

Teilchenphysik II - W, Z, Higgs am Collider

Lecture 08: Statistical Analysis

PD Dr. K. Rabbertz, Dr. Nils Faltermann | 16. Juni 2023

www.kit.edu

Experiment

- All measurements are derived from counting experiments
- Millions of billions of particle collision events each year
- Each event independent from and (to many extents) identical to all others

Theory

- Nature intrinsically stochastic
- QM wave functions interpreted as probability density functions
- Event-by-event simulation using Monte Carlo methods

Particle physics experiments perfect application of statistics

Historically: trust your instincts

Sometimes unambiguous, clearly there is something!

But most of the time not: is there a signal?

(with more subsequent data: turned out to be nothing)

And what do you do if you don't see anything: just a waste of time?

And what do you do if you don't see anything: just a waste of time?

Outline

- Statistics is a vast field!
- Here: focus on concepts and techniques needed to understand experimental particle physics results
- Questions we will discuss
 - How to interpret the data: are they compatible with my expectation (model)?
 - How do uncertainties enter the game?
 - Can we distinguish between different models?
 - If we don't see any signal, can we still use the data to make statements about the searched-for process?
- Much more details in lecture **Moderne Methoden der Datenanalyse** (summer term)

3σ

Combined observed

135 140

130

Expected for SM Higgs

2a (4.6)

(4.7 fb (4.6 fb

(4.8 fb

(4.6 fb

(4.7 fb

145

Outline

Goal: we want to understand these plots

Bayesian and Frequentist Approaches

- Two major approaches in statistical analysis:
 - Frequentist: probability purely based on observation, objective
 - Bayesian: usage of earlier knowledge (prior), subjective
- Will focus on frequentist approach (but for most concepts Bayesian equivalent, see the literature!)

Bayesian and Frequentist Approaches

- Two major approaches in statistical analysis:
 - Frequentist: probability purely based on observation, objective
 - Bayesian: usage of earlier knowledge (prior), subjective
- Will focus on frequentist approach (but for most concepts Bayesian equivalent, see the literature!)

Statistical processes underlying the data are assumed to follow a probability density function (pdf) ${\cal P}$

Statistical processes underlying the data are assumed to follow a probability density function (pdf) ${\cal P}$

Poisson:

$$\mathcal{P}(\mathbf{x};\lambda) = \frac{\lambda^{x}}{x!} \mathbf{e}^{-\lambda}$$

Statistical processes underlying the data are assumed to follow a probability density function (pdf) ${\cal P}$

Poisson:

Gaussian: $\mathcal{P}(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

Statistical processes underlying the data are assumed to follow a probability density function (pdf) ${\cal P}$

Poisson:

Gaussian: $\mathcal{P}(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

NB: both are in fact limits of the Binomial distribution for a large number of tries

• The likelihood $\mathcal{L}(n_{obs}; k) = \prod_{i} \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- *i*: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as \mathcal{P}
- $k = \{k_j\}$: model parameters in \mathcal{P}
- $\rightarrow~$ function of model parameters and observed data

KIT -ETP

Likelihood

• The likelihood $\mathcal{L}(n_{obs}; k) = \prod_{i} \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- *i*: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as \mathcal{P}
- $k = \{k_j\}$: model parameters in \mathcal{P}
- $\rightarrow~$ function of model parameters and observed data

Example

- Data: observed events in 20 bins
- Model: known SM process (background)

• The likelihood $\mathcal{L}(n_{obs}; k) = \prod_{i} \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- i: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as \mathcal{P}
- $k = \{k_i\}$: model parameters in \mathcal{P}
- \rightarrow function of model parameters and observed data

Example

- Data: observed events in 20 bins
- Model: known SM process (background)

 $\mathcal{L}(n_{obs}; b) = \prod_{i} Poisson(n_{obs}, i, b)$

events / 9.0 data -model 250 200 150 100 50

300

• The likelihood $\mathcal{L}(n_{obs}; k) = \prod_{i} \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- *i*: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as P
- $k = \{k_j\}$: model parameters in \mathcal{P}
- $\rightarrow~$ function of model parameters and observed data

Example

- Data: observed events in 20 bins
- Model: known SM process (background)

$$\mathcal{L}(n_{\text{obs}}; b) = \prod_{i} \frac{(n_{\text{pred}}, i)^{n_{\text{obs}}, i}}{n_{\text{obs}, i}!} e^{-n_{\text{pred}}, i}$$
$$n_{\text{pred}, i}(b) = \underbrace{b \cdot e^{-\alpha x_{i}}}_{\text{background}}$$

• The likelihood $\int \mathcal{L}(n_{obs}; k) = \prod_i \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- *i*: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as P
- $k = \{k_j\}$: model parameters in \mathcal{P}
- $\rightarrow~$ function of model parameters and observed data

Example

- Data: observed events in 20 bins
- Model: known SM process (background) + signal

$$\mathcal{L}(n_{\text{obs}}; b, s) = \prod_{i} \frac{(n_{\text{pred},i})^{n_{\text{obs},i}}}{n_{\text{obs},i}!} e^{-n_{\text{pred},i}}$$
$$n_{\text{pred},i}(b, s) = \underbrace{b \cdot e^{-\alpha x_i}}_{\text{background}} + \underbrace{s \cdot e^{-(m-x_i)^2}}_{\text{signal}}$$

KIT -ETP

Likelihood

• The likelihood $\int \mathcal{L}(n_{obs}; k) = \prod_i \mathcal{P}(n_{obs,i}; k)$ quantifies

compatibility of the observed data with a given model

- *i*: independent counting experiments, e.g. bins of a histogram
- $n_{obs} = \{n_{obs}, i\}$: number of observed events in *i*, distributed as \mathcal{P}
- $k = \{k_j\}$: model parameters in \mathcal{P}
- $\rightarrow~$ function of model parameters and observed data
- \mathcal{L} is not the probability of a model!
 - Also not the probability of observing the data given the model
- L is the product of pdfs of the model, used to quantify the compatibility of the data with the model

Karlsruhe Institute of Technology

Parameter Estimation

Which parameter values of a given model describe best the data?

Parameter Estimation

- Which parameter values of a given model describe best the data?
- Maximum likelihood (ML) method ("maximum likelihood fit"): Which parameter values lead to the maximum of *L*?
- $\rightarrow\,$ Maximum likelihood estimators \hat{k} of the true values

 $\max \left[\mathcal{L}(n_{ ext{obs}},k)
ight] = \mathcal{L}(n_{ ext{obs}},\hat{k})$

Parameter Estimation

- Which parameter values of a given model describe best the data?
- Maximum likelihood (ML) method ("maximum likelihood fit"): Which parameter values lead to the maximum of *L*?
- $\rightarrow\,$ Maximum likelihood estimators \hat{k} of the true values

$$\max\left[\mathcal{L}(n_{\text{obs}},k)\right] = \mathcal{L}(n_{\text{obs}},\hat{k})$$

Technically: minimisation of negative log-likelihood

$$NLL(n_{obs}, k) = -2 \ln \mathcal{L}$$

- Logarithm is monotonic: retains minimum
- Turns product of pdfs into sum: easier to minimise

Parameter Estimation

- Which parameter values of a given model describe best the data?
- Maximum likelihood (ML) method ("maximum likelihood fit"): Which parameter values lead to the maximum of *L*?
- $\rightarrow\,$ Maximum likelihood estimators \hat{k} of the true values

$$\max\left[\mathcal{L}(\textit{n}_{\text{obs}},k)\right] = \mathcal{L}(\textit{n}_{\text{obs}},\hat{k})$$

Technically: minimisation of negative log-likelihood

$$NLL(n_{obs}, k) = -2 \ln \mathcal{L}$$

- Logarithm is monotonic: retains minimum
- Turns product of pdfs into sum: easier to minimise
- Arbitrarily complex problem, vast amount of techniques and literature
 - e.g. ATLAS+CMS Higgs couplings combination: \approx 4250 parameters
 - e.g. CMS tracker-alignment problem: $\mathcal{O}(10^6)$ parameters

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC: $\mu = (\sigma \cdot \mathcal{B}) / (\sigma_{SM} \cdot \mathcal{B}_{SM})$

$$n_{\text{pred},i}(\mu) = \underbrace{b \cdot e^{-\alpha x_i}}_{\text{background}} + \underbrace{\mu \cdot S_{\text{SM}} \cdot e^{-(m-x_i)^2}}_{\text{signal}}$$
$$\mathcal{L}(n_{\text{obs}};\mu) = \prod_{i} \frac{(n_{\text{pred},i})^{n_{\text{obs},i}}}{n_{\text{obs},i}!} e^{-n_{\text{pred},i}}$$
$$\hat{\mu}: \text{ maximises } \mathcal{L}(n_{\text{obs}};\mu)$$

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC: $\mu = (\sigma \cdot \mathcal{B})/(\sigma_{\text{SM}} \cdot \mathcal{B}_{\text{SM}})$

 \rightarrow

$$\begin{split} \mathbf{n}_{\text{pred},i}(\mu) &= \underbrace{\mathbf{b} \cdot \mathbf{e}^{-\alpha x_i}}_{\text{background}} + \underbrace{\mu \cdot \mathbf{s}_{\text{SM}} \cdot \mathbf{e}^{-(m-x_i)^2}}_{\text{signal}} \\ \mathcal{L}(n_{\text{obs}};\mu) &= \prod_{i} \frac{(n_{\text{pred},i})^{n_{\text{obs},i}}}{n_{\text{obs},i}!} \mathbf{e}^{-n_{\text{pred},i}} \\ \hline \hat{\mu}: \text{minimises} -2 \ln \mathcal{L}(n_{\text{obs}};\mu) \end{split}$$

Note: we are usually not interested in the value of \mathcal{L} , only in the difference (Δ) w.r.t. the minimum

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC:

$$\mu = (\sigma \cdot \mathcal{B}) / (\sigma_{\mathsf{SM}} \cdot \mathcal{B}_{\mathsf{SM}})$$

Important case: Gaussian distributed measurements

- e.g. approximation of Poisson for large number of events (in practice > 10)
- NLL becomes

$$-2 \ln \mathcal{L} = \sum_{i} rac{(n_{ ext{obs},i} - n_{ ext{pred},i})^2}{n_{ ext{pred},i}} + ext{const}$$

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC:

$$\iota = (\sigma \cdot \mathcal{B}) / (\sigma_{\mathsf{SM}} \cdot \mathcal{B}_{\mathsf{SM}})$$

Important case: Gaussian distributed measurements

- e.g. approximation of Poisson for large number of events (in practice > 10)
- NLL becomes

$$-2 \ln \mathcal{L} = \sum_{i} rac{(n_{ ext{obs},i} - n_{ ext{pred},i})^2}{n_{ ext{pred},i}} + ext{const}$$

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC: $\mu = (\sigma \cdot \mathcal{B}) / (\sigma_{\text{SM}} \cdot \mathcal{B}_{\text{SM}})$

ML method obtains parameter values most compatible with the data *for a given model* — **a ML fit does not find the correct model**!

- Example: which signal-strength modifier μ describes best the data?
 - Common in analyses at the LHC: $\mu = (\sigma \cdot \mathcal{B}) / (\sigma_{\text{SM}} \cdot \mathcal{B}_{\text{SM}})$

ML method obtains parameter values most compatible with the data for a given model — a ML fit does not find the correct model!

ML estimator is function of the observed data

- Uncertainty on $\hat{\mu}$ from scan of NLL = $-2 \ln \mathcal{L}$ around minimum
- Uncertainty due to fluctuations of data: "statistical uncertainty"
- For Gaussian pdfs: parabola, standard deviation σ follows from

$$\Delta(\mathsf{NLL}) = \mathsf{NLL}(\hat{\mu} \pm r \cdot \sigma) - \mathsf{NLL}(\hat{\mu}) = r$$

- Uncertainty on $\hat{\mu}$ from scan of NLL = $-2 \ln \mathcal{L}$ around minimum
- Uncertainty due to fluctuations of data: "statistical uncertainty"
- For Gaussian pdfs: parabola, standard deviation σ follows from

 $\Delta(\mathsf{NLL}) = \mathsf{NLL}(\hat{\mu} \pm r \cdot \sigma) - \mathsf{NLL}(\hat{\mu}) = r$

- Other cases can often be approximated by Gaussian case (and true for $n \to \infty$)
- For strongly asymmetric NLL
 - Often asymmetric intervals quoted
 - Better: variable transformation such that NLL symmetric

Uncertainty vs. Error

- Uncertainty reflects degree of precision with which one can deduce a parameter value from the data if one does everything correctly
 - Statistical uncertainties stem from the inherent stochastic nature of the data and finite number of observed events (can not be eliminated, only minimised)
 - Systematic uncertainties stem e.g. from the limited knowledge of the precision of the detector or approximations in theory calculations
 - Uncertainties can (in principle) be quantified
- In contrast, errors are mistakes
 - e.g. a lose cable or a wrong method
 - Errors can (and should) be eliminated
- In context of statistical data analysis, we mean uncertainties
 - NB: "Error bars" denote uncertainties!

Incorporation of Systematic Uncertainties

- Often, background (and signal) models subject to systematic uncertainties
 - Some (theory or experimental) parameters not exactly known, e.g. cross section or trigger efficiency
- For example, background normalisation b not precisely known but with some uncertainty

- Often, background (and signal) models subject to systematic uncertainties
 - Some (theory or experimental) parameters not exactly known, e.g. cross section or trigger efficiency
- For example, background normalisation *b* not precisely known but with some uncertainty → affects determination of signal
 - $\hfill More background events \rightarrow less signal events$
 - Generally leads to larger uncertainty on $\hat{\mu}$

- Often, background (and signal) models subject to systematic uncertainties
 - Some (theory or experimental) parameters not exactly known, e.g. cross section or trigger efficiency
- For example, background normalisation *b* not precisely known but with some uncertainty → affects determination of signal
 - \blacksquare Less background events \rightarrow more signal events
 - Generally leads to larger uncertainty on $\hat{\mu}$

• Incorporated into likelihood via **nuisance parameters** θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}};\mu,\theta) = \prod_{i} \mathcal{P}(n_{\mathsf{obs}\,i};\mu,\theta) \cdot \mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$$

• Background normalisation becomes function of θ : $b \rightarrow b(\theta)$

• Incorporated into likelihood via nuisance parameters θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}};\mu,\theta) = \prod_{i} \mathcal{P}(\mathbf{n}_{\mathsf{obs}\,i};\mu,\theta) \cdot \mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$$

- Background normalisation becomes function of θ : $b \rightarrow b(\theta)$
 - θ : assumed true value, parameter of the fit
 - $\tilde{\theta}$: best knowledge, e.g. estimate from independent measurement, distributed as $\mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$

• Incorporated into likelihood via nuisance parameters θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}};\mu,\theta) = \prod_{i} \mathcal{P}(n_{\mathsf{obs}\,i};\mu,\theta) \cdot \mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$$

- Background normalisation becomes function of θ : $b \rightarrow b(\theta)$
 - ML fit can adjust θ to a value different than θ
 [˜] to achieve better description of data but at the cost of reducing value of P_{˜θ}(θ
 [˜]|θ)

• Incorporated into likelihood via **nuisance parameters** θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}};\mu, heta) = \prod_{i} \mathcal{P}(\mathbf{n}_{\mathsf{obs}\,i};\mu, heta) \cdot \mathcal{P}_{\widetilde{ heta}}(\widetilde{ heta}| heta)$$

- µ: parameter of interest (POI)
- θ : nuisance parameter (NP)

• Incorporated into likelihood via nuisance parameters θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}};\mu, heta) = \prod_{i} \mathcal{P}(\mathbf{n}_{\mathsf{obs}\,i};\mu, heta) \cdot \mathcal{P}_{\widetilde{ heta}}(\widetilde{ heta}| heta)$$

- μ: parameter of interest (POI)
- θ: nuisance parameter (NP)

generally, (anti-)correlated with μ : increased uncertainty on $\hat{\mu} o$ smaller sensitivity

• Incorporated into likelihood via nuisance parameters θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}}; \mu, \theta) = \prod_{i} \mathcal{P}(n_{\mathsf{obs}\,i}; \mu, \theta) \cdot \mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$$

- μ: parameter of interest (POI)
- θ: nuisance parameter (NP)
- \mathcal{L} function of μ and θ , but only interested in μ
 - \rightarrow can rewrite θ as function of μ

Profile likelihood $\mathcal{L}_{p}(\mu) \equiv \mathcal{L}(\mu, \hat{\theta}(\mu))$

 $\hat{\theta}(\mu)$ maximises \mathcal{L} for given μ ("profiled values" of θ)

• Incorporated into likelihood via nuisance parameters θ

$$\mathcal{L}(\mathbf{n}_{\mathsf{obs}}; \mu, \theta) = \prod_{i} \mathcal{P}(\mathbf{n}_{\mathsf{obs}\,i}; \mu, \theta) \cdot \mathcal{P}_{\tilde{\theta}}(\tilde{\theta}|\theta)$$

- μ: parameter of interest (POI)
- θ: nuisance parameter (NP)
- \mathcal{L} function of μ and θ , but only interested in μ
 - \rightarrow can rewrite θ as function of μ

Profile likelihood $\mathcal{L}_{p}(\mu) \equiv \mathcal{L}(\mu, \hat{\theta}(\mu))$

 $\hat{\theta}(\mu)$ maximises \mathcal{L} for given μ ("profiled values" of θ)

*L*_p in practice computationally advantageous

• e.g. need only to consider μ instead of full parameter space (μ, θ) when computing uncertainties

Log-normal

Typical Choices for $\mathcal{P}_{\theta}(\theta|\tilde{ heta})$

(truncated) Gaussian

Sidebands and Control Regions

sidebands

- Signal-depleted sideband/control region
 - Determine rate of background process
 - Determine shape of background processes
 - Constrain uncertainties on background prediction
- Can be incorporated into likelihood fit via nuisance parameters: simultaneous determination of POI and background parameters

Experiment to determine value of some parameter x measures x_{obs}

- e.g. from maximum likelihood estimate, tag-and-probe measurement
- Want to quote "uncertainty": interval that reflects statistical precision of measurement
 - Can be estimate of standard deviation from likelihood fit
 - \blacksquare More generally, in particular if non-Gaussian \mathcal{P} : confidence interval

- Experiment to determine value of some parameter x measures x_{obs}
 - e.g. from maximum likelihood estimate, tag-and-probe measurement
- Want to quote "uncertainty": interval that reflects statistical precision of measurement
 - Can be estimate of standard deviation from likelihood fit
 - \blacksquare More generally, in particular if non-Gaussian \mathcal{P} : confidence interval
- Confidence interval covers on average the true value with a given probability
 - e.g. 90% confidence level: if experiment repeated many times, the interval covers the true value in 90% of the cases

- Experiment to determine value of some parameter x measures x_{obs}
 - e.g. from maximum likelihood estimate, tag-and-probe measurement
- Want to quote "uncertainty": interval that reflects statistical precision of measurement
 - Can be estimate of standard deviation from likelihood fit
 - More generally, in particular if non-Gaussian $\mathcal{P}:$ confidence interval
- Confidence interval covers on average the true value with a given probability
 - e.g. 90% confidence level: if experiment repeated many times, the interval covers the true value in 90% of the cases
 - Careful: this is **not** the probability of the true value to lie within the interval
 - \rightarrow there is only one true value either within or not!

Karlsruhe Institute of Technology

Confidence Intervals

Karlsruhe Institute of Technology

Confidence Intervals

Karlsruhe Institute of Technology

Confidence Intervals

Karlsruhe Institute of Tech

p Value

- How well is the data described by my hypothesis (model)?
- For example, how likely that observed peak in data just upward fluctuation of the background, i. e. no Higgs boson present?

p Value

- How well is the data described by my hypothesis (model)?
- For example, how likely that observed peak in data just upward fluctuation of the background, i. e. no Higgs boson present?
- Simple example: assume counting experiment
 - b: expected number of background events (=model)
 - nobs: number of observed events

p Value

- How well is the data described by my hypothesis (model)?
- For example, how likely that observed peak in data just upward fluctuation of the background, i. e. no Higgs boson present?
- Simple example: assume counting experiment
 - b: expected number of background events (=model)
 - nobs: number of observed events
- "p value": probability of upward fluctuation as large as or larger than observed in data

 $p \equiv \mathsf{P}(n \ge n_{\mathrm{obs}}|b) = \int_{n_{\mathrm{obs}}}^{\infty} \mathrm{d}n \, \mathcal{P}(n|b)$

p value is not the probability of a hypothesis p quantifies level of (dis-)agreement between model and data: → judgement call whether to keep model or reject it

Karlsruhe Institute of Technology

Test Statistic

- Typically problems not as simple as a single measured quantity
 - Multiple channels/measurements, e.g. binned distribution
 - Prediction depends on several parameters, e.g. POI, nuisance parameters

16.6.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Test Statistic

- Typically problems not as simple as a single measured quantity
 - Multiple channels/measurements, e.g. binned distribution
 - Prediction depends on several parameters, e.g. POI, nuisance parameters
- Formally: use appropriate test statistic $t : \mathbb{R}^D \to \mathbb{R}$
 - In general any function that combines relevant information from an experiment, e.g. number of observed events per bin, into one single number reflecting the agreement between data and hypothesis \rightarrow Likelihood is example for test statistic

16.6.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Test Statistic

- Typically problems not as simple as a single measured quantity
 - Multiple channels/measurements, e.g. binned distribution
 - Prediction depends on several parameters, e.g. POI, nuisance parameters
- Formally: use appropriate test statistic $t : \mathbb{R}^D \to \mathbb{R}$
 - In general any function that combines relevant information from an experiment, e.g. number of observed events per bin, into one single number reflecting the agreement between data and hypothesis \rightarrow Likelihood is example for test statistic
- t can be used to compute p value for complex models

$$p = \int_{t_{obs}}^{\infty} \mathcal{P}(t) \, \mathrm{d}t$$

47/76 16.6.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Test Statistic

(toy data)

- Typically problems not as simple as a single measured quantity
 - Multiple channels/measurements, e.g. binned distribution
 - Prediction depends on several parameters, e.g. POI, nuisance parameters
- Formally: use appropriate test statistic $t : \mathbb{R}^D \to \mathbb{R}$
- *t* can be used to compute *p* value for complex models

$$p = \int_{t_{obs}}^{\infty} \mathcal{P}(t) \,\mathrm{d}t$$

• Requires pdf $\mathcal{P}(t)$ of the test statistic *t*: typically from simulation

KIT -ETP

48/76 16.6.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Test Statistic

(toy data)

- Typically problems not as simple as a single measured quantity
 - Multiple channels/measurements, e.g. binned distribution
 - Prediction depends on several parameters, e.g. POI, nuisance parameters
- Formally: use appropriate test statistic $t : \mathbb{R}^D \to \mathbb{R}$
- *t* can be used to compute *p* value for complex models

$$ho = \int_{t_{
m obs}}^{\infty} \mathcal{P}(t) \, \mathrm{d}t$$

• Requires pdf $\mathcal{P}(t)$ of the test statistic *t*: typically from simulation

Significance

- Often, p value converted into equivalent significance Z: upward fluctuation from 0 by Z of normal-distributed variable corresponding to same p value
 - Corresponds to Z standard deviations σ of the Gaussian distribution

 $Z = \Phi^{-1}(1 - p)$ Φ : cumulative (=quantile) function of normal distribution

- Convention to classify effects by significance:
 - 3σ: evidence for a signal (0.3% chance of background fluctuation)
 - 5σ: observation of a signal (0.00006% chance of background fluctuation)

Distinguishing Hypotheses

- Cannot determine whether a hypothesis is true (frequentist)
- But can define rules how to reject hypothesis in favour of an alternative hypothesis
- Can determine probability of wrong choice: how often wrong choice is made would the experiment be repeated very often

Distinguishing Hypotheses

- Classification problem: how to interpret outcome of an experiment?
- Want to distinguish between two alternative hypotheses, e.g.
 - *H*₀: there are only background events, e.g. no Higgs boson
 - H_1 : there is a signal, e.g. a Higgs boson, contribution to the data

Distinguishing Hypotheses

- Classification problem: how to interpret outcome of an experiment?
- Want to distinguish between two alternative hypotheses, e.g.
 - *H*₀: there are only background events, e.g. no Higgs boson
 - H_1 : there is a signal, e.g. a Higgs boson, contribution to the data
- Define test statistic *t*, e.g. *L*
- Construct pdf $\mathcal{P}(t|H_i)$ of t under H_0 and H_1
 - In reality often from simulation
- How compatible is t_{obs} with H_i ?
- \rightarrow Set a critical value t_c and reject H_0 in favour of H_1 if $t_{obs} < t_c$

H₀: there are only background events, e.g. no Higgs boson

• H_1 : there is a signal, e.g. a Higgs boson, contribution to the data

Classification problem: how to interpret outcome of an experiment?

Want to distinguish between two alternative hypotheses, e.g.

Types of errors

52/76

- I: reject H_0 although it is true
- II: accept H_0 although H_1 is true

Distinguishing Hypotheses

I:
$$P(t < t_c | H_0) = \int_{-\infty}^{t_c} dt \mathcal{P}(t | H_0) \equiv \alpha$$

II: $P(t > t_c | H_1) = \int_{t_c}^{\infty} dt \mathcal{P}(t | H_1) \equiv \beta$

 α : significance of test 1 - β : power of test

pđ

I: $P(t < t_c | H_0) = \int_{-\infty}^{t_c} dt \mathcal{P}(t | H_0) \equiv \alpha$

By choice of t_c (choice of α): association to one or the other hypothesis performed "at the confidence level α "

53/76 16.6.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Distinguishing Hypotheses

- Classification problem: how to interpret outcome of an experiment?
- Want to distinguish between two alternative hypotheses, e.g.
 - H_0 : there are only background events, e.g. no Higgs boson
 - H_1 : there is a signal, e.g. a Higgs boson, contribution to the data
- Types of errors
 - I: reject H_0 although it is true
 - II: accept H_0 although H_1 is true

Difference Between α and *p* Value?

- In one sense, no difference
 - Both are $\int_x^\infty dx' \mathcal{P}(x')$

But conceptually very different

- $\hfill \alpha$ is computed before one sees the data: predefined property of the test
- p depends on the data (property of the data) and is a random variable

Karlsruhe Institute of Technology

Neyman-Pearson Lemma

When performing a test between two hypotheses (models) H₀ and H₁, the likelihood ratio test, which rejects H₀ in favour of H₁ if

$$egin{aligned} \mathcal{Q} = rac{\mathcal{L}_{\mathcal{H}_1}}{\mathcal{L}_{\mathcal{H}_0}} > \mathcal{Q}_c \end{aligned} ext{ with } \mathsf{P}(\mathcal{Q} > \mathcal{Q}_c | \mathcal{H}_0) = lpha \end{aligned}$$

is the **most powerful test** at a significance level α (Neyman-Pearson Lemma)

The test statistic *Q* is called **likelihood ratio**

Karlsruhe Institute of Technology

Neyman-Pearson Lemma

When performing a test between two hypotheses (models) H₀ and H₁, the likelihood ratio test, which rejects H₀ in favour of H₁ if

$$egin{aligned} \mathcal{Q} = rac{\mathcal{L}_{\mathcal{H}_1}}{\mathcal{L}_{\mathcal{H}_0}} > \mathcal{Q}_c \end{aligned} \qquad ext{with } \mathsf{P}ig(\mathcal{Q} > \mathcal{Q}_c | \mathcal{H}_0ig) = lpha \end{aligned}$$

is the **most powerful test** at a significance level α (Neyman-Pearson Lemma)

- The test statistic Q is called likelihood ratio
- For a number of reasons, usually

$$q=-2\ln Q$$

Test Statistic at the LHC

- Used test statistic in particle-physics experiments evolved with time (LEP \rightarrow Tevatron \rightarrow LHC)
 - Different conditions: importance of systematic uncertainties, computational power
- Hypothesis test example
 - *H*₀: background-only hypothesis, e.g. SM without Higgs boson
 - H_1 : Higgs boson with fixed mass and signal strength μ (= signal w.r.t. prediction) present in data

¹G. Cowan "Asymptotic formulae for likelihood-based tests of new physics", Eur. Phys. J. C71:1554 (2011)

Test Statistic at the LHC

- Used test statistic in particle-physics experiments evolved with time (LEP \rightarrow Tevatron \rightarrow LHC)
 - Different conditions: importance of systematic uncertainties, computational power
- Hypothesis test example
 - H₀: background-only hypothesis, e.g. SM without Higgs boson
 - H_1 : Higgs boson with fixed mass and signal strength μ (= signal w.r.t. prediction) present in data
- At the LHC commonly: profile likelihood ratio test statistic

$$q_{\mu} = -2 \ln rac{\mathcal{L}(\textit{n}_{\mathsf{obs}}; \mu, \hat{ heta}(\mu))}{\mathcal{L}(\textit{n}_{\mathsf{obs}}; \hat{\mu}, \hat{ heta})}$$

- Nuisance parameters are profiled in nominator
- Global maximum of ${\cal L}$ under $(\mu, heta)$ as denominator with 0 $\leq \hat{\mu} \leq \mu$
- Allows usage of certain approximations when computing $\mathcal{P}(q_{\mu}|H_i)$ ("asymptotic formulae" based on Wilks and Wald theorem¹)

¹G. Cowan "Asymptotic formulae for likelihood-based tests of new physics", Eur. Phys. J. C71:1554 (2011)

- Assume measurement with a given sensitivity: no signal observed
- How much signal can "hide" in the background fluctuations (+uncertainty)?
- How large could a signal be at most?

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu)=-2\lnrac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{H_1}(\mu)}{\mathcal{L}_{H_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$\alpha = \int_{q_{\rm obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-\alpha})|H_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|\mathcal{H}_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|H_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|\mathcal{H}_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|\mathcal{H}_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|H_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|\mathcal{H}_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

- No signal observed: how large could a signal be at most?
- Formally: test statistic q, depending on signal-strength modifier μ

$$q(\mu) = -2 \ln rac{\mathcal{L}_{\mathcal{H}_1}(\mu)}{\mathcal{L}_{\mathcal{H}_0}}$$

What is largest signal $\mu \equiv \mu_{1-\alpha}$ for which H_1 would be rejected at significance level α ?

$$lpha = \int_{q_{
m obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{1-lpha})|H_1) \equiv \mathrm{CL}_{\mathrm{s+b}}$$

i.e. for $\mu_{1-\alpha}$: $q_{obs} = q_c$

 $\mu_{1-\alpha}$ is called **upper limit** on μ at confidence level C.L. = 1 - α In particle physics usually 95% C.L. limit

"Maximal signal that we would still reject"

- "Maximal signal that we would still reject"
- 95 % C.L. upper limit on μ: largest value of μ that would still be rejected in a test with significance 5% given the data
 - NB: limit is a **function of the data** (depends on *q*_{obs})!

•
$$\mu$$
 for which CL_{s+b} = 0.05: $\left| 0.05 = \int_{q_{obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{95})|H_1) \right|$

- "Maximal signal that we would still reject"
- 95 % C.L. upper limit on μ: largest value of μ that would still be rejected in a test with significance 5% given the data
 - NB: limit is a function of the data (depends on q_{obs})!

•
$$\mu$$
 for which CL_{s+b} = 0.05: $\left| 0.05 = \int_{q_{obs}}^{\infty} \mathrm{d}q \, \mathcal{P}(q(\mu_{95})|H_1) \right|$

- Upper limit covers true value ($\mu_{\rm true} < \mu_{\rm 95}$) with probability C.L. = 95 %
 - If the experiment is repeated many times, μ₉₅ would be larger than μ_{true} in 95% of the cases

- "Maximal signal that we would still reject"
- 95 % C.L. upper limit on μ: largest value of μ that would still be rejected in a test with significance 5% given the data
 - NB: limit is a function of the data (depends on q_{obs})!

•
$$\mu$$
 for which $\mathsf{CL}_{\mathsf{s}+\mathsf{b}}=0.05$: $\left|0.05=\int_{q_{\mathsf{obs}}}^{\infty}\mathsf{d}q\,\mathcal{P}(q(\mu_{95})|H_1)\right|$

- Upper limit covers true value ($\mu_{\rm true} < \mu_{\rm 95}$) with probability C.L. = 95 %
 - If the experiment is repeated many times, μ₉₅ would be larger than μ_{true} in 95 % of the cases
- Still 5% chance of wrong exclusion, i.e. that $\mu_{true} > \mu_{95}$

Expected Limit

Estimate what observed limit would look like in case of no signal

Expected Limit

- Estimate what observed limit would look like in case of no signal
- Obtained e.g. from toy dataset
 - Sample toy data for q under background-only hypothesis from $\mathcal{P}(q|H_0)$
 - Treat each as observation and compute μ_{95} limit
 - Obtain quantiles from distribution of all µ95

Expected Limit

Estimate what observed limit would look like in case of no signal

- Obtained e.g. from toy dataset
 - Sample toy data for q under background-only hypothesis from $\mathcal{P}(q|H_0)$
 - Treat each as observation and compute μ_{95} limit
 - Obtain quantiles from distribution of all µ95

Expected limit = median of µ₉₅ distribution

KIT -ETP

Expected Limit

Estimate what observed limit would look like in case of no signal

- Obtained e.g. from toy dataset
 - Sample toy data for q under background-only hypothesis from $\mathcal{P}(q|H_0)$
 - \blacksquare Treat each as observation and compute $\mu_{\rm 95}$ limit
 - Obtain quantiles from distribution of all µ95

• Expected limit = median of μ_{95} distribution

- 16 and 84% quantiles: 68% confidence interval
- 2.5 and 97.5% quantiles: 95% confidence interval

- Tested hypotheses
 - H₀: no Higgs boson
 - H₁: SM Higgs boson
- Test statistic *q* evaluated for SM Higgs boson of different mass (µ = 1 in each case)
- Excluding a SM Higgs boson at 95% CL with masses
 - $m_H > 118 \text{ GeV}$ expected (from toy data under H_0)
 - *m_H* > 127 GeV observed (from real data)

- Tested hypotheses
 - H₀: no Higgs boson
 - H₁: SM Higgs boson
- Test statistic *q* evaluated for SM Higgs boson of different mass (µ = 1 in each case)
- Observed exclusion weaker than expected (smaller mass range)
- Around m_H = 125 GeV, q_{obs} differs significantly from expectation: indication that H₀ is wrong!

- Tested hypotheses
 - H₀: no Higgs boson
 - H₁: a Higgs boson
- Test statistic evaluated for a Higgs boson of different mass and variable signal strength
 - Signal strength μ can vary in each case (not SM any more!)
- Exclusion limits on μ for different masses at 95 % C.L.

- Tested hypotheses
 - *H*₀: no Higgs boson
 - H₁: a Higgs boson
- Test statistic evaluated for a Higgs boson of different mass and variable signal strength
 - Signal strength μ can vary in each case (not SM any more!)
- Striking: observed limit weaker than expected around $m_H = 125 \,\text{GeV}$
- Difference (locally) beyond 2*σ*: indication that H₀ is wrong!

- Suppose data fluctuates low, sizably below background expectation
- CL_{s+b} : artificially strong limit on signal, i. e. $\mu_{1-\alpha}$ is small

- Suppose data fluctuates low, sizably below background expectation
- CL_{s+b} : artificially strong limit on signal, i. e. $\mu_{1-\alpha}$ is small

- In extreme case, $\mu_{1-\alpha} \rightarrow 0$ i. e. exclude signal entirely
- Not desirable: just downward fluctuation of the data!
- Often problem: searches in extreme phase-space regions with few background events

- Suppose data fluctuates low, sizably below background expectation
- CL_{s+b} : artificially strong limit on signal, i. e. $\mu_{1-\alpha}$ is small

CL_{s} method

Compute both

$$egin{aligned} \mathsf{CL}_{\mathsf{s}+\mathsf{b}} &= \int_{q_{\mathrm{obs}}}^{\infty} \mathsf{d}q \, \mathcal{P}(q(\mu)|\mathcal{H}_1) \ &\\ \mathsf{CL}_{\mathsf{b}} &\equiv \int_{q_{\mathrm{obs}}}^{\infty} \mathsf{d}q \, \mathcal{P}(q(\mu)|\mathcal{H}_0) \end{aligned}$$

 $\hfill \hfill \hfill$

$$\mathsf{CL}_{\mathsf{S}} \equiv \frac{\mathsf{CL}_{\mathsf{S}+\mathsf{b}}}{\mathsf{CL}_{\mathsf{b}}} = \alpha$$

normalise CL_{s+b} to "background-only p-value"

- Suppose data fluctuates low, sizably below background expectation
- **CL**_{s+b}: artificially strong limit on signal, i. e. $\mu_{1-\alpha}$ is small

CL_{s} method

Compute both

 \blacksquare Define limit as that μ for which

$$\mathsf{CL}_{\mathsf{s}} \equiv \frac{\mathsf{CL}_{\mathsf{s}+\mathsf{b}}}{\mathsf{CL}_{\mathsf{b}}} = \alpha$$

- \blacksquare In case of extreme under fluctuation: $CL_s \rightarrow 1$
- H₁ not excluded by mistake but also weaker limit in case of no signal

- Suppose data fluctuates low, sizably below background expectation
- **CL**_{s+b}: artificially strong limit on signal, i. e. $\mu_{1-\alpha}$ is small

CL_{s} method

Compute both

 \blacksquare Define limit as that μ for which

$$\boxed{\mathsf{CL}_{\mathsf{s}} \equiv \frac{\mathsf{CL}_{\mathsf{s}+\mathsf{b}}}{\mathsf{CL}_{\mathsf{b}}} = \alpha}$$

CL_s protects from fluctuations in the data at cost of lower sensitivity (procedure used in LHC (Higgs boson) searches)

Et Voilà

Summary

Statistical analysis crucial tool in particle physics

- Does not tell probability of a certain model (at least not without further assumptions) but allows
 - quantifying the compatibility of the data with a tested model, e.g. via p value or significance
 - determining the parameter values of a given model that describe best the data (estimators), e.g. via maximum-likelihood fit
- In practice often comparison of two alternative hypotheses H₀ and H₁, e.g. background-only and signal+background
 - Rules when to reject H_0 in favour of H_1 : allow quantifying type-I/II errors
 - Test statistic combines information of multi-channel data into one single number for application in hypothesis testing
 - Likelihood ratio is most powerful test statistic
- Exclusion limits provide information on model parameter in case no signal found

Literature

- R. J. Barlow, "Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences", The Manchester Physics Series highly recommended
- G. Cowan, "Statistical Data Analysis", Oxford Science Publications
- Review "Statistics", R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update very good review
- The ATLAS and CMS Collaborations, "Procedure for the LHC Higgs boson search combination in Summer 2011", CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11 expert document