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Summary of last lecture (1)

A

We studied the 1-D second order wave equation

Pp(x,t) _ ,8p(x,1)
T P M
and derived the discrete form of accuracy O(2, 2M)'

2

NG (o +p " —2p0) = =1z Z am (00 m+ 0 m — 207) )

We inserted a plane wave p;’ = po exp(i(kjih+ wn/At) and obtained the dispersion relation
Cd CUAZ‘ 2 . M . 5 mkh

c = khr = kpy esin (rJ ,,,;1 amsin (—2 ) (3)
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Summary of last lecture (1)
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Figure 1: Numerical dispersion O(2,4) (M=2, equation 3)
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Numerical dispersion for 1-D FD 0(2,4)
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a Stron% effect of Courant number
c/A\t

==
® cy/c > 1forlarge r
@ ¢y/c < 1forsmall r

@ — effect of time discretization
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This lecture (2) A\‘(IT

Karlsruhe Institute of Technology

© Study the effect of time discretization in more detail

© Dispersion
O Stability

® Extension to 2D and 3D acoustic FD modelling
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Agenda ﬂ(".

Karlsruhe Institute of Technology

1. The Finite-Difference Method
1.3 1D Dispersion analysis (time discretization)
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Numerical dispersion due to time discretization

A

We want to analyze the dispersion caused by time discretization only. For this purpose we
discretize w.r.t. time t = n/At only (x=continuous)

L n+1 n n—1y _ 282pn(X)
Atz(p 2:0 +p )_ Y axg

We insert a discrete plane wave
pP"(x) = poexp(i(kx + wn/\t)
and obtain with z; = exp(iAtw)

(4)

(2 =2z +z1) _ 2(cos(wAl) —2) _ _ g2y2 (co=e/k) c2w? 5)
At At? c2
Cid _ —(wAt)? (wAt=rkh) —(rkh)? Taylor (rkh)? 51 ©)
2 2(cos(wAt)—1) 2(cos(rkh) — 1) 12
6|36 Bohlen - Seismic Modelling GPI, KIT

B ——




Numerical dispersion due to time discretization A\‘(IT

1 2Numerical dispersion second order time discretization
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Figure 2: Numerical dispersion of 1D FD scheme due
to second order time discretization only (equation 6).
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time dispersion leads to ¢iy/c > 1

strong dispersion for large r (coarse
At)

however, this can compensate for
the opposite dispersion (cry/c < 1)
intruced by space discretization !

— find balance between time and
space discretization and order of
accuray 2M to minimize effective
dispersion
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Agenda ﬂ(".

Karlsruhe Institute of Technology

1. The Finite-Difference Method

1.4 1D Stability analysis
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Von Neumann stability analysis

We first consider the 1D acoustic wave equation
Pp _ ,%p

P F 7
oz~ © axe ¢
We perform an analysis of the numerical stability of the explicit 1D acoustic FD integration
M
pit=2p —p T 41 (aop,-” + ) am (B im+ p}’,,,)) (8)
m=1
where
M
a=-2) am (9)
m=1
and the Courant number is
—_— (10)
~ h
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Von Neumann stability analysis

We first want to abbreviate the sum. By defining

we can write equation 8 in a more condensed form

pitt =2p —p T 41 f: ampfym Wwith ap = —2 f: am (12)
m=—M m=1
In order to separate the time and space discretization we make the following Ansatz
P, — pn elkx _ pn eikjh (13)
Inserting this gives
P ehih — _pn=1gih | opngikih 4 2 % amp"ekitmh (14)
m=—M
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Von Neumann stability analysis

Dividing by e*" gives

M
pn+1 — _pn—1 +2pn+ r2 Z ampnelkmh (15)
m=—M
We factor out p”
M .
pn+1 — _pnf1 +pn 24 I’2 Z ame/kmh — _pnf1 +2Apn (16)
m=—M
with
rr ikmh
A:1+Em;Mame’m (17)
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Von Neumann stability analysis A\‘(IT

We define the time amplification factor

v = = (18)
The criterion for stability is
lv| <1 faneN*

This ensures that amplitudes do not increase at every time step due to the
discretization.
By dividing equation 16 by p"~' we get

Y2 =—-142Ay or 9> —2Ay+1=0 (19)

Y12 = A+ /A2 — 1 (20)
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Von Neumann stability analysis

The criterion for stability |y| < 1 is fulfilled if
1< A<

Consequently
2 M

r .
—1<14+ - ) ane®™ <A
2 m=—M

We subtract 1 and multiply with 2

M
—4<r? Y ape <o
m=—M
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Von Neumann stability analysis

The term
M ) M ) )
Z am e/kmh — Z am( elkmh_ eflkmh) + ag
m=1
M
— Z am(eikmh o e—ikmh _ 2)
m=1

M
— Z am2(cos(kmh) — 1)
~

M
= Z sm (kmh/2)) <
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Von Neumann stability analysis
Therefore, the requirement for stability is
M .
r?l Y ame™| <4 (25)
m=—M
An upper limit for the sum is
M . M
| 2 ame ™| < 2 |am| (26)
m=—M m=—M
This gives
M
r# Y lam| <4 or r< (27)
m=—M
This is the upper limit of the Courant number to e
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Von Neumann stability analysis

1D explicit FD modelling with equation 8 is stable if
r=—— < rImax

where

2 M
I'max = , a = —2 2 am
M m=1
Y. 2|am| + |ao
m=1
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FD coefficients and maximum Courant numbers r,,,

KIT

Karlsruhe Institute of Technology

M ao a as as as as accuracy I'max
=2yM . a, order (2M)

1 2 1 2 1

2 5/2 4/3 | -1/12 4 VA

3 49/18 3/2 | -3/20 | 1/90 6 @
4 205/72 8/5| -1/5 | 8/315 | -1/560 8 @
5 5269/1800 | 5/3 | -5/21 | 5/126 | -5/1008 | 1/3150 10 %

Table 1: FD-coefficients and maximum Courant numbers in 1D.
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Stability limits for 1D FD modelling A\‘(IT

Karlsruhe Institute of Technology

Stability limits in 1D
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o6l ] @ ;. decreases with increasing
M
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Figure 3: Maximum Courant numbers for 1D FD
modelling calculated with equation 29.
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Numerical verification of stability criteria

We perform 1D FD-simulations with O(2,4). The maximum Courant number is

r, = Chm < \f — 0.8660254 (30)

We choose a homogeneous medium with ¢ = 500 m/s. At =1.732msand h=1m. In

our first simulation we have
rr =0.866 < rg (31)

The simulation shoud be stable.
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Stability for acoustic FD modelling A\‘(IT

0(2,4), G=20,kh=0,3 T=1.493s

0.5

Pressure
o
—
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x [m]

Figure 4: Movie of snapshots (1DFD, O(2,4)), 1 = 0.866 < r, = 0.8660254 .
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KIT

Numerical verification of stability criteria

Now we increase the velocity at the single gridpoint located at x = 600m to ¢ = 500.05
m/s. The velocity remains at ¢ = 500 m/s elsewhere. We thus now have

rn. = 0.86608 > r, = 0.8660254 at x = 600m (32)
rr = 0.866 < r, = 0.8660254 elsewhere

We violate the criterion at one grid point slightly.
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Stability for acoustic FD modelling A\‘(IT

0(2,4), G=20.2,kh=0,3 T=1.493s

Pressure

@ amplitides “explode” immediately

@ the stability criterion must be
fulfilled strictly

) 0 200 400 600 800 1000
x[m]

Figure 5: Movie of snapshots (1DFD, O(2,4)) where
r > rc at one single grid point located at x = 600m.
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Agenda A“(IT

Karlsruhe Institute of Technology

1. The Finite-Difference Method

1.5 Extension to 2D and 3D acoustic FD modelling

23|36 Bohlen - Seismic Modelling GPI, KIT

5 —




2D/3D acoustic FD modelling

We show the 3D case. In 3D (D=3) we have the scalar wave equation

Pp _ ,(%°p  &p 9%
2-o(32 3530

ox2  dy?2  0z2
We discretize x = ih, y = jh,z = kh

n+1 __ n n—1
Pk = 2Pijk — Pji
M
2 n
+r Z amPitm,j k
m=—M
M
2 n
+r 2 amPi j+m,k
m=—M
M

2 n
+r Z ampP; j k+m

m=—M
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Dispersion analysis for 2D acoustic FD modelling

We insert a harmonic plane wave of the form
p = poexp (i (wt — kxsin(0) — kz cos(0)) (35)

where 6 denotes the angle between the vertical axis z and the direction of propagation.
We introduce the following abbreviations z; = @A, z, = glkhsin(0) 7 — gikhcos(f)
This gives

m

M M
Z 4z —2:r2< am (20 +z;"—2)+ Y am(z;”+z;m—2)> (36)
=1

We make use of

2"z — 2 = glkmh)  g(=kmh) _ 5 — 2 (cos(mkh) — 1)) = —4sin?(mkh/2) (37)
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Dispersion analysis for 2D acoustic FD modelling A\‘(IT

Therefore
wAt M ., [ mkhsin(0) . [ mkhcos(9)
sin? Z:: [sm <2> + sin <2>} (38)

The dispersion for the 2D acoustic O(2,2M) FD integration thus is

cg _ wht 2 M . o ( mkhsin() . o [ mkhcos(8)
c . Khr Khr arcsin {rd Z am [sm 5 +sin 5

m=1
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Dispersion for 2D acoustic FD modelling O(2,2) ﬂ(".
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Figure 6: Numerical dispersion of 2D acoustic FD modelling O(2,2) (equation 39).
Click on first frame to play
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Dispersion for 2D acoustic FD modelling 0(2,2)

Karlsruhe Institute of Technology

Numerical dispersion for 2-D FD O(2,2) kh=1
920
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Figure 7: Plot of |crg/c — 1| of equation 39 Figure 8: Snapshot of acoustic O(2,2) FD
using kh=1 and 2M=2. modelling (kh=1,r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,4)

Karlsruhe Institute of Technology

Numerical dispersion for 2-D FD 0(2,4) kh=1 0(2,4),G=6.25,kh=1r=0,5T=0.2s
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Figure 9: Plot of |crg/c — 1| of equation 39 Figure 10: Snapshot of acoustic O(2,4) FD
using kh=1 and 2M=4. modelling (kh=1,r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,20)

Karlsruhe Institute of Technology

Numerical dispersion for 2-D FD 0(2,20) kh=1 0(2,20),G=6.25,kh=1r=0,5T=0.2s
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Figure 11: Plot of |cry/c — 1| of equation 39 Figure 12: Snapshot of acoustic O(2,20) FD
using kh=1 and 2M=20. modelling (kh=1,r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,20)

Karlsruhe Institute of Technology

Numerical dispersion for 2-D FD 0(2,20) kh=1 0(2,20),G=6.25,kh=1r=0,1T=0.2s 008
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Figure 13: Plot of |cry/c — 1| of equation 39 Figure 14: Snapshot of acoustic O(2,20) FD
using kh=1 and 2M=20. modelling (kh=1,r =0.1)
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Stability for 2D and 3D acoustic FD modelling A\‘(IT

If we perform the same Von Neumann stability analysis for the 2D (D=2) and 3D (D=3)
discrete wave equations 34 the criterion for stability is simply

M
r* Y Dlap| <4 (40)
m=—M
We therefore get the factor v/D in the final stability condition

cA\t < 2 2

VD[ L anl f\/zz|am|+|ao\

Equation 41 defines the upper limit of the Courant number to ensure numerical stability of
0O(2,2M) acoustic FD modelling in D=1,2,3 dimensions.
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Stability limits for 1D FD modelling
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Figure 15: Maximum Courant numbers for acoustic
0O(2,2M) FD modelling calculated with equation 41.
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M and dimension D
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Summary of lecture A\‘(IT
® We studied the numerical dispersion caused by time discretization: ¢y /c > 1

@ Dispersion caused by space and time discretization can counterbalance.

@ Von Neumann stability analysis: r < rpax. Strict stability condition must be met.

@ Extension of the analysis of disersion and stability to 2D and 3D is straightforward.
® Numerical dispersion ciy/c = f(r, kh,2M, 0)
® |n higher dimensions D = 2, 3 the stability limit is reduced by a factor (1 /\/5)
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.
Questions Katrane stiute o Technaogy

1 How can we distinguish between the numerical dispersion produced by a too coarse
time discretization from the numerical dispersion produced by a too coarse space
discretization ?

2 Do the opposite effects of numerical dispersion caused by time and space discretization
generally partly compensate each other and is this generally advantageous ? Ich which
case can we observe a perfect cancellation ?

3 Do you know numerical methods that allow to increase the accuracy order of the time
discretization beyond second order ?

4 Please recap the principle assumption and central idea of the Von Neumann stability
analysis.

5 Can we in most cases expect a stronger or weaker numerical error for waves that
propagate along the cartesian directions ?
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.
Questions Katrane stiute o Technaogy

6 Let us consider a complex velocity model with a minimum velocity of 200 m/ s in the
shallow part and 2000 m/ s in the deeper part. The main frequency of the seismic
source shall be 50 Hz. We want to simulate waves with a 2D O(2,2) acoustic FD
scheme. How should we choose the space interval h and time step /\t to ensure a
stable and sufficiently accurate simulation ?

7 Can we predict the dispersion error in FD modeling analytically ? If yes, how could we
correct the synthetic seismograms to obtain (more) accurate solutions ?
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