

Teilchenphysik II - W, Z, Higgs am Collider

Lecture 12: Higgs Boson Properties

PD Dr. K. Rabbertz, Dr. Nils Faltermann | 14. Juli 2023

www.kit.edu

Recap

- Long-lasting search for the Higgs boson at LEP, Tevatron and LHC
- Last missing particle predicted by the Standard Model
 - W and Z boson @ SppS in 1983
 - Top quark @ Tevatron in 1995
 - Tau neutrino @ DONUT in 2000
- Finally observed by the ATLAS and CMS collaborations at the LHC in 2012
 - Main discovery channels: $extsf{H} o \gamma\gamma$, $extsf{H} o extsf{ZZ}(^*) o extsf{4}\ell$ (mass peaks)
 - Other channels contributing: $H \rightarrow WW(^*) \rightarrow l\nu l\nu$, $H \rightarrow \tau \tau$, $H \rightarrow b\overline{b}$

Higgs-Boson Mass *m*_H: Run 1 Combination

• Measurement precision: $2 \cdot 10^{-3} \rightarrow$ one of **most precisely known** SM parameters, still statistics limited

- Breakdown of systematic uncertainties: \pm 0.11 (scale) \pm 0.02 (others) \pm 0.01 (theory) GeV
 - \rightarrow energy scale uncertainties dominant

Higgs-Boson Mass *m*_H: Uncertainties

Higgs-Boson Mass *m*_H: Combination

Combination at level of likelihoods: minimise negative logartihm of profile-likelihood ratio

$$\Lambda(m_{\rm H}) = \frac{\mathcal{L}(m_{\rm H}, \hat{\hat{\theta}}(m_{\rm H}))}{\mathcal{L}(\hat{m}_{\rm H}, \hat{\theta})}$$

- $\hat{ heta}(m_{
 m H})$: values that maximise ${\cal L}$ for given $m_{
 m H}$
- $\hat{m}_{\mathsf{H}}, \hat{ heta}$: values that maximise $\mathcal L$ globally
- A function of mass-dependent H $\to \gamma\gamma$ and H \to ZZ $\to 4\ell$ signal strengths

Higgs-Boson Mass *m*_H: Status Summer 2023

- m_H = 125.38 ± 0.11 (stat) ± 0.08 (syst) GeV
- Precision: < 0.1 % level</p>

CMS Run 1: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) - Total Stat. Only 2016: 35.9 fb⁻¹ (13 TeV) Total (Stat. Only) Phys Run 1 H→yy 124.70 ± 0.34 (± 0.31) GeV ett. B 805 (2020) Run 1 H \rightarrow ZZ \rightarrow 4I 125.59 ± 0.46 (± 0.42) GeV 125.07 ± 0.28 (± 0.26) GeV Run 1 Combined 2016 H→γγ 125.78 ± 0.26 (± 0.18) GeV 135425 125.26 ± 0.21 (± 0.19) GeV $2016 H \rightarrow ZZ \rightarrow 4I$ 125.46 ± 0.16 (± 0.13) GeV 2016 Combined Run 1 + 2016 125.38 ± 0.14 (± 0.11) GeV 122 123 124 125 126 127 128 129 m_H (GeV)

Higgs-Boson Width Г_H

- \blacksquare Reminder: natural total decay width $\Gamma_{\rm H}$ of Higgs boson in SM only 4 MeV
 - Typical mass resolution in H $\rightarrow \gamma \gamma / 4\ell$: 1–2.5 % (1–3 GeV)
 - Measured Higgs line shape entirely resolution dominated

Karlsruhe Institute of Technology

Higgs-Boson Width Г_H

- Reminder: natural total decay width $\Gamma_{\rm H}$ of Higgs boson in SM only 4 MeV
 - Typical mass resolution in H $\rightarrow \gamma \gamma / 4\ell$:
 - 1-2.5% (1-3GeV)
 - Measured Higgs line shape entirely resolution dominated
- Ideas for Higgs-boson width measurement
 - Direct (model-independent): fit of Higgs line shape
 - Indirect (model-dependent): off-shell effects

Higgs-Boson Width Γ_{H} : Direct Measurement

Invariant mass distribution of unstable particles with decay width Γ: Breit–Wigner distribution

$$rac{{
m d}\sigma}{{
m d}m^2} \propto rac{1}{(q^2-m^2)^2+m^2\Gamma^2} \quad \stackrel{\Gamma
ightarrow 0}{\longrightarrow} \quad rac{\pi}{m\Gamma}\delta(q^2-m^2)$$

q: momentum transfer

- $\Gamma \rightarrow 0$: narrow-width approximation
 - \rightarrow production and decay factorize

Higgs-Boson Width **F**_H: Direct Measurement

Invariant mass distribution of unstable particles with decay width Γ: Breit–Wigner distribution

$$rac{{
m d}\sigma}{{
m d}m^2} \propto rac{1}{(q^2-m^2)^2+m^2\Gamma^2} \quad \stackrel{\Gamma
ightarrow 0}{\longrightarrow} \quad rac{\pi}{m\Gamma}\delta(q^2-m^2)$$

- q: momentum transfer
- $\Gamma \rightarrow 0$: narrow-width approximation
 - \rightarrow production and decay factorize
- Experimentally accessible: convolution of decay width and detector resolution
 - Decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow 4\ell$
 - \blacksquare Likelihood fit to signal model: consistent with $\Gamma_H=0$
 - Upper 95 % CL limit (Run 1):
 - $\Gamma_{\text{H}} < \text{1.7 GeV}$ (2.3 GeV expected)

Higgs-Boson Width **F**_H: Indirect Measurement

- Idea: ratio of on-shell and off-shell Higgs-boson production sensitive to Higgs-boson width
- ${\color{black}\bullet} \hspace{0.1cm} H {\color{black}\to} \mathsf{ZZ} {\color{black}\to} \mathsf{4\ell} :$
 - On-shell: 105.6 < *m*_{4ℓ} < 140.6 GeV
 - Off-shell: 220 < *m*_{4ℓ} < 1600 GeV
- $H \rightarrow WW \rightarrow \ell \nu \ell \nu$:
 - On-shell: *m*_{ℓℓ} < 70 GeV</p>
 - Off-shell: *m*_{ℓℓ} > 70 GeV
- \blacksquare Combined 95 % CL limit: $\Gamma_{\text{H}} <$ 13 MeV (26 MeV expected)

Higgs-Boson Width Г_H: Status Summer 2023

- Direct measurement: Γ_H < 1.10 GeV (95 % C.L.)</p>
- From on-shell/off-shell ratio: $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$ MeV, first evidence (3.6 σ) for off-shell contribution
 - Assuming same couplings at high ZZ mass, no BSM particles, ...

Higgs-Boson Spin and Parity

- SM prediction for the Higgs boson are $J^P = 0^+$
- Can be measured from angular analysis of decay products in H $\rightarrow \gamma\gamma$, H \rightarrow ZZ $\rightarrow 4\ell$
 - Probes CP in HVV couplings
 - First measurements in Yukawa sector from ttH with H $ightarrow \gamma\gamma$

Higgs-Boson Spin and Parity (H \rightarrow ZZ \rightarrow 4 ℓ)

Kinematics fully determined by

- 2 masses m_{Z1}, m_{Z2}
- Decay planes of Z_{1,2}:

5 angles
$$ert ec{\Omega} = (heta^*, \phi_1, \phi, heta_1, heta_2)$$

- Polar angle of Z bosons (θ*)
- Azimuthal angle of Z₁ plane (φ₁)
- Azimuthal angle of Z₂ plane relative to Z₁ plane (φ)
- Polar angles of leptons relative to Z_{1,2} (θ_{1,2})

Higgs-Boson Spin and Parity (H \rightarrow ZZ \rightarrow 4 ℓ)

 Prediction of angular distributions for decay of spin 0/1/2 particles to ZZ: hypothesis test:

Karlsruhe Institute of

Higgs-Boson Spin and Parity (H \rightarrow ZZ \rightarrow 4 ℓ)

- Measurements favour $J^{P} = 0^{+}$ hypothesis (i. e. SM) with high confidence level
- Admixtures of other states still well possible

Karlsruhe Institute of Technology

Matrix-Element Method (MEM)

- Entire parton-level kinematics of a process contained in squared scattering amplitude
 - \rightarrow "matrix element" (ME)
- Matrix-element method (MEM): construct event-based likelihood discriminant that fully exploits all information from matrix element
 - Likelihood function for a given process contains hard-scattering ME for that process (see next slides)
 - For each event: ratio of likelihood functions for **observed set of kinematic variables** \vec{x} under signal hypothesis *S* and background hypothesis *B_i*

$$R(\vec{x}) = \frac{L(\vec{x}|S)}{L(\vec{x}|S) + \sum_i c_i L(\vec{x}|B_i)}$$

Matrix Element and Phase Space

- Main ingredient of event-based likelihood: parton-level cross sections for signal and (main) backgrounds
- 1. Consider cross section for all processes $pp \rightarrow y$ under hypothesis *H* with parton-level kinematics \vec{y} that could have led to the reconstruction-level final state *x* with kinematics \vec{x}

$$\sigma_{H}(\mathsf{pp} \to y) = \sum_{jk}^{\mathsf{partons}} \int \frac{\mathrm{d}z_{j} \mathrm{d}z_{k}}{z_{j} z_{k} s} \underbrace{f_{j}(z_{j}) f_{k}(z_{k})}_{\mathsf{PDFs}} \underbrace{|\mathcal{M}_{H}(jk \to y)|^{2}}_{\mathsf{matrix element}} \underbrace{(2\pi)^{4} \mathrm{d}\Phi_{H}}_{\mathsf{phase space}}$$

- Approach uses **QCD factorisation** theorem:
 - PDFs fj, fk
 - Hard-scattering matrix element M_H
 - Lorentz-invariant phase-space volume element $d\Phi_H$

Matrix Element and Phase Space

- Main ingredient of event-based likelihood: parton-level cross sections for signal and (main) backgrounds
- 1. Consider cross section for all processes $pp \rightarrow y$ under hypothesis *H* with parton-level kinematics \vec{y} that could have led to the reconstruction-level final state *x* with kinematics \vec{x}

$$\sigma_{H}(\mathsf{pp} \to y) = \sum_{jk}^{\mathsf{partons}} \int \frac{\mathrm{d}z_{j} \mathrm{d}z_{k}}{z_{j} z_{k} s} \underbrace{f_{j}(z_{j}) f_{k}(z_{k})}_{\mathsf{PDFs}} \underbrace{|\mathcal{M}_{H}(jk \to y)|^{2}}_{\mathsf{matrix element}} \underbrace{(2\pi)^{4} \mathrm{d}\Phi_{H}}_{\mathsf{phase space}}$$

- Approach uses **QCD factorisation** theorem:
 - PDFs fj, fk
 - Hard-scattering matrix element \mathcal{M}_H
 - Lorentz-invariant phase-space volume element $d\Phi_H$
- Current implementations: LO ME, first attempts at NLO

Matrix Element and Phase Space

- Main ingredient of event-based likelihood: parton-level cross sections for signal and (main) backgrounds
- 1. Consider cross section for all processes $pp \rightarrow y$ under hypothesis *H* with parton-level kinematics \vec{y} that could have led to the reconstruction-level final state *x* with kinematics \vec{x}

$$\sigma_{H}(\mathsf{pp} \to y) = \sum_{jk}^{\mathsf{partons}} \int \frac{\mathrm{d}z_{j} \mathrm{d}z_{k}}{z_{j} z_{k} s} \underbrace{f_{j}(z_{j}) f_{k}(z_{k})}_{\mathsf{PDFs}} \underbrace{|\mathcal{M}_{H}(jk \to y)|^{2}}_{\mathsf{matrix element}} \underbrace{(2\pi)^{4} \mathrm{d}\Phi_{H}}_{\mathsf{phase space}}$$

- Approach uses QCD factorisation theorem:
 - PDFs fj, fk
 - Hard-scattering matrix element \mathcal{M}_H
 - Lorentz-invariant phase-space volume element $d\Phi_H$
- Current implementations: LO ME, first attempts at NLO
- Integration over all unobserved variables in the event: parton momentum fractions, phase-space element
 - \rightarrow often numerically expensive (limiting factor)

Transfer Functions

- 2. Transfer functions $W(\vec{x}|\vec{y})$: translation from parton-level final-state to reconstruction level
 - Account for limited detector resolution and combinatorics in matching parton-level and reconstruction-level objects (esp. quarks/gluons → jets)

$$\sigma_{H}(\mathsf{pp} o x) = \int \mathsf{d}ec{y} \; \sigma_{H}(\mathsf{pp} o y) \boxed{W(ec{x}|ec{y})}$$

Transfer functions determined from MC simulation

Transfer Functions

- 2. Transfer functions $W(\vec{x}|\vec{y})$: translation from parton-level final-state to reconstruction level
 - Account for limited detector resolution and combinatorics in matching parton-level and reconstruction-level objects (esp. quarks/gluons → jets)

$$\sigma_{H}(\mathsf{pp} o x) = \int \mathsf{d}ec{y} \; \sigma_{H}(\mathsf{pp} o y) \boxed{W(ec{x}|ec{y})}$$

- Transfer functions determined from MC simulation
- 3. Normalisation to (fiducial) cross section σ_H^{α}

$$\sigma_{H}^{lpha} = \int dec{x} dec{y} \ \sigma_{H}(\mathsf{pp} o y) \left[W(ec{x}|ec{y}) \right] lpha(ec{x})$$

with acceptance $\alpha(\vec{x}) \in [0, 1]$ for single event with kinematics \vec{x}

Transfer Functions

- 2. Transfer functions $W(\vec{x}|\vec{y})$: translation from parton-level final-state to reconstruction level
 - Account for limited detector resolution and combinatorics in matching parton-level and reconstruction-level objects (esp. quarks/gluons → jets)

$$\sigma_{H}(\mathsf{pp} o x) = \int \mathsf{d}ec{y} \; \sigma_{H}(\mathsf{pp} o y) igwedge W(ec{x}|ec{y})$$

- Transfer functions determined from MC simulation
- 3. Normalisation to (fiducial) cross section σ_H^{α}

$$\sigma_{H}^{lpha} = \int dec{x} dec{y} \ \sigma_{H}(\mathsf{pp} o y) \left[W(ec{x}|ec{y}) \right] lpha(ec{x})$$

with acceptance $\alpha(\vec{x}) \in [0, 1]$ for single event with kinematics \vec{x}

4. Likelihood of event under hypothesis $H = S, B_i$

$$L(\vec{x}|H) = \frac{\sigma_H(\mathsf{pp} \to x)}{\sigma_H^{\alpha}}$$

MEM Application: MELA

- Application of MEM to angular analysis of $H \rightarrow ZZ \rightarrow 4I$
- MELA: Matrix Element Likelihood Analysis → already applied for CMS Higgs boson discovery analysis
- Purely leptonic final state: no phase space intergration and transfer functions required

MELA discriminant

$$K_{D} = \frac{L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{S})}{L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{S}) + L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{B})}$$

MEM Application: MELA

- Application of MEM to angular analysis of $H \rightarrow ZZ \rightarrow 4I$
- MELA: Matrix Element Likelihood Analysis → already applied for CMS Higgs boson discovery analysis
- Purely leptonic final state: no phase space intergration and transfer functions required

MELA discriminant

$$K_{D} = \frac{L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{S})}{L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{S}) + L(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}; m_{4l}|H_{B})}$$

What Should We Do With the Higgs Boson?

The Standard Model Higgs Boson:

Higgs Boson: Status Summer 2023

Higgs-boson signal firmly established

- Main discovery channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ(^*) \rightarrow 4I$ (mass peaks)
- Other channels contributing: $H \rightarrow WW(^*) \rightarrow l\nu l\nu$, $H \rightarrow \tau \tau$, $H \rightarrow b\overline{b}$
- Full dataset of LHC Run 1 (2010–2012) analysed
- Many results from LHC Run 2 (2015–2018) published, still a few more to come
- LHC Run 3 (2022–2025) currently ongoing
- Observation (5 σ) or evidence (3 σ) in many individual decay channels, often combining several production modes

Higgs Boson: Status Summer 2023

Higgs-boson signal firmly established

- Main discovery channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ(^*) \rightarrow 4I$ (mass peaks)
- Other channels contributing: $H \rightarrow WW(^*) \rightarrow l\nu l\nu$, $H \rightarrow \tau \tau$, $H \rightarrow b\overline{b}$
- Full dataset of LHC Run 1 (2010–2012) analysed
- Many results from LHC Run 2 (2015–2018) published, still a few more to come
- LHC Run 3 (2022–2025) currently ongoing
- Observation (5 σ) or evidence (3 σ) in many individual decay channels, often combining several production modes
- In the following: recent Higgs-boson production results and current topics

Production and Decay Modes Studied

Direct Coupling Measurements

- Couplings to bosons observed with 5 σ significance during Run 1
- Run 2: direct measurement of Higgs-fermion couplings
- Observation of couplings to 3rd-generation fermions

Direct Coupling Measurements

- Couplings to bosons observed with 5 σ significance during Run 1
- Run 2: direct measurement of Higgs-fermion couplings
- First sensitivity to 2nd-generation fermions

Probing Yukawa Couplings

- Entirely new sector of the SM:
 - Higgs boson is the only fundamental boson of the SM to exhibit Yukawa couplings
- Fermion interactions illuminate nature of Higgs sector independently from gauge bosons
- Measuring Higgs-fermion couplings probes the mechanism that generates the masses of the fundamental fermions, including the electron
 - \rightarrow Responsible for the stability of atoms!

Example: Bottom-Higgs Coupling

- Measured in $H \rightarrow b\overline{b}$ decays
- H \rightarrow bb dominant decay channel but huge QCD background at the LHC
- $\rightarrow\,$ Most sensitive channel: associated W/Z production

Background reduced by requiring high-p_T V boson

Example: Bottom-Higgs Coupling

- Measured in $H \rightarrow b\overline{b}$ decays
- H \rightarrow bb dominant decay channel but huge QCD background at the LHC
- $\rightarrow\,$ Most sensitive channel: associated W/Z production

- Background reduced by requiring high-p_T V boson
- Signal extraction using MVA-based observable:
 - 4.4 σ (4.2 σ) observed (expected) significance

Further Channels Sensitive to ${\rm H} \rightarrow {\rm b}\overline{\rm b}$

Common approach: Higgs boson recoiling against other objects

Example: Top-Higgs Coupling

Important property of the Higgs boson

- By far the largest Yukawa coupling → Strong impact on SM and BSM physics
- Indirect constraints from gluon-fusion production and H $\rightarrow \gamma\gamma$ decays (\rightarrow later)
 - Model dependent: assuming only SM contributions in loops

$t\bar{t}$ associated Higgs boson production ($t\bar{t}H$): best direct probe of top-Higgs coupling
Karlsruhe Institute of Techr

ttH Measurements at the LHC

Small production cross-section: 0.5 pb at 13 TeV/13.6 TeV

Multitude of possible final states with many objects

Different challenges \rightarrow dedicated analysis techniques per channel

Analyses with 2016 data

Analyses with 2016 data

Analyses with 2016 data

Observed

5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV)

CMS

Combination of tTH Searches

- Analyses with 2016 data
 - + Run 1 bb, multi-lepton, $\gamma\gamma$ analyses

- Experimental uncertainties largely uncorrelated between Run 1 and 2
- Signal and some background theory uncertainties correlated

Observed

5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV)

CMS

Combination of tTH Searches

Analyses with 2016 data

Signal and

• + Run 1 bb, multi-lepton, $\gamma\gamma$ analyses

5.2 σ (4.2 σ) observed (expected) significance Observation of ttH production process

Example: tt H with H \rightarrow bb

- Among the most sensitive channels
- Large branching ratio of 58 % \rightarrow large rate ($\sigma \cdot \mathcal{B} \approx$ 295 fb)

Example: t\bar{t}H with H \rightarrow b \overline{b}

- Among the most sensitive channels
- Large branching ratio of 58 % \rightarrow large rate ($\sigma \cdot \mathcal{B} \approx$ 295 fb)

But challenging final state:

- Large (irreducible) background due to $t\bar{t} + b\bar{b}$ with large uncertainties
- Many jets: no unambiguous event reconstruction

Example: t\bar{t}H with H \rightarrow b \overline{b}

- Among the most sensitive channels
- Large branching ratio of 58 % \rightarrow large rate ($\sigma \cdot B \approx 295$ fb).

But challenging final state:

- Large (irreducible) background due to $t\bar{t} + b\bar{b}$ with large uncertainties
- Many jets: no unambiguous event reconstruction

Example: t\bar{t}H with H \rightarrow b \overline{b}

- Prime example of machine learning in LHC analysis
 - \blacksquare Discriminating observable \rightarrow separate signal from background
 - \blacksquare Categorisation \rightarrow background control regions to constrain uncertainties
- Many other applications:
 - Object identification
 - Jet-flavour tagging
 - B-jet energy regression
 - Event reconstruction

Much progress since first ttH analysis

e.g. binary-classification BDT \longrightarrow multi-classification Neural Network

Active development testing more advanced concepts

- \blacksquare Various input variables \rightarrow single discriminating observable
 - Kinematics of jets and leptons, b-tagging information, event topology...
 - Additional information from correlations

MVA observable

- \blacksquare Various input variables \rightarrow single discriminating observable
 - Kinematics of jets and leptons, b-tagging information, event topology...
 - Additional information from correlations

Example: Artificial Neural Network (feed forward fully-connected network)

 \blacksquare Various input variables \rightarrow single discriminating observable

Kinematics of jets and leptons, b-tagging information, event topology...

Output values

Typically *supervised learning* with simulated data to find optimal values for w_i , b

- \blacksquare Various input variables \rightarrow single discriminating observable
 - Kinematics of jets and leptons, b-tagging information, event topology...
 - Additional information from correlations

Events preselected by lepton and jet multiplicity

signal region

background control regions

Artificial Neural Network (ANN) for multi-classification:

Several output values: how compatible is event with certain process?

Events preselected by lepton and jet multiplicity

Artificial Neural Network (ANN) for multi-classification:

Several output values: how compatible is event with certain process?

Events preselected by lepton and jet multiplicity

Artificial Neural Network (ANN) for multi-classification:

Final discriminant: ANN output in chosen process category

Karlsruhe Institute of Technology

Application in tt Single-Lepton Channel

Events preselected by lepton and jet multiplicity

Artificial Neural Network (ANN) for multi-classification:

Final discriminant: ANN output in chosen process category

Events preselected by lepton and jet multiplicity

Artificial Neural Network (ANN) for multi-classification:

Final discriminant: ANN output in chosen process category

Karlsruhe Institute of Technology

Signal-Strength Modifier

- Simplest measure of SM compatibility with product $\sigma \cdot \mathcal{B}$: signal-strength modifier μ
- Narrow-width approximation: production and decay factorise (good assumption for SM Higgs boson: total width Γ_H = 4.1 MeV)

$$\mu(i \to \mathsf{H} \to f) = \frac{\sigma(i \to \mathsf{H})}{\sigma_{\mathsf{SM}}(i \to \mathsf{H})} \cdot \frac{\mathcal{B}(\mathsf{H} \to f)}{\mathcal{B}_{\mathsf{SM}}(\mathsf{H} \to f)} \equiv \mu_i \cdot \mu^f$$

Karlsruhe Institute of Technology

Signal-Strength Modifier

- Simplest measure of SM compatibility with product $\sigma \cdot \mathcal{B}$: signal-strength modifier μ
- Narrow-width approximation: production and decay factorise (good assumption for SM Higgs boson: total width Γ_H = 4.1 MeV)

$$\mu(i \to \mathsf{H} \to f) = \frac{\sigma(i \to \mathsf{H})}{\sigma_{\mathsf{SM}}(i \to \mathsf{H})} \cdot \frac{\mathcal{B}(\mathsf{H} \to f)}{\mathcal{B}_{\mathsf{SM}}(\mathsf{H} \to f)} \equiv \mu_i \cdot \mu^f$$

• Reminder: branching fraction = fraction of total width, i. e. $\mathcal{B}(H \to f) \equiv \mathcal{B}^{f} \equiv \Gamma^{f} / \Gamma_{H}$

Independent Production × Decay Results

- Independent products of cross sections and branching fractions
- Most sensitive combinations of production mode and decay channel:
 - gg fusion (ggF): H $\rightarrow \gamma\gamma$, H \rightarrow ZZ, H \rightarrow WW
 - Vector boson fusion (VBF):
 - ${\rm H} \rightarrow \gamma \gamma, {\rm H} \rightarrow {\rm WW}, {\rm H} \rightarrow \tau \tau$

Combined Signal Strengths

- Consistency check with SM in leading-order framework [(Handbook of LHC Higgs Cross Sections: 3. Higgs Properties)]
 - Assumption 1: **single** Higgs boson with **narrow width**
 - Assumption 2: deviations from SM only affect production rates and branching fractions, but not kinematic distributions

- Consistency check with SM in leading-order framework [(Handbook of LHC Higgs Cross Sections: 3. Higgs Properties)]
 - Assumption 1: **single** Higgs boson with **narrow width**
 - Assumption 2: deviations from SM only affect production rates and branching fractions, but not kinematic distributions
- Coupling modifiers κ for Higgs-boson coupling vertex to SM particles

$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}}$$
 $\kappa_f^2 = \frac{\Gamma^f}{\Gamma_{SM}^f}$

• $\kappa_{i,f} = 1$: coupling as predicted by SM

- Consistency check with SM in leading-order framework [(Handbook of LHC Higgs Cross Sections: 3. Higgs Properties)]
 - Assumption 1: single Higgs boson with narrow width
 - Assumption 2: deviations from SM only affect production rates and branching fractions, but not kinematic distributions
- Coupling modifiers κ for Higgs-boson coupling vertex to SM particles

$$\boxed{\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{\text{SM}}} \qquad \kappa_f^2 = \frac{\Gamma^f}{\Gamma_{\text{SM}}^f}}$$

- $\kappa_{i,f} = 1$: coupling as predicted by SM
- Combine all available production and decay channels
 - Each channel depends on one or more coupling modifiers
 - Processes with same final state interfere

$$\sigma_i \cdot \mathcal{B}^f = \frac{\sigma_i(\kappa_i) \cdot \Gamma^f(\kappa^f)}{\Gamma_{\mathsf{H}}}$$

Kappa Framework: Production

			Effective	Besolved
	-	T . 0	Ellective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(gg{\rm F})$	\checkmark	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	— n	umerically insig	nificant	$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	—	—		κ_W^2
$\sigma(qq/qg \to ZH)$	—	—		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27\cdot\kappa_Z^2 + 0.37\cdot\kappa_t^2 - 1.64\cdot\kappa_Z\kappa_t$
$\sigma(ttH)$		—		κ_t^2
$\sigma(gb \to tHW)$	—	t–W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \to tHq)$		t–W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	—		κ_b^2
	q 🔶	ŋ} q	q 🔪	_ ⊢ g 7000000 ← t,Ē
9 '000000 Kt/b	W	Z Скwz	Ки	к _{t/b} н
g 000000	q 🛏		q W/2	₩/Z 9 7000000 → t,b

Kappa Framework: Decay

			Effective	Resolved
Partial decay width	Loops	Interference	scaling factor	scaling factor
Γ^{ZZ}	—	—		κ_Z^2
Γ^{WW}	—	—		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_γ^2	$1.59\cdot\kappa_W^2 + 0.07\cdot\kappa_t^2 - 0.66\cdot\kappa_W\kappa_t$
$\Gamma^{\tau\tau}$		_		κ_{τ}^2
Γ^{bb}	—	—		κ_b^2
$\Gamma^{\mu\mu}$				κ_{μ}^{2}
H-→-WW/ W/	Z Z	$H - \xrightarrow{KW}_{H}$		$H \rightarrow \overbrace{f}{F}$ JHEP 08 (2016) 04:

Kappa Framework: Interference Effects

Interference of couplings in Higgs-boson production

Kappa Framework: Interference Effects

Interference of couplings in Higgs-boson production

Effective coupling modifiers may be used for loop-induced couplings to gluons κ_g and photons κ_γ (loops not resolved)

- Effective coupling modifiers may be used for loop-induced couplings to gluons κ_g and photons κ_γ (loops not resolved)
- LHC data so far:
 - insensitive to couplings to light quarks
 - little sensitivity to couplings to μ
- Usually assume:
 - $\kappa_{\rm c} = \kappa_{\rm t}$
 - $\kappa_{\rm s} = \kappa_{\rm b}$

•
$$\kappa_{\mu} = \kappa_{\tau}$$

•
$$\kappa_{\rm u} = \kappa_{\rm d} = \kappa_{\rm e^-} = 1$$

- Changes of couplings cause change of the total width
 - Most general case: introduce additional modifier for the total width:

$$\kappa_{\rm H}^2 \equiv \sum_j \kappa_j^2 \mathcal{B}_{\rm SM}^j = \begin{cases} rac{\sum_j \kappa_j^2 \Gamma^j}{\Gamma_{\rm H}^{\rm SM}} = rac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}}: & {
m SM} ext{ decays only} \\ rac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} (1 - \mathcal{B}_{\rm BSM}): & {
m SM+BSM} ext{ decays} \end{cases}$$

- Changes of couplings cause change of the total width
 - Most general case: introduce additional modifier for the total width:

$$\kappa_{\rm H}^2 \equiv \sum_j \kappa_j^2 \mathcal{B}_{\rm SM}^j = \begin{cases} \frac{\sum_j \kappa_j^2 \Gamma^j}{\Gamma_{\rm H}^{\rm SM}} = \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}}: & {\rm SM \ decays \ only} \\ \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} (1 - \mathcal{B}_{\rm BSM}): & {\rm SM+BSM \ decays} \end{cases}$$

- Currently: total width not constrained at LHC in model-independent way
 - \rightarrow only ratios of coupling modifiers accessible
- Total width accessible only indirectly at the LHC, directly at future ee colliders in $e^+e^- \rightarrow ZH$ (later)

κ (Resolved Loops)

κ (Loops \rightarrow Effective Couplings)

- Effectively allows contributions from BSM particles in the loops
- Case $\mathcal{B}_{BSM} \ge 0$: BSM contributions allowed also in decays

κ : Fermion/Boson Coupling

- Sensitivity to **relative sign** of fermion and boson coupling from **interference** terms in $H \rightarrow \gamma \gamma$ decays
- Opposite sign of fermion and boson couplings excluded at almost 5 σ

Beyond the Kappa Framework

- Kappa framework only allows modification of coupling strength, i. e. can modify rate but not kinematic of a process
- Effects of BSM physics may be more subtle
 - \rightarrow LHC Run 2 (and beyond): more sophisticated approaches

Beyond the Kappa Framework

- Kappa framework only allows modification of coupling strength, i. e. can modify rate but not kinematic of a process
- Effects of BSM physics may be more subtle → LHC Run 2 (and beyond): more sophisticated approaches
- Interpretation: effective field theory (EFT)

Beyond the Kappa Framework

- Kappa framework only allows modification of coupling strength, i. e. can modify rate but not kinematic of a process
- Effects of BSM physics may be more subtle → LHC Run 2 (and beyond): more sophisticated approaches
- Interpretation: effective field theory (EFT)
- Measurement:
 - Fiducial cross sections in easy-to-reproduce phase space
 - Simplified template cross sections (STXS): fiducial cross-sections in exclusive phase-space regions ("bins"), e. g. in p_T (H), separately per Higgs boson production channel
 - Differential cross-section measurements

Summary

- After the discovery of the Higgs boson in 2012: extensive measurements of its properties at the LHC
 - Mass, Width, Spin, Parity, Couplings
- New analysis techniques such as the matrix-element method and neural networks allow to pursue difficult channels or observables
- Global combination of different coupling measurements allows to derive a consistent and uniform picture of the Higgs boson
 - So far, everything looks like a SM Higgs boson