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Introduction

In this lecture ...

... we derive the acoustic wave equation which will be solved numerically by different
modelling methods,

... we define the solutions of the acoustic wave equation in terms of Greens functions
(GF) (impulse responses),

... we compare the GF for homogeneous acoustic media in 1D, 2D, and 3D in the
frequency domain,

... we show how analytical solutions can be calculated,

... compare seismograms for 1D, 2D, 3D media.

In summary we gain a better understanding of wave propagation in homogeneous media
and the significant differences resulting from 1D, 2D, and 3D assumptions.
We learn how to calculate analytical solutions to validate numerical methods.
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Stress-strain relation and equation of motions

For the derivation of wave equations we take the stress-strain constitutive relation

pij = λθδij + 2µϵij (1)

where pij are the elements of the stress tensor p, λ and µ Lamé parameters, θ = div(⃗u)
the cubic dilation and ϵij the elements of the deformation tensor. With the displacement
vector u⃗, the deformation tensor is defined as

ϵij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2)

We also take the equation of motion, which is given by

ρ
∂2ui

∂t2 =
∂pij

∂xj
+ fi (3)

with the mass density ρ and f⃗ containing external forces.
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Approximations in fluids

For the acoustic case (wave propagation in fluids) we can make two simplifications:
1 The shear modulus µ becomes zero ⇒ µ = 0
2 We have hydrostatic pressure only and shear stresses vanish, which simplifies the

stress tensor to

p =

−p 0 0
0 −p 0
0 0 −p


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Modified stress-strain relation and equation of mo-
tion

With those two simplifications, the stress-strain relation (1) reduces to

−p = λ div(⃗u) (4)

and the equation of motion (3) simplifies to

ρ
∂2ui

∂t2 = − ∂p
∂xi

(i = 1, 2, 3), (5)

assuming that we have no external forces.
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Velocity-stress first order acoustic wave equations

Differentiation of equations (4) with respect to the time t and introducing particle velocities
vi =

∂ui
∂t lead to the equations

−∂p
∂t

= λ div(⃗v) (6)

ρ
∂vi

∂t
= − ∂p

∂xi
(7)

This is the so-called velocity-stress formulation of the acoustic wave equation. Since
equation (7) consists of three equations, we now have a coupled system of 4 first-order
differential equations.

8 | 32 Bohlen – Seismic Modelling GPI, KIT



Second order acoustic wave equation

In order to obtain only one second-order differential equation, we differentiate once more
equation (6) with respect to time, leading to

−∂2p
∂t2 = λ div(

∂

∂t
v⃗) = λ

(
∂

∂x1

∂v1

∂t
+

∂

∂x2

∂v2

∂t
+

∂

∂x3

∂v3

∂t

)
(8)

and then insert equation 7:

−∂2p
∂t2 = −λ

(
∂

∂x1

(
1
ρ

∂p
∂x1

)
+

∂

∂x2

(
1
ρ

∂p
∂x2

)
+

∂

∂x3

(
1
ρ

∂p
∂x3

))
(9)

⇔ ∂2p
∂t2 = λ

3

∑
i=1

∂

∂xi

(
1
ρ

∂p
∂xi

)
(10)

Equation (10) is the second-order acoustic wave equation.
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Second order acoustic wave equation for constant
density

Assuming a constant mass density ρ, we obtain the widely used form of the acoustic wave
equation

∂2p
∂t2 =

λ

ρ
∇2p = c2 ∇2p (11)

with the velocity c =
√

λ
ρ and ρ = const . This can also be written as

(
∇2 − 1

c2
1

∂t2

)
p = 0 (12)
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Green’s functions for the acoustic wave equation

Our goal is to find analytical solutions for the inhomogenous acoustic wave equation[
∆ − 1

c2
1

∂t2

]
p(x , xs, t) = −4πf (xs, t) (13)

The Green’s function G(x , xs, t) is the solution of[
∆ − 1

c2
1

∂t2

]
G(x , xs, t) = −4πδ(x − xs)δt (14)

with the source location xs. If we know G(x , xs, t) we can construct the solution to any
other source time function (RHS) f (xs, t) by convolution

p(x , xs, t) =
∫

G(x , xs, t)f (xs, t − τ)dτ = G(x , xs, t) ∗ f (xs, t) (15)

The Greens function can be interpreted as the impulse response of the wave equation.
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Green’s functions for the acoustic wave equation

In the following we will discuss the Green’s functions for homogenous media c = const in
the frequency domain. We therefore first apply a Fourier transformation (FT) of equation
14 w.r.t. time. Our definition of the FT is

Ĝ(x , xs,ω) =
∫ ∞

−∞
G(x , xs, t)e−iωtdt (16)

G(x , xs, t) =
1

2π

∫ ∞

−∞
Ĝ(x , xs,ω)eiωtdω (17)
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Green’s functions for the acoustic wave equation

We make use of

−ω2Ĝ(x , xs,ω) =
∫ ∞

−∞

∂2G(x , xs, t)
∂t2 eiωtdt (18)

1 = eiω0 =
∫ ∞

−∞
δ(t)eiωtdt (19)

By FT we obtain the Helmholtz equation[
k2 + ∆

]
Ĝ(x , xs,ω) = −4πδ(x − xs) (20)

with the wave number k = ω
c
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Green’s functions for acoustic wave equation

Assuming a constant velocity c, one can derive the following solutions of the Helmholtz
equation in the far field. For details we refer to Morse & Freshbach (1953):

1D :∆ =

[
∂2

∂x2

]
, Ĝ1D(x , xs,ω) =

2πi
k

e−ikr (21)

2D :∆ =

[
∂2

∂x2 +
∂2

∂y2

]
, Ĝ2D(x , xs,ω) =

√
2π

kr
e−ikr e−iπ/4 (22)

3D :∆ =

[
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

]
, Ĝ3D(x , xs,ω) =

e−ikr

r
(23)

with r = ||x − xs||.
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2D and 3D Geometrical Spreading
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Figure 1: Waves propagating in 2D and 3D. Left: Line Source (2D), Right: Point Source (3D).
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Correction filter

With these Greens functions we can formulate a geometrical spreading correction filter
(Forbriger et al. 2014).

F (r ,ω) =
Ĝ2D

Ĝ3D
=

Ĝ1D

Ĝ2D
=

√
2πr

k
e−iπ/4 =

√
2πrc

ω
e−iπ/4 (24)

The factor eiπ/4 produces a phase shift of π
4 , and the first term corresponds to a half

integration (low-pss filter). With k = ω
c , this can be written as

F (r ,ω) =
√

2rc

√
π

ω
e−iπ/4 =

√
2rc FT{

√
t−1} = Famp FT{

√
t−1}, (25)

where FT{
√

t−1} is the Fourier transform of the function
√

t−1 (Forbriger et al. 2014). This
filter is independent of offset r . The other term Famp =

√
2rc is an offset (r ) or travel time

(t = rc) dependent amplitude correction.
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Calculation of analytical solutions

We now can compute analytical solutions of the acoustic wave equation in 1D, 2D, 3D[
∆ − 1

c2
1

∂t2

]
p(x , xs, t) = −4πf (xs, t), xs = 0 (26)

at distance x = R via the convolution

p1D,2D,3D(R, 0, t) =
∫

G1D,2D,3D(R, 0, t)f (t − τ)dτ (27)

or in the frequency domain via

p̂1D,2D,3D(R, 0,ω) = Ĝ1D,2D,3D(R, 0,ω)f̂ (ω) (28)

with Ĝ1D,2D,3D(R, 0,ω) as defined in equations 21, 22, 23, respectively.
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Source signal

We assume an homogeneous acoustic medium with c = 500 m/s and a shifted Ricker
signal as source wavelet with a center frequency of fc = 50 Hz located at x = 0

f (xs = 0, t) = (1 − 4τ2)e−2τ2
, (29)

τ = π(t − td )fc,

td = 1/fc

Figure 2: Ricker signal
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Amplitude spectrum of source signal

f̂ (0,ω) =
∫ ∞

−∞
f (0, t)eiωtdt

|f̂ (0,ω)| =
√
ℜ(f̂ (0,ω))2 +ℑ(f̂ (0,ω))2

Figure 3: Amplitude spectrum of Ricker
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Phase spectrum of source signal

f̂ (0,ω) =
∫ ∞

−∞
f (0, t)e−iωtdt

ϕ(0,ω) = arctan(
ℑ(f̂ (0,ω))

ℜ(f̂ (0,ω))
)

ϕ(0,ω) = −ω ∗ td

Figure 4: Phase spectrum of Ricker
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Analytical solution: 3D

p̂3D(R, 0,ω) = Ĝ3D(R, 0,ω)f̂ (0,ω)

Ĝ3D =
eikr

R

k =
ω

c
,c = 500m/s,R = 20m

p3D(R, 0, t) =
1

2π

∫ ∞

−∞
p̂3D(R, 0,ω)eiωtdω

Figure 5: Source signal and analytical
solution: 3D
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Analytical solution: 3D, 2D

p̂2D(R, 0,ω) = Ĝ2D(R, 0,ω)f̂ (0,ω)

Ĝ2D =

√
2πc
ωR

e−ikRe−iπ/4

p2D(R, 0, t) =
1

2π

∫ ∞

−∞
p̂2D(R, 0,ω)eiωtdω

Figure 6: Source signal and analytical
solutions: 3D, 2D
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Analytical solution: 3D, 2D, 1D

p̂1D(R, 0,ω) = Ĝ1D(R, 0,ω)f̂ (0,ω)

Ĝ1D =
2πic

ω
e−ikR

p1D(R, 0, t) =
1

2π

∫ ∞

−∞
p̂1D(R, 0,ω)eiωtdω

Figure 7: Source signal and analytical
solution: 3D, 2D, 1D
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Amplitude spectra of Greens functions

Ĝ3D =
e−ikr

R

Ĝ2D =

√
2πc
ωR

e−ikRe−iπ/4

Ĝ1D =
2πic

ω
e−ikR

Figure 8: Amplitude spectra of Greens
functions

26 | 32 Bohlen – Seismic Modelling GPI, KIT



Analytical solution: amplitude and phase spectra

Figure 9: Amplitude and phase spectra of analytical solutions
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Analytical solutions: summary

1 1D: full integration , no amplitude decay, no phase shift

2 2D: half integration, amplitude decay with 1/
√

R, phase shift of −π/4

3 3D: no integration, amplitude decay with 1/R, no phase shift
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Summary

We derived the classical acoustic wave equation and discussed the Greens-functions
which are solutions of the Helmholtz equation[

k2 + ∆
]

Ĝ(x , xs,ω) = −4πδ(x − xs)

The solutions are:

Ĝ1D =
2πic

ω
e−ikr , Ĝ2D =

√
2πc
ωr

e−ikr e−iπ/4, Ĝ3D =
e−ikr

r

3D: source signal remains unchanged and amplitudes decrease with 1/r .

2D: source signal is half integrated and amplitudes decrease with 1/
√

r

1D: source signal is fully integrated and amplitudes do not change with r .
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Questions

1 Please give a few examples of media in which the acoustic wave equations should be
sufficient to describe wave propagation.

2 Is the approximation of homogeneous mass density (ρ =const) crucial ?
3 Why do we consider solutions of 1D and 2D wave equation at all ?
4 Let us summarize the main differences between wave propagation in 1D, 2D, and 3D

homogeneous acoustic media w.r.t. to signal shape and amplitude decay.
5 Is it (always) possible to calculate the 3D solution from a given 2D solution (or vice

versa) ? What are the assumptions ? In which applications in applied seismics or
seismology might such a spreading correction be required ?

6 Can we calculate analytical solutions for non-homogenous media ?
7 Do S-waves in homogeneous elastic media behave similarly ?
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