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Motivation

1 Understand the complexity of wave propagation
2 Produce reference results to test new methods
3 Optimize acquisition geometry
4 Predict earthquake hazard
5 Kernel of many imaging methods, e.g. migration, tomography, FWI
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Content of the lecture Seismic Modelling

7 lectures
1 Introduction
2 Finite-Difference Method (3)
3 Reflectivity Method (1)
4 Eikonal solver (1)
5 Finite Element method (1)
6 Spectral Element method (1)
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Literature for further study

Book ”Computational Seismology” by Igel (2016).

Book ” Full Seismic Waveform Modelling and Inversion” by (Fichtner 2011)
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Agenda

1. Classification of methods

2. The Finite-Difference Method
2.1 FD-Approximation to the second order derivatives
2.2 Discretization of 1D second order wave equation
2.3 Dispersion analysis
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Classification of modelling methods

1 Direct methods that solve the full wave equation
a Geological model is discretized on a numerical mesh
b Full solution of the wave equations in space and time
c Computationally very expensive (HPC)
d Examples are Finite-Differences , Finite elements, Spectral elements

Boundary condition

Figure 1: The Finite-Difference methods computes the full wavefield on a regular grid.
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Classification of modelling methods

2 Integral-equation methods
a Seperation of wavefield in upgoing and downgoing scattered/reflected waves
b Superposition in performed by integration
c Computationally very efficient
d Examples: Kirchhoff-Modelling, Reflectivity method

Figure 2: Integral methods superpose specific waves by numerical integration.
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Classification of modelling methods

3 Ray-tracing
a High-frequency approximation
b Calculation of individual rays
c Computationally very fast
d Traveltimes reliable, amplitudes not
e Examples: Ray-tracing (full ray path), Eikonal solvern (first arrivals)

Figure 3: Individual rays are traced and their traveltime and amplitude is calculated.
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Agenda

1. Classification of methods

2. The Finite-Difference Method
2.1 FD-Approximation to the second order derivatives
2.2 Discretization of 1D second order wave equation
2.3 Dispersion analysis
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The Finite-Difference Method

The general idea of the FD-method is to replace the partial derivatives in time and space
with difference equations. These can be obtained by a Taylor-series expansion.

The difference equations are straightforward to implement.

The numerical properties are well understood.

Wavefields in arbitrary complex media can be calculated.

The resulting algorithms are very fast and efficient and show excellent performance
on HPCs.

Variable spatial and temporal discretization is problematic.
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Agenda

1. Classification of methods

2. The Finite-Difference Method
2.1 FD-Approximation to the second order derivatives
2.2 Discretization of 1D second order wave equation
2.3 Dispersion analysis
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1D wave equation

For simplicity we consider the second order 1D wave equation:

∂2p
∂t2 = c2 ∂2p

∂x2 (1)

We want to approximate the second order space derivatives first.

We discretize
p(x) = p(mh) = pm

where h denotes the grid spacing.

12 | 37 Bohlen – Seismic Modelling GPI, KIT



Finite-Difference equations for second order deriva-
tives

We perform a Taylor series expansion around p(x = 0) = p0

pm = p0 +
N

∑
k=1

p(k)mk hk

k !
(2)

We can eliminate uneven derivatives by adding p at negative offsets m:

pm + p−m = 2p0 + p
′′
m2h2 + 2

N

∑
k=2

p(2k)m2k h2k

(2k)!
(3)
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Finite-Difference equations for second order deriva-
tives

We now isolate the desired second order derivative:

p
′′
m2 =

−2p0

h2 +
1
h2 (pm + p−m)−

2
h2

N

∑
k=2

p(2k)m2k h2k

(2k)!
(4)

We multiply each of the m equations with an (yet unknown) coefficient am:

amp
′′
m2 =

−2p0

h2 am +
1
h2 am (pm + p−m)−

2
h2 am

N

∑
k=2

p(2k)m2k h2k

(2k)!
(5)

Then we sum all m equations:

M

∑
m=1

amm2p
′′
=

−2p0

h2

M

∑
m=1

am +
1
h2

M

∑
m=1

am (pm + p−m)−
−2
h2

M

∑
m=1

am

N

∑
k=2

p(2k)m2k h2k

(2k)!
(6)
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Finite-Difference equations for second order deriva-
tives
We repeat the last equation:

M

∑
m=1

amm2p
′′
=

−2p0

h2

M

∑
m=1

am +
1
h2

M

∑
m=1

am (pm + p−m)−
−2
h2

M

∑
m=1

am

N

∑
k=2

p(2k)m2k h2k

(2k)!

If we choose the coefficients am so that
M

∑
m=1

amm2 = 1 and
M

∑
m=1

amm2k = 0 with k = 2, ...,M

we obtain:

p
′′

=
−2p0

h2

M

∑
m=1

am +
1
h2

M

∑
m=1

am (pm + p−m)−
−2
h2

N

∑
k=M+1

p(2k)m2k h2k

(2k)!

p
′′

=
1
h2

(
−a0p0 +

M

∑
m=1

am (pm + p−m)

)
+O(h2M) with a0 = 2

M

∑
m=1

am
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Finite-Difference equations for second order deriva-
tives

The accuracy order is defined as smallest exponent of h in the error term

−−2
h2

N

∑
k=M+1

p(2k)m2k h2k

(2k)!
= O(h2M)

which is 2(M + 1)− 2 = 2M.
So we finally obtained the following FD aproximation for the second order derivative:

p
′′
=

1
h2

(
−a0p0 +

M

∑
m=1

am (pm + p−m)

)
+O(h2M) with a0 = 2

M

∑
m=1

am (7)

for which we can also write

p
′′
=

1
h2

(
M

∑
m=1

am (pm + p−m − 2p0)

)
+O(h2M)
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Finite-Difference equations for second order deriva-
tives
The coefficient can be interpreted as follows:

p
′′
=

1
h2

(
M

∑
m=1

am (pm + p−m − 2p0)

)
+O(h2M) (8)

The length of the operator is M grid points. The order of accuracy is 2M.
p’’

x

m=0 m=1 m=2m=−1m=−2

p2p1p0p−1p−2

Figure 4: Illustration of the summation of adjacent pressure values to approximate the second order
spatial derivative using the symmetric FD-operator given in equation 7.
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Finite-Difference equations for second order deriva-
tives
Remember that the FD coefficients am must be determined by

M

∑
m=1

amm2 = 1 and
M

∑
m=1

amm2k = 0 with k = 2, ...,M (9)

This resulting am are:

M a0 a1 a2 a3 a4 a5 accuracy
= 2 ∑M

m=1 am order (2M)
1 2 1 2
2 5/2 4/3 -1/12 4
3 49/18 3/2 -3/20 1/90 6
4 205/72 8/5 -1/5 8/315 -1/560 8
5 5269/1800 5/3 -5/21 5/126 -5/1008 1/3150 10

Table 1: FD-coefficients for the approx. of the second derivative (eq. 8) calculated via eq. 9.
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Example: Approximation of second derivative of test
function sin(x)

Figure 5: Test function sin(x) at x0 = 1.0 and
second deriviative.

ptrue(x0) = sin(x0) at x0 = 1.0

p
′′
true(x0) = − sin(x0).

L1-error: E = ∥p
′′
FD − p

′′
true∥
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Approximation of second derivative of sin(x)

Figure 6: L1-error of FD approximation of second derivative
of test function sin(x) at x0 = 1.0.

The error decreases
log(E) ∝ 2M · log(h)

The error can be reduced
significantly by increasing M
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Agenda

1. Classification of methods

2. The Finite-Difference Method
2.1 FD-Approximation to the second order derivatives
2.2 Discretization of 1D second order wave equation
2.3 Dispersion analysis
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Discretization of 1D acoustic wave equation
We consider the 1-D second order wave equation

∂2p(x , t)
∂t2 = c2 ∂2p(x , t)

∂x2 (10)

The pressure p(x , t) at the location x at time t is discretized with
p(x , t) = p(jh, n△t) = pn

j . According to equation 7 a second order approximation (M=1)
of the second order derivatives are:

1
△t2 (p

n+1
j − 2pn

j + pn−1
j ) =

c2

h2 (p
n
j+1 − 2pn

j + pn
j−1) (11)

The resulting explicit FD-scheme the reads

pn+1
j = 2pn

j − pn−1
j +

c2△t2

h2 (pn
j+1 − 2pn

j + pn
j−1) (12)

It is if second order accuracy in both time and space O(2,2). The symbol O(N,2M) denotes
the accuracy order in time (N) and space (2M).
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Discretization of 1D acoustic wave equation

For arbitrary order in space 2M but second order in time O(2,2M) the explicit FD
approximation to the second order wave equations reads

pn+1
j = 2pn

j − pn−1
j +

c2△t2

h2

(
−a0pn

j +
M

∑
m=1

am
(
pn

j+m + pn
j−m
))

(13)

This is a very common explicit discretization of the wave equation.

The wavefield can be calculated in a time-loop starting at n = 0 and then increase n by
1: n → n + 1. The numerical implementation is relatively straightforward.

Typical accuracy orders in space are 2M = 2, 4, 6.
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Agenda

1. Classification of methods

2. The Finite-Difference Method
2.1 FD-Approximation to the second order derivatives
2.2 Discretization of 1D second order wave equation
2.3 Dispersion analysis
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Dispersion analysis

We now perform a so-called dispersion analysis of the discrete 1-D wave equation:

1
△t2 (p

n+1
j + pn−1

j − 2pn
j ) =

c2

h2

M

∑
m=1

am
(
pn

j+m + pn
j−m − 2pn

j
)

(14)

We insert again a plane wave

pn
j = p0 exp(i(kjh + ωn△t) (15)

and obtain

p0 exp(i(kjh + ωn△t) [exp(iω(+△t)) + exp(iω(−△t))− 2] =

c2△t2

h2 p0 exp(i(kjh + ωn△t)
M

∑
m=1

am [exp(ikmh) + exp(−ikmh)− 2]
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Dispersion analysis

We can eliminate p0 exp(i(kjh + ωn△t) and make the substitutions

zt = exp(i△tω)

zx = exp(ikh)

r =
c△t

h
”Courant number”

and get

(z1
t + z−1

t − 2) = r2
M

∑
m=1

am
(
zm

x + z−m
x − 2

)
(16)
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Dispersion analysis
We first analyze the RHS of eq. 16 and use the Euler eq. exp(ix) = cos(ix) + i sin(ix)

am
(
zm

x + z−m
x − 2

)
= am (exp(imkh) + exp(−imkh)− 2)

= 2am (cos(mkh)− 1) = 2am

(
−2 sin2(

mkh
2

)

)
= −4am sin2(

mkh
2

)

For the LHS we obtain:

(z1
t + z−1

t − 2) = −4 sin2(
ω△t

2
)

Therefore

sin2(
ω△t

2
) = r2

M

∑
m=1

am sin2(
mkh

2
) (17)

This is a ”dispersion relation” between ω and k .
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Dispersion analysis

We want to solve this dispersion relation and analyze the effect on the numerical phase
velocity of the waves. The numerical propagation velocity is cfd = ω

k . We can therefore
write

cfd

c
=

ω
k

c
=

ω
k
rh
△t

=
ω△t
khr

(18)

With equation 18 we finally obtain the dispersion relation for the O(2,2M) scheme

cfd

c
=

ω△t
khr

=
2

khr
arcsin

r

√√√√ M

∑
m=1

amsin2(
mkh

2
)

 (19)

28 | 37 Bohlen – Seismic Modelling GPI, KIT



Numerical dispersion 1D FD O(2,2)

Figure 7: Numerical dispersion O(2,2) (M=1, equation 19)

cfd < c for all kh.

Velocity decrease with kh, i.e.
with decreasing frequency

For small r (small △t) the
dispersion becomes worse
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Numerical dispersion 1D FD O(2,2)

Figure 8: Seismograms for M=1 calculated via equation 13.

Signals are dispersed

Low frequencies arrive later

Movie
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Numerical dispersion 1D FD O(2,4)

Figure 9: Numerical dispersion O(2,4) (M=2, equation 19)

Now also cfd > c for some kh.

Velocity increases for small kh,
i.e. at high frequencies

Velocity decreases for large kh,
i.e. at low frequencies
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Numerical dispersion 1D FD O(2,4)

Figure 10: Seismograms for M=2 calc. via eq. 13.

Signals are much less
dispersed

High frequencies arrive earlier

Movie
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Magic time step
Let us look again at the dispersion relation for the 1D FD O(2,2M) scheme

cfd

c
=

ω△t
khr

=
2

khr
arcsin

r

√√√√ M

∑
m=1

amsin2(
mkh

2
)


For second order accuracy (M=1) the dispersion relation becomes

cfd

c
=

2
khr

arcsin

(
r sin(

kh
2
)

)
(20)

For r=1 we get
cfd

c
= 1 (21)

We thus have no error for O(2,2) and r = c△t
h = 1. The magic time step is

△tmagic =
h
c

(22)
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Magic time step, G=20

Figure 11: Seismograms for M=2 and r = 1.

All frequencies propagate with
cfd = c !

Movie
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Summary

Seismic modelling methods can be categorised into direct methods, integral methods,
and ray-tracing methods

The FD method is a direct method. The wavefield is discretized on a regular grid in
space and time.

The FD approximations for the second derivative have been obtained by Taylor series
expansion.

We derived an explicit FD scheme O(2,2M) for the 1D wave equation.

The error in the approximation of derivatives leads to numerical dispersion. The
numerical velocity becomes frequency dependent leading to precursors and/or the
development of a coda.

The O(2,2) 1D FD scheme for r = 1 is magic.
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Questions

1 What does the term ”order of accuracy” (2M) mean in detail ? How can we test the
”order of accuracy” of a given algorithm numerically ?

2 What are the benefits of increasing the order of accuracy ? What are possible
drawbacks ? How should we choose it ”wisely” ?

3 How can we implement equation 13 into a practical computer program (Matlab or
Phython). Let us discuss the general structure of such a program.

4 How do simulation errors generally become apparent in synthetic seismograms ?

5 How can we judge if a certain FD simulation is accurate (enough) ? How can we
improve the accuracy ?

6 Would you also call the specific choice of time step in equation 22 ”magic”. Do we have
such a ”magic time step” also for M > 1 or for higher dimensions ?
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