

Teilchenphysik II - W, Z, Higgs am Collider

Lecture 14: Future of the Higgs Sector

PD Dr. K. Rabbertz, Dr. Nils Faltermann | 28. Juli 2023

www.kit.edu

Short Recap

- More than ten years after the discovery of a new boson, it looks like the SM Higgs boson
 - The SM does not work without a Higgs boson
 - But there is strong motivation that there is more ... hierarchy problem/fine-tuning, gravity, dark matter
- Supersymmetric models to extend the SM
- Higgs measurements as portal for dark matter
- For the last lecture we will focus on present topics of interest and the future of the Higgs sector

- Effective extension of SM adding a second Higgs doublet
- Results in **5 Higgs bosons**: h, H, A (neutral); H⁺, H⁻ (charged)

- Effective extension of SM adding a second Higgs doublet
- Results in 5 Higgs bosons: h, H, A (neutral); H⁺, H⁻ (charged)
- 5 free parameters: m_A , m_H , $m_{H^{\pm}}$, tan β , α (angle between doublets)
 - More than in MSSM since no extra requirements, i. e. SUSY, imposed
 - In general, up to 9 free parameters but some fixed by requiring no FCNC and $m_{\rm h} = 125 \,{\rm GeV}$

Different types of 2HDMs depending on coupling structure

Model	и _R	d_{R}	$e_{\rm R}$
Type I	ϕ_2	ϕ_2	ϕ_2
Type II	ϕ_2	ϕ_1	ϕ_1
Lepton-specific	ϕ_2	ϕ_{2}	ϕ_1
Flipped	ϕ_{2}	ϕ_1	ϕ_{2}

(nomenclature sometimes differs)

- Diverse phase space, provides representative phenomenology for many different models (helpful to design and interpret analyses)
 - MSSM is a type-II 2HDM

Different types of 2HDMs depending on coupling structure

Model	и _R	d_{R}	$e_{\rm R}$
Type I	ϕ_2	ϕ_2	ϕ_2
Type II	ϕ_2	ϕ_1	ϕ_1
Lepton-specific	ϕ_2	ϕ_{2}	ϕ_1
Flipped	ϕ_{2}	ϕ_1	ϕ_{2}

(nomenclature sometimes differs)

 Diverse phase space, provides representative phenomenology for many different models (helpful to design and interpret analyses)

- MSSM is a type-II 2HDM
- Experimentally
 - MSSM-motivated Higgs-boson searches re-interpreted in 2HDMs
 - In addition, specific searches to 2HDM inspired topologies

- Minimal Supersymmetric Standard Model (MSSM): extend Higgs sector with an additional doublet field
- Despite the fact that the MSSM solves a few problems, it comes not without flaws:
 - Large radiative corrections necessary to end up with a Higgs boson of 125 GeV
 - μ problem: supersymmetric Higgsino mass parameter, why of the order of EWK scale instead of Planck scale, as implied by SUSY? Might solve strong CP-problem as well
- From experimental side: phase space almost excluded entirely

- Maybe just an additional Higgs doublet is not enough?
- \rightarrow Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 - Extend the MSSM with an additional SU(2) singlet
- Two additional degrees of freedom:
 - 4 (SM doublet) + 4 (MSSM doublet) + 2 (NMSSM singlet) = 10
 - 3 reserved for SM gauge bosons
 - $\rightarrow~7$ Higgs bosons: h_1, h_2, H_3, a_1. A_2, H^{\pm} (SM Higgs boson can be either h_1 or h_2)
- Mass term for the 125 GeV Higgs boson:

NMSSM search: $H \rightarrow h(\tau \tau)h_{S}(bb)$

• Cascading decay: H (heavy Higgs) \rightarrow h (SM Higgs) + h_S (additional Higgs boson mainly from singlet)

- With a high singlet contribution to h_s , highly suppressed at the LHC \rightarrow bb best decay channel for h_s
- $\blacksquare\ h \to \tau\tau$ allows to properly tag SM Higgs boson, compromise between rate and resolution
- Many different mass hypotheses for H and h_S, requires extensive and costly MC simulation for each model point

NMSSM search: $H \rightarrow h(\tau \tau)h_{S}(bb)$ results

Karlsruhe Institute of Technology

Interference Effects

- Interference effects between resonant signal and non-resonant background can impact invariant mass distribution → indirect indication for BSM physics
- For example, heavy $\Phi = H/A \rightarrow t\bar{t}$ production in 2HDMs

Interference Effects

- Interference effects between resonant signal and non-resonant background can impact invariant mass distribution → indirect indication for BSM physics
- For example, heavy $\Phi = H/A \rightarrow t\bar{t}$ production in 2HDMs

- Due to interference
 - *m*_{tt} distribution: no resonance signal on top of background
 - Instead, "peak-dip" structure of m_{it} distribution

Interference Effects

- Interference effects between resonant signal and non-resonant background can impact invariant mass distribution → indirect indication for BSM physics
- For example, heavy $\Phi = H/A \rightarrow t\bar{t}$ production in 2HDMs

- Due to interference
 - $m_{t\bar{t}}$ distribution: no resonance signal on top of background
 - Instead, "**peak-dip**" structure of *m*_{tt} distribution
- → New analyses targeting at interference signatures, just starting to learn how to handle and exploit

Charge-Parity (CP)

- The parity (and spin) of the 125 GeV Higgs boson has been measured from angular distributions in $H \to ZZ \to 4\ell$ decays (see Lecture 12)
- \blacksquare Observation of ${\rm H} \to \gamma \gamma$ points to Higgs boson as C-even
- Although this already rules out a purely CP-odd Higgs boson, the 125 GeV Higgs boson could be an admixture of a purely CP-even and CP-odd state
 - CP-violation is one of the key ingredients for the observed matter-antimatter imbalance in our Universe
 - There is CP violation in the SM (CKM matrix), but not sufficient to explain the imbalance between matter and antimatter
- Specifically search for CP-odd components in the couplings to bosons and fermions

Anomalous Coupling Parameterization: Fermions

Extend SM Yukawa terms with an additional CP-odd coupling:

$$\begin{array}{l} \mathsf{A} \ (\mathsf{Hff}) = -\frac{m_{\mathrm{f}}}{\nu} \bar{\psi}_{\mathrm{f}} (\kappa_{\mathrm{f}} + i \gamma_{5} \tilde{\kappa}_{\mathrm{f}}) \psi_{\mathrm{f}} \\ f_{\mathsf{CP}}^{\mathsf{Hff}} = \frac{|\tilde{\kappa}_{\mathrm{f}}|^{2}}{|\kappa_{\mathrm{f}}|^{2} + |\tilde{\kappa}_{\mathrm{f}}|^{2}} \operatorname{sign} \left(\frac{\tilde{\kappa}_{\mathrm{f}}}{\kappa_{\mathrm{f}}} \right) \end{array}$$

• The SM is recovered for $\kappa_f = +1$ and $\tilde{\kappa}_f = 0$

• Any value $\tilde{\kappa}_f \neq 0$ will introduce a non-SM, CP-odd coupling to fermions

Anomalous Coupling Parameterization: Fermions

Extend SM Yukawa terms with an additional CP-odd coupling:

$$\begin{aligned} \mathsf{A} \ (\mathsf{Hff}) &= -\frac{m_{\mathsf{t}}}{\nu} \bar{\psi}_{\mathsf{f}} (\kappa_{\mathsf{f}} + i\gamma_{\mathsf{5}} \tilde{\kappa}_{\mathsf{f}}) \psi_{\mathsf{f}} \\ f_{\mathsf{CP}}^{\mathsf{Hff}} &= \frac{|\tilde{\kappa}_{\mathsf{f}}|^2}{|\kappa_{\mathsf{f}}|^2 + |\tilde{\kappa}_{\mathsf{f}}|^2} \operatorname{sign} \left(\frac{\tilde{\kappa}_{\mathsf{f}}}{\kappa_{\mathsf{f}}} \right) \end{aligned}$$

- The SM is recovered for $\kappa_f = +1$ and $\tilde{\kappa}_f = 0$
 - Any value $\tilde{\kappa}_f \neq 0$ will introduce a non-SM, CP-odd coupling to fermions
- Sensitive via ttH, tH and bbH production modes, but also via gg \rightarrow ZH:

Anomalous Coupling Parameterization: Bosons

- For bosons (ZZ, $Z\gamma$, $\gamma\gamma$, WW, gg) the situation is more complicated
- Most generic extension to Higgs-gauge boson couplings:

with
$$f^{(i),\mu\nu} = \epsilon^{\mu}_{Vi} q^{\nu}_{Vi} - \epsilon^{\nu}_{Vi} q^{\mu}_{Vi}, \qquad \tilde{f}^{(i)}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} f^{(i),\rho\sigma}$$

Anomalous Coupling Parameterization: Bosons

- For bosons (ZZ, $Z\gamma$, $\gamma\gamma$, WW, gg) the situation is more complicated
- Most generic extension to Higgs-gauge boson couplings:

with
$$f^{(i),\mu\nu} = \epsilon^{\mu}_{Vi} q^{\nu}_{Vi} - \epsilon^{\nu}_{Vi} q^{\mu}_{Vi}, \qquad \tilde{f}^{(i)}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} f^{(i),\rho\sigma}$$

- In the SM $a_1^{ZZ} = a_1^{WW} = 2$, all other $a_{1,2,3}^{VV} = 0$
- Further constraints based on symmetry and gauge invariance:

•
$$\kappa_1^{ZZ} = \kappa_2^{ZZ}, \ \kappa_1^{WW} = \kappa_2^{WW}$$

• $a_1^{Z\gamma} = a_1^{\gamma\gamma} = a_1^{gg} = \kappa_1^{\gamma\gamma} = \kappa_2^{\gamma\gamma} = \kappa_1^{gg} = \kappa_2^{gg} = \kappa_1^{Z\gamma} = \kappa_3^{W} = 0$

Coupling Analysis in ${\rm H} \rightarrow 4\ell$ and ${\rm H} \rightarrow \gamma\gamma$

VBE+VH

SM

f_{a3}=1 f_{a2}=1

 $f_{\Lambda 1} = 1$ $f_{\Lambda 2}^{Z} = 1$

- Include as many productions modes as possible: ggF, VBF, VH, ttH, tH, bbH
- Focus on high-purity decay modes: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$
- Specifically the 4*l* channel allows to exploit full angular information, heavy use of MELA approach
- Sensitivity strongly depends on assumptions:
 - variation of only one specific coupling?
 - allow all couplings to float simultaneously?

Results for Htt from ttH + tH

Results for Hgg from ggF

Combination of Results

Combination of Results

CP in the Higgs Decay: $\mathbf{H} \rightarrow \tau \tau$

 $\tan \alpha^{\mathsf{H}\tau\tau} = \tfrac{\tilde{\kappa}_\tau}{\kappa_\tau}$

• CP phase from decay planes in $H \rightarrow \tau^+ \tau^- \rightarrow \pi^+ \pi^- + 2\nu$ (less ν than for leptonic τ decays)

CP in the Higgs Decay: $\mathbf{H} \rightarrow \tau \tau$

- Pure CP-odd Higgs boson rejected by 3σ
- $\alpha^{H\tau\tau} = -1 \pm 19^{\circ}$ observed (0 $\pm 21^{\circ}$ expected, assuming SM)

CP in the Higgs Production: $t\bar{t}H+tH$

- $\hfill \ensuremath{\bullet}$ Dedicated analysts targeting $t\bar{t}H+tH$ in multilepton final states
- Exploiting kinematic differences between CP-even and CP-odd scenarios

CP in the Higgs Production: $t\bar{t}H+tH$

Slight excess observed, non-zero | f^{Htt}_{CP} | with 68% CL

• Combination with results from $\gamma\gamma$ and 4ℓ , more SM-like results (bb to be added soon)

Effective Field Theory

- No clear sign for BSM physics, despite shortcomings of SM
 - Even worse: no indication where to look
 - Vast phase-space regions to cover
 - Many different models to incorporate
- But what if new physics is beyond the reach of current colliders, e.g., the LHC?

Effective Field Theory

- No clear sign for BSM physics, despite shortcomings of SM
 - Even worse: no indication where to look
 - Vast phase-space regions to cover
 - Many different models to incorporate
- But what if new physics is beyond the reach of current colliders, e.g., the LHC?
- Extend SM Lagrangian by generic higher-order operators, suppressed by BSM energy scale
- $\rightarrow\,$ Effective Field Theory (EFT)

- Even if new physics is out of reach for direct detection, effects might be visible in SM distributions at a lower energy
- Bistorically: Fermi four-point interaction of weak decay, later explanation via massive W boson propagator

EFT parameterization

- Two different approaches:
 - Higgs Effective Field Theory (HEFT): Higgs field as SU(2)×U(1) singlet, older, less restrictive
 - Standard Model Effective Field Theory (SMEFT): Higgs field as part of SU(2)×U(1) doublet, more recent, motivated by low Higgs boson mass

$$\begin{aligned} \mathcal{L}_{\text{SMEFT}} &= \mathcal{L}_{\text{SM}} + \sum_{d > 4} \mathcal{L}^{(d)} \\ &= \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{j} \frac{c_j}{\Lambda^2} \mathcal{O}_j^{(6)} + \sum_{k} \frac{c_k}{\Lambda^3} \mathcal{O}_k^{(7)} + \sum_{l} \frac{c_i}{\Lambda^4} \mathcal{O}_l^{(8)} + \dots \end{aligned}$$
number of add. parameters 12 2499 948 36971

- Both approaches self-consistent, extending the SM systematically with operators following a given scheme
 In SMEFT:
 - Dimension 5 often neglected (lepton flavor violation, Majorana ν masses)
 - Dimension 6 and 8 mostly studied at the LHC, complicated fits, different bases for operators possible

Simplified Template Cross Sections

 Common definition of differential distributions between experiment and theory

Simplified Template Cross Sections (STXS)

- Easy way to combine measurements across different experiments
- Minimizing theoretical uncertainties
- Categorization by similar production mechanisms and final-state topologies

The Hunt for Couplings to 2nd Fermions

- Couplings to heaviest fermions (=third generation) already precisely measured
 - Top quark: indirect via loops, directly from ttH and tH production
 - Bottom quark: dominant decay channel, combination of multiple production channels
 - Tau lepton: also from decays, less frequent, but easier to analyze

The Hunt for Couplings to 2nd Fermions

- Couplings to heaviest fermions (=third generation) already precisely measured
 - Top quark: indirect via loops, directly from ttH and tH production
 - Bottom quark: dominant decay channel, combination of multiple production channels
 - Tau lepton: also from decays, less frequent, but easier to analyze

Second-generation fermions impose	additional
challenges:	

- Charm quark: $\mathcal{B}(H \to b\overline{b}) \approx 20 \times \mathcal{B}(H \to c\overline{c})$, experimentally even more challenging than $b\overline{b}$
- Strange quark: Impossible at the LHC due to $\mathcal{B}(H \to s\overline{s})$ and missing signature
- **Muon**: Clean signature, but very low $\mathcal{B}(H \to \mu\mu)$, large EWK background

Production mode	Cross section (pb)	Decay channel	Branching fraction (%)
ggH	48.31 ± 2.44	bb	57.63 ± 0.70
VBF	3.771 ± 0.807	WW	22.00 ± 0.33
WH	1.359 ± 0.028	gg	8.15 ± 0.42
ZH	0.877 ± 0.036	ττ	6.21 ± 0.09
ttH	0.503 ± 0.035	cc	2.86 ± 0.09
bbH	0.482 ± 0.097	ZZ	2.71 ± 0.04
tH	0.092 ± 0.008	$\gamma\gamma$	0.227 ± 0.005
		Żγ	0.157 ± 0.009
		ss	0.025 ± 0.001
		μμ	0.0216 ± 0.0004
99Н	VBF	bb	22 γ72 γ ¹³ ττ

Status $\mathbf{H} \rightarrow \mathbf{c}\mathbf{c}$

- Historically similar procedure as H → bb (VH) analysis:
 - Exploit long lifetime of B(D) hadrons, reconstruct secondary vertex for b(c) tagging
 - Reject most jets stemming from lighter quarks (u, d and s quarks) or gluons
 - Hcc coupling measurement relies on correctly identifying jets from charm quarks

Status $\mathbf{H} \rightarrow \mathbf{c}\mathbf{c}$

Karlsruhe Institute of Technology

- Historically similar procedure as H → bb (VH) analysis:
 - Exploit long lifetime of B(D) hadrons, reconstruct secondary vertex for b(c) tagging
 - Reject most jets stemming from lighter quarks (u, d and s quarks) or gluons
 - Hcc coupling measurement relies on correctly identifying jets from charm quarks
- Large background contribution, even when targeting only best production modes (VH)
- Sensitivity limited by systematic uncertainties of c tagging and background modeling
 - Will not improve with more data nor can one expect significant improvement of these uncertainties
- $\rightarrow\,$ Think about complementary approaches to measure the Hcc coupling

Analysis of Boosted Final States

- Boosted (high-p_T) regime, where both jets from the Higgs boson decay merge into a single, large-radius jet
- Validated with Z \rightarrow cc, measured as μ (Z) = 1.00^{+0.17}_{-0.14} (syst) \pm 0.08 (theo) \pm 0.06 (stat)
- Observed (expected) upper limit at 95% CL on $\sigma(H)\mathcal{B}(H \rightarrow cc)$ times SM prediction: **47 (39)**

Associated Hc Production

- Idea: try to not focus on H → cc decays, but on associated production of the Higgs boson and charm quark
 - Large variety of different Higgs boson decay channels to analyze, better mass resolution for Higgs boson candidates (bad resolution for H → cc due to hadronic shower components and neutrinos inside c jets)
 - Still end up with additional charm quarks in the final state, c-tagged jets as probes to reject background events

Associated Hc Production

- Idea: try to not focus on H → cc decays, but on associated production of the Higgs boson and charm quark
 - Large variety of different Higgs boson decay channels to analyze, better mass resolution for Higgs boson candidates (bad resolution for H → cc due to hadronic shower components and neutrinos inside c jets)
 - Still end up with additional charm quarks in the final state, c-tagged jets as probes to reject background events
- Irreducible Hc background from Hgg vertex via top quark loop
- Further reducible background from the same diagram with bottom quarks and multiple charm quark
- \blacksquare New analysis concept, focusing on H $\to \gamma\gamma$ for now, currently no public result available

Charge Asymmetry in VH Production

- Extend idea and remove charm quark completely from the final state
 - \rightarrow charge asymmetry in VH production
- Higher cross section for W⁺H production than for W⁻H due to valence quarks in the proton

Charge Asymmetry in VH Production

- Extend idea and remove charm quark completely from the final state
 - \rightarrow charge asymmetry in VH production
- Higher cross section for W⁺H production than for W⁻H due to valence quarks in the proton
- VH production not only via boson-mediated s channel diagrams, but also via quark-mediated t channel diagrams
- Only bosons are produced, can pick easiest (→ mostly leptonic) final states for analysis:
 - W $ightarrow \ell \nu$ needs to know the W charge
 - ${\color{black}\bullet} \hspace{0.1cm} {\rm H} \rightarrow {\rm WW}, {\rm H} \rightarrow \tau \tau, {\rm H} \rightarrow \gamma \gamma$
- Precise knowledge of proton PDF necessary

Charge Asymmetry in VH Production

Sensitive observable: asymmetry

 $\mathbf{A} = \frac{\sigma(\mathsf{W}^{+}\mathsf{H}) - \sigma(\mathsf{W}^{-}\mathsf{H})}{\sigma(\mathsf{W}^{+}\mathsf{H}) + \sigma(\mathsf{W}^{-}\mathsf{H})}$

- Many systematic uncertainties will cancel out
- Targeting more towards deviations from SM that change A → hint for BSM
- Currently limited in precision by the LHC data statistics
 - Highly relevant for HL-LHC

Status ${\rm H} \rightarrow \mu \mu$

- Large background requires heavy use of ML-techniques (BDTs, DNNs)
- Analysis statistically limited, more data will increase sensitivity \rightarrow Run 3
- Still, improvements can be made on more fronts: muon resolution and scale, event categorization, new ML-techniques

32/43 28.7.2023 Nils Faltermann: Teilchenphysik II - W, Z, Higgs am Collider

Pileup at the HL-LHC

 \blacksquare More instantaneous luminosity \rightarrow more pileup interactions

Era	Luminosity (in $10^{34} \text{cm}^{-2} \text{s}^{-1}$)	Average PU interactions
Run 2	\approx 1.5	35
Run 3	pprox 2.0	50
HL-LHC lower end	pprox 5.0	140
HL-LHC higher end	pprox 7.5	200

Higgs Physics at the HL-LHC: Couplings

- Measure Higgs couplings at even higher precision (than 10%)
 - Precision on κ_γ, κ_V, κ_g, κ_g systematically limited, gain particularly in κ_t
 - Access to κ_μ (precision of 4% estimated, statistically limited)

Higgs Physics at the HL-LHC: Di-Higgs

- Ultimate test of the SM: Higgs self-coupling
 - Implications to the Higgs potential

Higgs Physics at the HL-LHC: Di-Higgs

- Ultimate test of the SM: Higgs self-coupling
 - Implications to the Higgs potential

High-Energy-LHC (HE-LHC)

- Potential energy upgrade for the LHC:
- ightarrow up to 27 TeV center-of-mass energy
- Possible with new magnet technology (4 → 8 T), replacing NbTi LHC dipole magnets with NbSn
- Reuse of the existing LHC tunnel

Future Circular Collider

 Future Circular Collider (FCC), a new 100 km tunnel, LHC (+SPS, PS) as pre-accelerators

- Future Circular Collider (FCC), a new 100 km tunnel, LHC (+SPS, PS) as pre-accelerators
- Research and development phase: 2020–2040
 - Geological studies, feasibility, prototype design of accelerator and detector components

- Future Circular Collider (FCC), a new 100 km tunnel, LHC (+SPS, PS) as pre-accelerators
- Research and development phase: 2020–2040
 - Geological studies, feasibility, prototype design of accelerator and detector components
- **FCC-ee**, e⁺e⁻ collider: 2045–2063
 - Precision measurements for Higgs, electroweak and top quark physics
 - Variable energy from 90–350 GeV (Z boson to tt thresholds, maybe even higher)

- Future Circular Collider (FCC), a new 100 km tunnel, LHC (+SPS, PS) as pre-accelerators
- Research and development phase: 2020–2040
 - Geological studies, feasibility, prototype design of accelerator and detector components
- **FCC-ee**, e⁺e⁻ collider: 2045–2063
 - Precision measurements for Higgs, electroweak and top quark physics
 - Variable energy from 90–350 GeV (Z boson to tt
 thresholds, maybe even higher)
- **FCC-hh**, proton-proton collider: 2070–2095
 - Next milestone on the energy frontier, 100 TeV
 - Discovery machine for new physics
 - Potential hybrid FCC-eh for PDFs

Higgs-Boson Production at the FCC-ee

Higgs boson production dominantly via

- $e^+e^- \rightarrow ZH$ "Higgsstrahlung"
- $e^+e^- \rightarrow \nu \bar{\nu} H$ "W fusion"
- $e^+e^- \rightarrow e^+e^-H$ "Z fusion"

 \sqrt{s} (GeV)

ILC-NOTE-2015-067

Higgs-Boson Production at the FCC-ee

- Higgs boson production dominantly via
 - $e^+e^- \rightarrow ZH$ "Higgsstrahlung"
 - $e^+e^- \rightarrow \nu \bar{\nu} H$ "W fusion"
 - $e^+e^- \rightarrow e^+e^-H$ "Z fusion"
- Higgstrahlung: identify H events without looking at H decay by recoil of Z
 - Can determine total width Γ_H (with W-fusion information)
 - Observe exotic or invisible decay modes
 - Very precise mass (0.02 % level) and cross-section measurement (sub-% level)

Di-Higgs Production at the FCC-ee

- With even higher energies, **di-Higgs** production becomes accessible at the FCC-ee
 - Significant production cross section via ZHH at around 500 GeV
- But higher beam energy \rightarrow higher synchrotron radiation loss ($\propto E^4$)

Parameter		ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [1011]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0

- $\hfill Most likely not possible for a circular collider this size <math display="inline">\to e^+e^-$ linear collider
- But certainly at the FCC-hh

Cross section vs CM energy (e+e-)

Diagrams with triple-Higgs coupling

Potential at the FCC-hh

- Hadron colliders are discovery machines (W, Z, top, Higgs)
- 100 TeV center-of-mass energy allows to directly search for high-mass resonances
- Precision on Higgs boson couplings and trilinear self-coupling

	$gg \rightarrow H$	VBF	W	H	I ZH			tīH	HH	٦
N_{100}	24×10^9	2.1×10^9	$4.6 \times$	10^{8}	3.3×10^8		$9.6 imes 10^8$		3.6×10	7
N_{100}/N_{14}	180	170	10	0	11	.0		530 390		
Observable			Р	arameter	Pr	Precision		Precision] š	
						(stat) (stat+syst+			+syst+lumi) ∄
$\mu = \sigma(\mathbf{H})$	$(\times B(H \rightarrow \gamma \gamma))$				$\delta \mu / \mu$		0.1%		1.45%	1 e H
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \mu \mu)$				$\delta \mu / \mu$	(0.28%		1.22%	adro	
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow 4\mu)$			$\delta \mu / \mu$	0.18%		1.85%	0			
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to \gamma \mu \mu)$			$\delta \mu / \mu$	0	.55%		1.61%	ollide		
$\mu = \sigma(HH) \times B(H \rightarrow \gamma \gamma) B(H \rightarrow b\bar{b})$			$\delta\lambda/\lambda$		5%	7.0%		1		
$R = B(H \rightarrow \mu \mu) / B(H \rightarrow 4\mu)$				$\delta R/R$	0	.33%		1.3%		
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$				$\delta R/R$	0.17%		0.8%			
$R = B(H \rightarrow \gamma \gamma) / B(H \rightarrow 2\mu)$				$\delta R/R$	0.29% 1.38%		1.38%			
$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$				$\delta R/R$	0.58%		1.82%			
$R = \sigma(t\bar{t})$	$H) \times B(H \rightarrow b)$	$\sigma(t\bar{t}Z) \times B(Z \rightarrow b\bar{b}) \qquad \delta$			$\delta R/R$	1	.05%		1.9%	
$B(H \rightarrow in$	$B(H \rightarrow invisible)$				@95%CL	1	$\times 10^{-4}$	2	$.5 \times 10^{-4}$	

Sustainability in High Energy Physics

- A new collider will be **expensive**: construction, operation, maintenance, ...
- On top: environmental impacts and footprint
- How can we justify all these costs?

Sustainability in High Energy Physics

- A new collider will be expensive: construction, operation, maintenance, ...
- On top: environmental impacts and footprint
- How can we justify all these costs?
- Future colliders aim for energy efficiency
 - Incorporated already into the design of the collider
- Job opportunities, well-trained personal for industry
- Fundamental research will create spinoff technologies
 - Magnet technology, radiation therapy, material science, WWW
- Socio-economic impact analysis:
- ightarrow Benefits will outweigh the costs

41/43

28.7.2023

POWER-HUNGRY PROPOSALS An analysis of five 'Higgs factory' designs suggests that

the colliders would have vastly different carbon footprints

Summary: Future Higgs-Physics

- Complementary Higgs-physics programme at HL-LHC and the (potential) Future Circular Collider
- Expect ultimate precision at sub-percent level on Higgs-boson coupling measurements
- Precision on self-coupling below 10% in the long run
 - Rich physics programme with strong case
 - \rightarrow understanding electroweak symmetry breaking!
- The SM is complete with the Higgs boson, but we know that there is more
- Potential Master thesis...?

W, Z and Higgs @ ETP

- ETP has strong contributions to the W/Z/H programme of the CMS Collaboration
 - 2nd generation coupling to the Higgs boson: Hcc and H $\mu\mu$ (nils.faltermann@kit.edu)
 - $H \rightarrow \tau \tau$: SM measurements and (N)MSSM searches (roger.wolf@cern.ch)
 - Z+jets: measurement of proton PDFs (klaus.rabbertz@kit.edu)
- Get in touch with newest developments in particle physics
 - Event reconstruction, statistical analysis, machine learning techniques, theory developments
 - Work with students around the world
- If you are interested, contact us

