symmetry breaking)

$$G_{jj}^{d}\overline{Q}_{Lj}^{\prime}\phi d_{Rj}^{\prime} = \frac{1}{\sqrt{2}} \begin{bmatrix} \left(\begin{array}{cc} G_{dd}^{d} \cdot \overline{(u-d)}_{L}^{\prime} & G_{ds}^{d} \cdot \overline{(u-d)}_{L}^{\prime} & G_{db}^{d} \cdot \overline{(u-d)}_{L}^{\prime} \\ G_{sd}^{d} \cdot \overline{(c-s)}_{L}^{\prime} & G_{ss}^{d} \cdot \overline{(c-s)}_{L}^{\prime} & G_{sb}^{d} \cdot \overline{(c-s)}_{L}^{\prime} \\ G_{bd}^{d} \cdot \overline{(t-b)}_{L}^{\prime} & G_{bs}^{d} \cdot \overline{(t-b)}_{L}^{\prime} & G_{bb}^{d} \cdot \overline{(t-b)}_{L}^{\prime} \\ \end{array} \right) \begin{pmatrix} 0 \\ v \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} d_{R}^{\prime} \\ s_{R}^{\prime} \\ b_{R}^{\prime} \end{pmatrix}$$

Quark Masses

• Most general case: $y_i \rightarrow G_{ij}$ complex matrices

$$\mathcal{L}_{\text{Yukawa}}^{\text{quarks}} = \textit{G}_{ij}\overline{\psi}_{Li}\phi\psi_{\textit{R}j} = -\textit{G}_{ij}^{\textit{d}}\overline{\textit{Q}}_{Li}^{\prime}\phi\textit{d}_{\textit{R}j}^{\prime} - \textit{G}_{ij}^{\textit{u}}\overline{\textit{Q}}_{Li}^{\prime}\phi^{\textit{c}}\textit{u}_{\textit{R}j}^{\prime} - \textit{h.c.}$$

- d', ...: states in flavour (= SU(2)-interaction) base
- For example, first term (after electroweak symmetry breaking)

$$G_{ij}^{d}\overline{Q}_{Li}^{\prime}\phi d_{Rj}^{\prime} = \frac{1}{\sqrt{2}} \begin{bmatrix} \begin{pmatrix} G_{dd}^{d} \cdot \overline{(u-d)}_{L}^{\prime} & G_{ds}^{d} \cdot \overline{(u-d)}_{L}^{\prime} & G_{ds}^{d} \cdot \overline{(u-d)}_{L}^{\prime} \\ G_{sd}^{d} \cdot \overline{(c-s)}_{L}^{\prime} & G_{ss}^{d} \cdot \overline{(c-s)}_{L}^{\prime} & G_{sb}^{d} \cdot \overline{(c-s)}_{L}^{\prime} \\ G_{bd}^{d} \cdot \overline{(t-b)}_{L}^{\prime} & G_{bs}^{d} \cdot \overline{(t-b)}_{L}^{\prime} & G_{bb}^{d} \cdot \overline{(t-b)}_{L}^{\prime} \end{pmatrix} \begin{pmatrix} 0 \\ v \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} d_{R}^{\prime} \\ s_{R}^{\prime} \\ b_{R}^{\prime} \end{pmatrix}$$

Lagrangian becomes

$$\begin{split} \mathcal{L}_{\text{Yukawa}}^{\text{quarks}} &= - \ \mathbf{G}_{dd}^{d} \frac{v}{\sqrt{2}} \cdot \overrightarrow{d}_{L}' d_{R}' - \mathbf{G}_{ds}^{d} \frac{v}{\sqrt{2}} \cdot \overrightarrow{d}_{L}' s_{R}' - \ldots - h.c. \\ &= - \ \ \mathbf{M}_{dd}^{d'} \cdot \overrightarrow{d}_{L}' d_{R}' - \ \ \mathbf{M}_{ds}^{d'} \cdot \overrightarrow{d}_{L}' s_{R}' - \ldots - h.c. \\ &= - \ \ \underbrace{\mathbf{M}_{dd}' \cdot \overrightarrow{d}' d}_{d-\text{quark mass}} - \ \ \underbrace{\mathbf{M}_{ds}' \cdot \overrightarrow{d}' s'}_{\mathbf{2}} - \ldots \\ \mathbf{Y}_{\mathbf{M}_{dd}}^{d} \cdot \overrightarrow{d}_{L}' d_{R}' - \ \ \mathbf{M}_{ds}^{d'} \cdot \overrightarrow{d}_{L}' s_{R}' - \ldots - h.c. \end{split}$$

50/57 26.5.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Quark Masses

States with proper mass terms by diagonalizing the mass matrices

$$M^{d} = V_{L}^{d} M^{d'} V_{R}^{d\dagger} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix}, \quad M^{u} = V_{L}^{u} M^{u'} V_{R}^{u\dagger} = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix}$$

Quark Masses

• States with proper mass terms by **diagonalizing the mass matrices**

$$M^{d} = V_{L}^{d} M^{d'} V_{R}^{d\dagger} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix}, \quad M^{u} = V_{L}^{u} M^{u'} V_{R}^{u\dagger} = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix}$$

with unitary matrices V (i.e. $V^{\dagger}V = 1$)

$$\begin{array}{cccc} \mathcal{L}_{\mathsf{Yukawa}}^{\mathsf{quarks}} = & - & \overline{d}'_{Li} & \mathcal{M}_{ij}^{d'} & \mathcal{d}'_{Rj} - & \overline{u}'_{Li} & \mathcal{M}_{ij}^{u'} & \mathcal{u}'_{Rj} \\ & = & - & \overline{d}'_{Li} \mathcal{V}_{L}^{d\dagger} \mathcal{V}_{L}^{d} \mathcal{M}_{ij}^{d'} \mathcal{V}_{R}^{d\dagger} & \underbrace{\mathcal{V}_{R}^{d} d'_{Rj}}_{\mathcal{H}_{Rj}} & - & \overline{u}'_{Li} \mathcal{V}_{L}^{u\dagger} \mathcal{V}_{ij}^{u} \mathcal{V}_{R}^{u\dagger} & \underbrace{\mathcal{V}_{R}^{u} u'_{Rj}}_{\mathcal{H}_{Rj}} \\ & = & - & \overline{d}'_{Li} & \mathcal{M}_{ij}^{d} & \underbrace{\mathcal{M}_{ij}^{d'} \mathcal{M}_{Rj}^{d'}}_{\mathcal{H}_{Rj}} & \underbrace{\mathcal{M}_{Rj}^{d'} \mathcal{M}_{Rj}^{d'}}_{\mathcal{H}_{Rj}} & - & \overline{u}'_{Li} \mathcal{M}_{ij}^{u'} \mathcal{M}_{ij}^{u'} & \underbrace{\mathcal{M}_{Rj}^{u'} \mathcal{M}_{Rj}}_{\mathcal{H}_{Rj}} \end{array}$$

Quark Masses

States with proper mass terms by diagonalizing the mass matrices

$$M^{d} = V_{L}^{d} M^{d'} V_{R}^{d\dagger} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix}, \quad M^{u} = V_{L}^{u} M^{u'} V_{R}^{u\dagger} = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix}$$

with unitary matrices V (i.e. $V^{\dagger}V = 1$)

$$\begin{array}{ccc} \mathcal{L}_{\mathsf{Yukawa}}^{\mathsf{quarks}} = & - & \overline{d}_{Li}' & \mathcal{M}_{ij}^{d'} & \mathcal{d}_{Rj}' - & \overline{u}_{Li}' & \mathcal{M}_{ij}^{u'} & \mathcal{u}_{Rj}' \\ \\ & = & - & \overline{d}_{Li}' \mathcal{V}_{L}^{d\dagger} \mathcal{V}_{L}^{d} \mathcal{M}_{ij}^{d'} \mathcal{V}_{R}^{d\dagger} & \mathcal{V}_{R}^{d} \mathcal{H}_{ij} & - & \overline{u}_{Li}' \mathcal{V}_{L}^{u\dagger} \mathcal{V}_{ij}^{u} \mathcal{V}_{R}^{u\dagger} & \mathcal{V}_{R}^{u} \mathcal{H}_{ij} \\ \\ & = & - & \overline{d}_{Li} & \mathcal{M}_{ij}^{d} & \mathcal{M}_{ij}^{d} & \mathcal{M}_{Rj}^{d} & - & \overline{u}_{Li} & \mathcal{M}_{ij}^{u'} & \mathcal{U}_{Rj}^{u} & \mathcal{U}_{Rj} \end{array}$$

with quark mass-eigenstates

$$\begin{aligned} d_{Li} &= (V_L^d)_{ij} d'_{Lj} \qquad d_{Ri} = (V_R^d)_{ij} d'_{Rj} \\ u_{Li} &= (V_L^u)_{ij} u'_{Lj} \qquad u_{Ri} = (V_R^u)_{ij} u'_{Rj} \end{aligned}$$

Electroweak interaction terms rewritten in SU(2)-interaction base

$$\begin{split} \mathcal{L}_{\text{EWK}} &= \quad i \overline{Q}'_L \gamma^{\mu} \left[\partial_{\mu} + i \frac{g}{2} W^a_{\mu} \tau^a + i \frac{g'}{2} Y_L B_{\mu} \right] Q'_L + i \overline{q'}_R \gamma^{\mu} \left[\partial_{\mu} + i \frac{g'}{2} Y_L B_{\mu} \right] q'_R \\ &= \quad i \overline{Q}'_L \gamma^{\mu} \partial_{\mu} Q'_L + i \overline{q}'_R \gamma^{\mu} \partial_{\mu} q'_R & \longrightarrow \mathcal{L}_{\text{kin}} \\ &+ \overline{Q}'_L \gamma^{\mu} W^{\pm}_{\mu} \tau^{\pm} Q'_L & \longrightarrow \mathcal{L}_{\text{CC}} \\ &+ \overline{Q}'_L \gamma^{\mu} (c^Z_L Z_{\mu}, c^A A_{\mu}) Q'_L + \overline{q}'_R \gamma^{\mu} (c^Z_R Z_{\mu}, c^A A_{\mu}) q'_R & \longrightarrow \mathcal{L}_{\text{NC}} \end{split}$$

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\overline{Q}'_{L}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})Q'_{L} = \overline{(u \ d)}'_{Li}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\begin{pmatrix}u\\d\end{pmatrix}'_{Li}$$

.

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\begin{split} \overline{Q}_{L}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})Q_{L}^{\prime} &= \overline{(u \ d)}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu}) \begin{pmatrix} u \\ d \end{pmatrix}_{Li}^{\prime} \\ &= \overline{u}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})u_{Li}^{\prime} + \dots \end{split}$$

.

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\overline{Q}_{L}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})Q_{L}^{\prime} = \overline{(u \ d)}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\begin{pmatrix} u \\ d \end{pmatrix}_{Li}^{\prime}$$
$$= \overline{u}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})u_{Li}^{\prime} + \dots$$
$$= \gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\overline{u}_{Li}^{\prime}u_{Li}^{\prime} + \dots$$

.

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\overline{Q}'_{L}\gamma^{\mu}(Z_{\mu}, A_{\mu})Q'_{L} = \overline{(u \ d)}'_{Li}\gamma^{\mu}(Z_{\mu}, A_{\mu})\begin{pmatrix} u \\ d \end{pmatrix}'_{Li}$$
$$= \overline{u}'_{Li}\gamma^{\mu}(Z_{\mu}, A_{\mu})u'_{Li} + \dots$$
$$= \gamma^{\mu}(Z_{\mu}, A_{\mu})\overline{u}'_{Li}u'_{Li} + \dots$$
$$= \gamma^{\mu}(Z_{\mu}, A_{\mu})\underbrace{\overline{u}_{Li}(V_{L}^{u})_{ij}}_{\overline{u}'_{Li}}\underbrace{(V_{L}^{u\dagger})_{ij}u_{Lj}}_{u'_{Li}} +$$

. . .

. . .

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\begin{aligned} \overline{Q}'_{L}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})Q'_{L} &= \overline{(u \ d)}'_{Li}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\begin{pmatrix} u \\ d \end{pmatrix}'_{Li} \\ &= \overline{u}'_{Li}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})u'_{Li} + \dots \\ &= \gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\overline{u}'_{Li}u'_{Li} + \dots \\ &= \gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\overline{u}_{Li}\underbrace{(\mathsf{V}_{L}^{u}\mathsf{V}_{L}^{u\dagger})_{ij}}_{\delta_{ij}}u_{Lj} + \dots \end{aligned}$$

.

. .

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{NC} (and similarly \mathcal{L}_{kin}), terms of the form

$$\begin{aligned} \overline{Q}_{L}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})Q_{L}^{\prime} &= \overline{(u \ d)}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\begin{pmatrix} u \\ d \end{pmatrix}_{Li}^{\prime} \\ &= \overline{u}_{Li}^{\prime}\gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})u_{Li}^{\prime} + \dots \\ &= \gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\overline{u}_{Li}^{\prime}u_{Li}^{\prime} + \dots \\ &= \gamma^{\mu}(\mathsf{Z}_{\mu},\mathsf{A}_{\mu})\overline{u}_{Li}\underbrace{(\mathsf{V}_{L}^{u}\mathsf{V}_{L}^{u\dagger})_{jj}}_{\delta_{ij}}u_{Lj} + .\end{aligned}$$

. . .

. .

Kinetic and NC interaction terms act on quark mass-eigentstates

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{CC} , e.g. W⁺, terms of the form

$$\overline{Q}_{L}^{\prime}\gamma^{\mu}W_{\mu}^{+}\tau^{+}Q_{L}^{\prime}=\overline{(u\ d)}_{Li}^{\prime}\gamma^{\mu}W_{\mu}^{+}\tau^{+}\begin{pmatrix}u\\d\end{pmatrix}_{Li}^{\prime}$$

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{CC} , e.g. W^+ , terms of the form

$$\overline{\mathcal{Q}}'_{L}\gamma^{\mu}\mathsf{W}^{+}_{\mu}\tau^{+}\mathcal{Q}'_{L}=\gamma^{\mu}\mathsf{W}^{+}_{\mu}\ \overline{\mathcal{U}}'_{Li}\mathcal{d}'_{Li}+\ldots$$

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{CC} , e.g. W⁺, terms of the form

$$\overline{\mathcal{Q}}_{L}^{\prime}\gamma^{\mu}\mathsf{W}_{\mu}^{+}\tau^{+}\mathcal{Q}_{L}^{\prime} = \gamma^{\mu}\mathsf{W}_{\mu}^{+}\overline{u}_{Li}^{\prime}d_{Li}^{\prime} + \dots$$
$$= \gamma^{\mu}\mathsf{W}_{\mu}^{+}\underbrace{\overline{u}_{Li}(\mathsf{V}_{L}^{u})_{ij}}_{\overline{u}_{li}^{\prime}}\underbrace{(\mathsf{V}_{L}^{d\dagger})_{ij}d_{Lj}}_{d_{ij}^{\prime}} + \dots$$

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{CC} , e.g. W⁺, terms of the form

$$\begin{split} \overline{\mathcal{Q}}_{L}^{\prime} \gamma^{\mu} \mathsf{W}_{\mu}^{+} \tau^{+} \mathcal{Q}_{L}^{\prime} &= \gamma^{\mu} \mathsf{W}_{\mu}^{+} \overline{u}_{Li}^{\prime} d_{Li}^{\prime} + \dots \\ &= \gamma^{\mu} \mathsf{W}_{\mu}^{+} \underbrace{\overline{u}_{Li}(\mathsf{V}_{L}^{\prime})_{ij}}_{\overline{u}_{Li}^{\prime}} \underbrace{(\mathsf{V}_{L}^{\prime \dagger})_{ij} d_{Lj}}_{d_{Li}^{\prime}} + \dots \\ &= \gamma^{\mu} \mathsf{W}_{\mu}^{+} \overline{u}_{Li} \underbrace{(\mathsf{V}_{L}^{\prime \prime} \mathsf{V}_{L}^{\prime \dagger})_{ij}}_{\mathsf{V}_{l}^{\prime} \mathsf{M}} d_{Lj} + \dots \end{split}$$

- Electroweak interaction terms rewritten in SU(2)-interaction base
- For \mathcal{L}_{CC} , e.g. W⁺, terms of the form

$$\begin{aligned} \overline{Q}'_{L}\gamma^{\mu}\mathsf{W}^{+}_{\mu}\tau^{+}Q'_{L} &= \gamma^{\mu}\mathsf{W}^{+}_{\mu} \overline{u}'_{Li}d'_{Li} + \dots \\ &= \gamma^{\mu}\mathsf{W}^{+}_{\mu} \underbrace{\overline{u}_{Li}(V^{U}_{L})_{ij}}_{\overline{u}'_{Li}} \underbrace{(V^{d\dagger}_{L})_{ij}d_{Lj}}_{d'_{Li}} + \dots \\ &= \gamma^{\mu}\mathsf{W}^{+}_{\mu} \overline{u}_{Li} \underbrace{(V^{U}_{L}V^{d\dagger}_{L})_{ij}}_{V^{i\dagger}_{\mathsf{KM}}} d_{Lj} + \dots \end{aligned}$$

CC act on superposition of mass-eigentstates (**quark mixing**) $V_L^u V_L^{d\dagger} = V_{CKM}$: Cabibbo-Kobayashi-Maskawa (CKM) matrix

Convention: V_{CKM} elements such that no mixing for *u*-type quarks: $u'_i = u_i$

Summary: The Higgs Mechanism

• No prediction of but allows masses of the elementary particles without breaking local gauge invariance

- $\hfill Higgs field \phi$ with spontaneously-symmetry-breaking potential
 - \rightarrow non-zero vacuum expectation value v of ϕ
- Coupling of gauge bosons to φ (by covariant derivative) generates boson mass-terms ∝ ν ('eat up' Goldstone bosons to gain mass)
- In addition: Yukawa coupling of fermions to \u03c6 generates fermion mass-terms \u03c6 v (and introduces freedom for mixing between fermion mass- and interaction-eigenstates)

Predicts a massive scalar particle (the Higgs boson)

- Coupling to fermions and bosons depending on their masses
- Additional self-interaction
- Higgs sector determined by Higgs-boson mass (free parameter)