

Teilchenphysik II - W, Z, Higgs am Collider

Lecture 13: Higgs Boson Properties and Beyond

PD Dr. K. Rabbertz, Dr. Nils Faltermann | 21. Juli 2023

www.kit.edu

Summary on Higgs Boson Properties

- Higgs boson discovered in 2012
 - Not much known about the "new boson" by that time
 - Situation drastically changed during the subsequent years
- Precision measurement of its properties
 - Mass, width, spin, parity, couplings
- New analysis techniques such as the matrix-element method and neural networks allow to pursue difficult channels or observables
- Global combination of different coupling measurements allows to derive a consistent and uniform picture of the Higgs boson
 - So far, everything looks like a SM Higgs boson

Karlsruhe Institute of Technology

Differential Cross Section

- So far: reconstructed distributions of kinematic observables compared to expected distributions (from MC simulation and/or data)
 - All physics effects forward-folded with detector effects, e.g. resolution
 - Problem: distributions cannot be compared between experiments or with theory calculations

Differential Cross Section

- So far: reconstructed distributions of kinematic observables compared to expected distributions (from MC simulation and/or data)
 - All physics effects forward-folded with detector effects, e.g. resolution
 - Problem: distributions cannot be compared between experiments or with theory calculations
- A solution: measurements presented as differential cross sections = cross sections as a function of one or more kinematic observable
 - Detector effects corrected by unfolding procedure
 - Typical result: fiducial differential cross section at level of stable particles
 - Differential distributions contain more information on physics processes than inclusive cross sections: more detailed comparison with theory
- Main channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

Unfolding Techniques

- Determine true distribution $f(\vec{x})$ from reconstructed distribution $g(\vec{y})$
 - Relation: Fredholm integral equation

$$g(\vec{y}) = \int R(\vec{y}|\vec{x}) f(\vec{x}) \, \mathrm{d}\vec{x} + b(\vec{y}) = \int \alpha(\vec{y}|\vec{x})\epsilon(\vec{x}) \, \mathrm{d}\vec{x} + b(\vec{y})$$

- \vec{y} : observed (reconstruction level) kinematics, \vec{x} : "true" kinematics
- $R(\vec{y}|\vec{x})$ transfer function = acceptance $\alpha(\vec{y}|\vec{x}) \times$ efficiency $\epsilon(\vec{x})$
- $b(\vec{y})$: **background** distribution

Unfolding Techniques

- Determine true distribution $f(\vec{x})$ from reconstructed distribution $g(\vec{y})$
 - Relation: Fredholm integral equation

$$g(\vec{y}) = \int R(\vec{y}|\vec{x}) f(\vec{x}) \, \mathrm{d}\vec{x} + b(\vec{y}) = \int \alpha(\vec{y}|\vec{x})\epsilon(\vec{x}) \, \mathrm{d}\vec{x} + b(\vec{y})$$

- \vec{y} : observed (reconstruction level) kinematics, \vec{x} : "true" kinematics
- $R(\vec{y}|\vec{x})$ transfer function = acceptance $\alpha(\vec{y}|\vec{x}) \times$ efficiency $\epsilon(\vec{x})$
- $b(\vec{y})$: **background** distribution
- Solving for $f(\vec{x})$: **ill-posed** mathematical problem, typical solution
 - First step: discretisation (=histogram) + response/migration matrix R

$$g_i = \sum_{j=1}^m R_{ij} f_j + b_i$$

- *i* : bin observed distribution *g*
- *j* : bin "true" distribution *f*
- $R \approx$ diagonal: bin-by-bin correction factors c_i : $g_i = c_i f_i + b_i$
- Matrix inversion: numerically unstable due to statistical fluctuations
 - \rightarrow additional assumption: smooth distributions ("regularisation")

Bin-by-Bin Unfolding (H \rightarrow ZZ \rightarrow 4/)

Matrix Unfolding (H \rightarrow WW)

Example: Higgs-Boson p_{T}

- Probes modelling of dominant ggH production mode
- Sensitivity to <u>new heavy particles in the loop</u>

Example: Jet Kinematics

Probes QCD radiation and Higgs production mode

Karlsruhe Institute of Technology

Example: Jet Kinematics

Probes QCD radiation and Higgs production mode

1000

1000

н

Example: Jet Kinematics

Probes QCD radiation and Higgs production mode

 $p_{\rm T}$ of central jets

Example: Double-Differential Cross-Section

 $H \rightarrow \gamma \gamma$ channel, e.g. as function of p_T (H) $\times N$ (jets)

Example: Double-Differential Cross-Section

 $H \rightarrow \gamma \gamma$ channel, e.g. as function of p_T (H) \times *N*(jets)

Higgs Boson Self-Coupling at the LHC

• Higgs boson self-coupling: access to shape of Higgs potential

$$\mathcal{L}_{\mathsf{H}} \supset -\lambda v^2 \mathsf{H}^2 + \lambda v \mathsf{H}^3 - \frac{1}{4} \lambda \mathsf{H}^4 = \frac{1}{2} m_{\mathsf{H}} \mathsf{H}^2 + \left| \frac{m_{\mathsf{H}}^2}{2v} \mathsf{H}^3 \right| - \frac{m_{\mathsf{H}}^2}{8v^2} \mathsf{H}^4$$

Higgs Boson Self-Coupling at the LHC

Higgs boson self-coupling: access to shape of Higgs potential

$$\mathcal{L}_{\mathsf{H}} \supset -\lambda v^2 \mathsf{H}^2 + \lambda v \mathsf{H}^3 - \frac{1}{4} \lambda \mathsf{H}^4 = \frac{1}{2} m_{\mathsf{H}} \mathsf{H}^2 + \left| \frac{m_{\mathsf{H}}^2}{2v} \mathsf{H}^3 \right| - \frac{m_{\mathsf{H}}^2}{8v^2} \mathsf{H}^4$$

Tri-linear Higgs coupling at hadron colliders: di-Higgs production

• Very small SM cross-section due to destructive interference with diagrams with Yukawa coupling: $\sigma_{SM}(HH) = 33.5$ fb at 13 TeV ($\approx 0.1\% \sigma_{SM}(H)$)

Higgs Boson Self-Coupling at the LHC

Higgs boson self-coupling: access to shape of Higgs potential

$$\mathcal{L}_{\mathsf{H}} \supset -\lambda v^2 \mathsf{H}^2 + \lambda v \mathsf{H}^3 - \frac{1}{4} \lambda \mathsf{H}^4 = \frac{1}{2} m_{\mathsf{H}} \mathsf{H}^2 + \left| \frac{m_{\mathsf{H}}^2}{2v} \mathsf{H}^3 \right| - \frac{m_{\mathsf{H}}^2}{8v^2} \mathsf{H}^4$$

Tri-linear Higgs coupling at hadron colliders: di-Higgs production

- Very small SM cross-section due to destructive interference with diagrams with Yukawa coupling: $\sigma_{SM}(HH) = 33.5$ fb at 13 TeV ($\approx 0.1\% \sigma_{SM}(H)$)
- In principle also quartic Higgs self-coupling (tri-Higgs production) but cross section even smaller: 0.1 fb at 13 TeV (→ not feasible at LHC)

Searches for Di-Higgs Production

- Di-Higgs searches performed in several different final-states
- \blacksquare Often final states with one $\textbf{H} \rightarrow \textbf{b}\overline{\textbf{b}}$ decay to exploit high branching ratio
- $\rightarrow\,$ compensate low cross-section

- Each channel
 - Upper limit on SM non-resonant production
 - Search for non-resonant hh BSM effects in m_{hh}
 - Model-independent search for narrow resonance in m_{hh} spectrum
- $\rightarrow\,$ same analysis results interpreted in different models

BSM Non-Resonant Di-Higgs Production?

- Resonant Higgs boson pair-production studied within generic extension of SM Lagrangian
- \rightarrow EFT approach (JHEP 1604 (2016) 126)

• 5 free parameters: $\kappa_{\lambda} = \lambda_{\text{hhh}} / \lambda_{\text{hhh}}^{\text{SM}}$, $\kappa_{\text{t}} = \lambda_{\text{t}} / \lambda_{\text{t}}^{\text{SM}}$, c_2 , c_g , c_{2g}

Di-Higgs Production: Early Run 2 Results

• Non-resonant SM production not yet accessible, upper limit of \approx 20 \times SM expectation

No evidence of additional BSM contribution, but vast parameter space that is difficult to cover

Where are we now?

- Review paper by the CMS Collaboration ten years after the discovery of the Higgs Boson
- A portrait of the Higgs boson by the CMS experiment ten years after the discovery [Nature 607 (2022) 60-68]
- State-of-the-art results for couplings and Di-Higgs searches
- Similar paper from the ATLAS Collaboration

Signal Strengths: Production and Decay

Couplings to Fermions and Bosons

Individual Couplings

Di-Higgs Production

Self-Coupling and Quartic Coupling

How SM-Like is H(125)?

- Couplings of the Higgs boson H(125) have been determined with an accuracy of around 10% or better
- Non-SM couplings at this order possible!

- 'Bare' Higgs boson mass receives quantum corrections
- Corrections to mass scale quadratically with cut-off scale Λ
 - Λ: scale up to which SM is assumed to be valid
 - Quadratic corrections unique feature of scalar particles

- 'Bare' Higgs boson mass receives quantum corrections
- Corrections to mass scale quadratically with cut-off scale Λ
 - Λ: scale up to which SM is assumed to be valid
 - Quadratic corrections unique feature of scalar particles

• SM: $\Lambda = \Lambda_{Planck} \approx 10^{16} \text{ GeV} \rightarrow \text{natural scale for } m_{H}$ How can m_{H} be 125 GeV?

- 'Bare' Higgs boson mass receives quantum corrections
- Corrections to mass scale quadratically with cut-off scale Λ
 - Λ: scale up to which SM is assumed to be valid
 - Quadratic corrections unique feature of scalar particles

 $m_{\rm H}^2 = m_0^2 - \frac{\lambda_f^2}{8\pi^2}\Lambda^2 + \dots$ 125 GeV bare mass

quantum corrections

• SM: $\Lambda = \Lambda_{\text{Planck}} \approx 10^{16} \text{ GeV} \rightarrow \text{natural scale for } m_{\text{H}}$

How can $m_{\rm H}$ be 125 GeV?

 $\rightarrow m_0^2 = \frac{\lambda_t^2}{8\pi^2} \Lambda^2$ at extremely high precision (10¹⁶!): fine-tuning problem

- 'Bare' Higgs boson mass receives quantum corrections
- Corrections to mass scale quadratically with cut-off scale Λ
 - Λ: scale up to which SM is assumed to be valid
 - Quadratic corrections unique feature of scalar particles

How can $m_{\rm H}$ be 125 GeV?

 $\rightarrow m_0^2 = \frac{\lambda_f^2}{8\pi^2} \Lambda^2$ at extremely high precision (10¹⁶!): fine-tuning problem

Alternatively

- New physics at a scale $\Lambda \ll \Lambda_{Planck}$?
- Additional terms that cancel corrections (e.g. in Supersymmetry)?

125 GeV

bare mass

Pecularities of the SM Higgs Sector

- Higgs mechanism added somewhat ad-hoc to achieve EWSB
- Yukawa couplings just defer problem of fermion masses

Out for the Unknown

Non-SM-Higgs properties of the 125 GeV boson? Additional Higgs bosons?

26/42 21.7.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Lepton-Flavour Violating Higgs Couplings

- In SM, no lepton-flavour violating (LFV) Higgs couplings
- But can occur in models with more than one Higgs doublet

Indirect constraints:

- $\mathcal{B}(H \rightarrow e\mu) < \mathcal{O}(10^{-8})$
- $\mathcal{B}(H \rightarrow \mu \tau) < \mathcal{O}(10\%)$
- $\mathcal{B}(H
 ightarrow e au) < \mathcal{O}(10\%)$

e.g. from virtual loop contributions of LFV Higgs couplings to

 $\mu \rightarrow {\it e}\gamma, \tau \rightarrow {\it e}\gamma, \tau \rightarrow \mu\gamma$

 ${
m H}
ightarrow e au$ and ${
m H}
ightarrow \mu au$ only weakly constrained

Perform direct measurements!

Lepton-Flavour Violating Higgs Couplings: e au and μau

Lepton-Flavour Violating Higgs Couplings: e au and μau

Interpreted as limit on lepton-flavour violating Yukawa couplings

30/42 21.7.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

KIT -ETP

- CMS CMS 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) ggHcat0 0.53 (0.82) × 10 CMS-HIG-CMS-HIG-22-002, 95% CL limits ggHcat1 Observed 0.85 (0.82) × 10⁻⁴ 10 3-22-002, Expected ± 1a ggHcat2 to Immon Expected $\pm 2\sigma$ 1.45 (1.32) × 10⁻⁴ $\mu \rightarrow 3e$ Submitted to Phys Submitted to Phys ggHcat3 10 10.54 (7.12) × 10⁻⁴ VBFcat0 $2.08(1.72) \times 10^{-10}$ $\mu \rightarrow e$ 10-6 VBEcat1 Rev Rev. 3.96 (3.27) × 10⁻⁴ ω ۳ Π ۸ ۸ Combined -0.44 (0.47) × 10⁻⁴ 10 10-6 10-7 10⁻⁵ 10^{-4} 10^{-3} 2 8 10 12 14 1 95% CL limit on $B(H \rightarrow e\mu)$ [× 10⁻⁴] Υ_{eµ}
- Although the $e\mu$ channel has already higher constraints, a similar search has been carried out
- No signal found for decay of the SM Higgs boson into eµ...

Lepton-Flavour Violating Higgs Couplings: $e\mu$

Lepton-Flavour Violating Higgs Couplings: $e\mu$

- However, the analysis covers not only SM Higgs boson decays, but also searches for a non-SM signal from the decay of a generic BSM boson decay (m_X ≠ 125 GeV)
- Significant excess (3.8 σ local, 2.8 σ global) at around $m_X = 146 \text{ GeV}$ observed

Lepton-Flavour Violating Higgs Couplings: $e\mu$

- However, the analysis covers not only SM Higgs boson decays, but also searches for a non-SM signal from the decay of a generic BSM boson decay (m_X ≠ 125 GeV)
- Significant excess (3.8 σ local, 2.8 σ global) at around $m_X = 146 \text{ GeV}$ observed

- Very small branching ratio of ≈ 0.1 % in SM $(\text{mostly H} \rightarrow \text{ZZ}^* \rightarrow 4\nu)$
- But possible at larger rate in new-physics models, e.g. in Supersymmetry or extra-dimensions models
 - New invisible particle χ often Dark Matter candidate
- Constraints from combined coupling measurements

- Very small branching ratio of ≈ 0.1 % in SM $_{(mostly~H \rightarrow~ZZ^*~\rightarrow~4\nu)}$
- But possible at larger rate in new-physics models, e.g. in Supersymmetry or extra-dimensions models
 - New invisible particle χ often Dark Matter candidate
- Constraints from combined coupling measurements

Direct searches in events where H recoils against visible objects

Signature: large $\not \in_T$ recoling against a distinctive visible system

Combined upper limit at 95 % C.L.:

 $\mathcal{B}(H
ightarrow inv) < 0.15$ (observed)

- Assuming SM production cross-sections of a H(125) boson
- How can we interpret this in terms of limits to BSM physics?

- Interpretation in Higgs-portal Dark Matter (DM) models
 - Hidden DM sector, only H couples to DM
- $\rightarrow\,$ Limits on DM-nucleon scattering cross section

- Interpretation in Higgs-portal Dark Matter (DM) models
 - Hidden DM sector, only H couples to DM
- $\rightarrow\,$ Limits on DM-nucleon scattering cross section
- $\rightarrow\,$ Complementary sensitivity to direct-detection DM experiments
- No sensitivity for higher masses due to kinematic threshold

35/42 21.7.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

am Collider

Standard Model particles

🥥 guarks

leptons

force particles

e \mu 🔻 🖤 🧯 🛱 🖉 🖤 wino

н

đ

(v_e)

squarks
sleptons & sneutrinos

neutralinos xº & charginos x²

Supersymmetric partners

KIT -ETP

gluino

photino

higgsino

zino

Ĥ

Supersymmetry

- In the SM two different kind of fundamental particles
 - Bosons with integer spin: mediate forces between particles and the Higgs boson
 - Fermions of half-integer spin: constituents of matter
- Is there a connection between both? Maybe a broken symmetry at higher energies similar to the EWSB?

- $\rightarrow\,$ Concept of **Supersymmetry (SUSY)**: relate each fermion/boson to a corresponding superpartner called *sboson/sfermion* with $\Delta S=\frac{1}{2}$
- Many additional free parameters (>100) in general, focus on minimal extensions to the SM

Minimal Supersymmetric Standard Model

• MSSM requires 2 Higgs doublets ϕ_u (ϕ_2) and ϕ_d (ϕ_1)

$$\begin{split} \phi_{u} &= \begin{pmatrix} \phi_{u}^{+} \\ \phi_{u}^{0} \end{pmatrix}, \ \mathbf{Y}_{\phi_{u}} = +1, \ \mathbf{v}_{u} : \mathsf{VEV}_{u} \\ \phi_{d} &= \begin{pmatrix} \phi_{d}^{0} \\ \phi_{d}^{-} \end{pmatrix}, \ \mathbf{Y}_{\phi_{d}} = -1, \ \mathbf{v}_{d} : \mathsf{VEV}_{d} \end{split}$$

- SUSY invariance requires different doublets for Yukawa-coupling terms of up- and down-type fermions
- Using instead conjugate Higgs field as in SM breaks SUSY invariance

• 8 d.o.f. since 2 complex Higgs doublets: 3 d.o.f. for $m_{W^{\pm}}, m_Z \rightarrow$ 5 physical Higgs bosons

2 CP-even neutral Higgs bosons h, H ($m_h < m_H$) 1 CP-odd neutral Higgs boson A 2 charged Higgs bosons H[±]

• Two vacuum expectation values v_u and v_d of the Higgs doublets

$$\tan \beta = rac{v_{
m u}}{v_{
m d}}$$
 $v_{
m u}^2 + v_{
m d}^2 = v_{
m SM}^2 = (246\,{
m GeV})^2 = rac{4m_{
m Z}^2}{g^2 + g'^2}$

Additional parameter α : angle between ϕ_u and ϕ_d in SU(2) isospace

- At LO, MSSM Higgs-sector entirely described by 2 parameters
 - Typical choice: ta

tan β and m_A

• Two vacuum expectation values v_u and v_d of the Higgs doublets

$$\tan \beta = rac{v_{
m u}}{v_{
m d}}$$
 $v_{
m u}^2 + v_{
m d}^2 = v_{
m SM}^2 = (246\,{
m GeV})^2 = rac{4m_{
m Z}^2}{g^2 + g'^2}$

Additional parameter α : angle between ϕ_u and ϕ_d in SU(2) isospace

At LO, MSSM Higgs-sector entirely described by 2 parameters

Typical choice: tan

tan β and m_A

Strict mass relation at LO

$$\begin{split} m_{\rm H^{\pm}}^2 &= m_W^2 + m_{\rm A}^2 \\ m_{h,H}^2 &= \frac{1}{2} \left(m_{\rm A}^2 + m_Z^2 \mp \sqrt{(m_{\rm A}^2 - m_Z^2)^2 + 4m_Z^2 m_{\rm A}^2 \sin^2(2\beta)} \right) \end{split}$$

• In particular $|m_{\rm h} \leq m_Z \cdot |\cos 2\beta| \leq m_Z$

• Two vacuum expectation values v_u and v_d of the Higgs doublets

$$\tan \beta = rac{v_{
m u}}{v_{
m d}}$$
 $v_{
m u}^2 + v_{
m d}^2 = v_{
m SM}^2 = (246\,{
m GeV})^2 = rac{4m_{
m Z}^2}{g^2 + g'^2}$

Additional parameter α : angle between ϕ_{u} and ϕ_{d} in SU(2) isospace

At LO, MSSM Higgs-sector entirely described by 2 parameters

Typical choice: tan

 $\tan\beta$ and m_A

Strict mass relation at LO

$$\begin{split} m_{\rm H^{\pm}}^2 &= m_W^2 + m_{\rm A}^2 \\ m_{h,H}^2 &= \frac{1}{2} \left(m_{\rm A}^2 + m_Z^2 \mp \sqrt{(m_{\rm A}^2 - m_Z^2)^2 + 4 m_Z^2 m_{\rm A}^2 \sin^2(2\beta)} \right) \end{split}$$

• In particular $|m_h \leq m_Z \cdot |\cos 2\beta| \leq m_Z$

contradicts h(125) observation!

- MSSM Higgs sector depends on other SUSY parameters than $\tan \beta$ and m_A via higher-order contributions
- Higgs boson masses receive higher-order corrections

Neutral MSSM Higgs Bosons

_

Coupling strength relative to respective SM coupling

	$g_{ m VV}/g_{ m VV}^{ m SM}$	$g_{ m uu}/g_{ m uu}^{ m SM}$	$g_{ m dd}/g_{ m dd}^{ m SM}$
А	_	$\gamma^{\rm 5} \cot eta$	$\gamma^{\sf 5} {\sf tan} eta$
Н	$\cos(\beta - \alpha) \rightarrow 0$	$\sin \alpha / \sin \beta \ \rightarrow \ \cot \beta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

• For $m_A \gg m_Z$ ('decoupling limit'): $\alpha \to \beta - \frac{\pi}{2}$

h becomes SM-like: cannot distinguish SM from MSSM via coupling measurements of h(125)

Neutral MSSM Higgs Bosons

Coupling strength relative to respective SM coupling

	$g_{ m VV}/g_{ m VV}^{ m SM}$	$g_{ m uu}/g_{ m uu}^{ m SM}$	$g_{ m dd}/g_{ m dd}^{ m SM}$
А	_	$\gamma^{\rm 5} \cot eta$	$\gamma^{\sf 5} {\sf tan} eta$
Н	$\cos(\beta - \alpha) \rightarrow 0$	$\sin \alpha / \sin \beta \ \rightarrow \ \cot \beta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

• For $m_A \gg m_Z$ ('decoupling limit'): $\alpha \to \beta - \frac{\pi}{2}$

h becomes SM-like: cannot distinguish SM from MSSM via coupling measurements of h(125)

→ Search for additional Higgs bosons!

_

Neutral MSSM Higgs Bosons

Cornering the MSSM Higgs Sector

 $(m_A, \tan \beta)$ regions in different scenarios excluded by various direct searches

Assuming that h is the SM Higgs boson, low-m_A regions can be excluded by coupling measurement

Cornering the MSSM Higgs Sector

 $(m_A, \tan \beta)$ regions in **different scenarios** excluded by various direct searches

If one requires a mass of 125 GeV for h in the default MSSM, also low tan β values are excluded

Summary on the (BSM) Higgs Sector

- H(125) with well-understood properties (SM-like "within less than 10%")
- SM self-consistent, but incomplete + theoretical deficits
 - Gravity, Dark Matter + hierarchy problem, ...
 - Why does EWSB occur?
- There must be new physics beyond the SM: (how) does it affect the Higgs sector?
 - Non-SM properties of the H(125) boson?
 - Extended Higgs sector with additional Higgs bosons, e.g. in SUSY?
- Vast number of searches covering many of the expected signatures
 - Generic "heavy SM Higgs" searches vs. model-inspired
 - Important inspiration for possible signatures: MSSM
 - Often interpretation of same results in different models
 - Goal is to search for generic signatures of BSM Higgs physics