

# **Seismic Modelling**

#### 2D/3D acoustic Finite Difference Method

Thomas Bohlen, Geophysical Institute, KIT-Faculty of Physics



#### www.kit.edu



# Summary of last lecture (1)

We studied the 1-D second order wave equation

$$\frac{\partial^2 p(x,t)}{\partial t^2} = c^2 \frac{\partial^2 p(x,t)}{\partial x^2}$$
(1)

and derived the discrete form of accuracy O(2,2M):

$$\frac{1}{\triangle t^2}(p_j^{n+1}+p_j^{n-1}-2p_j^n)=\frac{c^2}{h^2}\sum_{m=1}^M a_m\left(p_{j+m}^n+p_{j-m}^n-2p_j^n\right)$$
(2)

We inserted a plane wave  $p_j^n = p_0 \exp(i(kjh + \omega n \triangle t))$  and obtained the dispersion relation

$$\frac{c_{fd}}{c} = \frac{\omega \triangle t}{khr} = \frac{2}{khr} \arcsin\left(r \sqrt{\sum_{m=1}^{M} a_m sin^2(\frac{mkh}{2})}\right)$$
(3)



# Summary of last lecture (1)



Figure 1: Numerical dispersion O(2,4) (M=2, equation 3)

3 | 36

# Karlsruhe Institute of Technology

# This lecture (2)

- Study the effect of time discretization in more detail
  - Dispersion
  - Stability
- 2 Extension to 2D and 3D acoustic FD modelling



# Agenda

#### 1. The Finite-Difference Method

#### 1.3 1D Dispersion analysis (time discretization)

- 1.4 1D Stability analysis
- 1.5 Extension to 2D and 3D acoustic FD modelling

### Numerical dispersion due to time discretization



We want to analyze the dispersion caused by time discretization only. For this purpose we discretize w.r.t. time  $t = n \triangle t$  only (*x*=continuous)

$$\frac{1}{\triangle t^2}(p^{n+1}-2p^n+p^{n-1})=c^2\frac{\partial^2 p^n(x)}{\partial x^2}$$
(4)

We insert a discrete plane wave

$$p^n(x) = p_0 \exp(i(kx + \omega n \triangle t))$$

and obtain with  $z_t = \exp(i \triangle t \omega)$ 

$$\frac{(z_t^1 - 2z_t^0 + z_t^{-1})}{\triangle t^2} = \frac{2(\cos(\omega \triangle t) - 2)}{\triangle t^2} = -c^2 k^2 \stackrel{(c_{fd} = \omega/k)}{=} \frac{c^2 \omega^2}{c_{fd}^2}$$
(5)

$$\frac{c_{fd}^2}{c^2} = \frac{-(\omega \triangle t)^2}{2(\cos(\omega \triangle t) - 1)} \stackrel{(\omega \triangle t = rkh)}{=} \frac{-(rkh)^2}{2(\cos(rkh) - 1)} \stackrel{\text{Taylor}}{\approx} 1 + \frac{(rkh)^2}{12} > 1$$
(6)

Bohlen – Seismic Modelling

GPI, KIT



# Numerical dispersion due to time discretization



Figure 2: Numerical dispersion of 1D FD scheme due to second order time discretization only (equation 6).

- time dispersion leads to  $c_{fd}/c > 1$
- strong dispersion for large r (coarse  $\triangle t$ )
- however, this can compensate for the opposite dispersion (c<sub>fd</sub> / c < 1) intruced by space discretization !
- find balance between time and space discretization and order of accuray 2M to minimize effective dispersion



# Agenda

#### 1. The Finite-Difference Method

1.3 1D Dispersion analysis (time discretization)

#### 1.4 1D Stability analysis

1.5 Extension to 2D and 3D acoustic FD modelling



We first consider the 1D acoustic wave equation

$$\frac{\partial^2 p}{\partial t^2} = c^2 \frac{\partial^2 p}{\partial x^2} \tag{7}$$

We perform an analysis of the numerical stability of the explicit 1D acoustic FD integration

$$p_{j}^{n+1} = 2p_{j}^{n} - p_{j}^{n-1} + r^{2} \left( a_{0}p_{j}^{n} + \sum_{m=1}^{M} a_{m} \left( p_{j+m}^{n} + p_{j-m}^{n} \right) \right)$$
(8)

where

$$a_0 = -2\sum_{m=1}^M a_m \tag{9}$$

and the Courant number is

$$r = \frac{c \triangle t}{h} \tag{10}$$



We first want to abbreviate the sum. By defining

$$a_{-m} = a_m \tag{11}$$

we can write equation 8 in a more condensed form

$$p_j^{n+1} = 2p_j^n - p_j^{n-1} + r^2 \sum_{m=-M}^M a_m p_{j+m}^n$$
 with  $a_0 = -2 \sum_{m=1}^M a_m$  (12)

In order to separate the time and space discretization we make the following Ansatz

$$p_j^n = p^n e^{ikx} = p^n e^{ikjh} \tag{13}$$

Inserting this gives

$$p^{n+1}e^{ikjh} = -p^{n-1}e^{ikjh} + 2p^n e^{ikjh} + r^2 \sum_{m=-M}^{M} a_m p^n e^{ik(j+m)h}$$
(14)



Dividing by  $e^{ikjh}$  gives

$$p^{n+1} = -p^{n-1} + 2p^n + r^2 \sum_{m=-M}^{M} a_m p^n e^{ikmh}$$
(15)

We factor out  $p^n$ 

$$p^{n+1} = -p^{n-1} + p^n \left[ 2 + r^2 \sum_{m=-M}^{M} a_m e^{ikmh} \right] = -p^{n-1} + 2Ap^n$$
(16)

with

$$A = 1 + \frac{r^2}{2} \sum_{m=-M}^{M} a_m e^{ikmh}$$
(17)



We define the time amplification factor

$$\gamma := \frac{p^{n+1}}{p^n} = \frac{p^n}{p^{n-1}}$$
(18)

The criterion for stability is

 $|\gamma| \leq 1$  f.a. $n \in \mathbb{N}^+$ 

. .

This ensures that amplitudes do not increase at **every time step due to the discretization**.

By dividing equation 16 by  $p^{n-1}$  we get

$$\gamma^{2} = -1 + 2A\gamma$$
 or  $\gamma^{2} - 2A\gamma + 1 = 0$  (19)

The solutions are

$$\gamma_{1,2} = A \pm \sqrt{A^2 - 1} \tag{20}$$

Karlsruhe Institute of Technology

The criterion for stability  $|\gamma| \leq 1$  is fulfilled if

$$-1 \le A \le 1 \tag{21}$$

Consequently

$$-1 \leq 1 + rac{r^2}{2} \sum_{m=-M}^M a_m e^{ikmh} \leq 1$$

We subtract 1 and multiply with 2

$$-4 \le r^2 \sum_{m=-M}^{M} a_m e^{ikmh} \le 0$$
 (23)

(22)



The term

$$\sum_{m=-M}^{M} a_m e^{ikmh} = \sum_{m=1}^{M} a_m (e^{ikmh} - e^{-ikmh}) + a_0$$
$$= \sum_{m=1}^{M} a_m (e^{ikmh} - e^{-ikmh} - 2)$$
$$= -\sum_{m=1}^{M} a_m 2(\cos(kmh) - 1)$$
$$= -\sum_{m=1}^{M} a_m 4(\sin^2(kmh/2)) < 0$$



$$r^{2}|\sum_{m=-M}^{M}a_{m}e^{ikmh}|\leq 4$$
(25)

An upper limit for the sum is

$$\sum_{m=-M}^{M} a_m e^{ikmh} | \leq \sum_{m=-M}^{M} |a_m|$$
(26)

This gives

$$r^{2} \sum_{m=-M}^{M} |a_{m}| \le 4 \text{ or } r \le \frac{2}{\sqrt{\sum_{m=-M}^{M} |a_{m}|}} := r_{max}$$
 (27)

This is the upper limit of the Courant number to ensure numerical stability for the 1D <sup>15</sup>acoustic case.<sup>Bohlen – Seismic Modelling</sup>
GPI

. .



GPI, KIT



1D explicit FD modelling with equation 8 is stable if

$$r = \frac{c \triangle t}{h} \le r_{max} \tag{28}$$

where

$$r_{max} = rac{2}{\sqrt{\sum\limits_{m=1}^{M} 2|a_m| + |a_0|}}, \quad a_0 = -2\sum\limits_{m=1}^{M} a_m$$



# FD coefficients and maximum Courant numbers *r<sub>max</sub>*

| Μ | $a_0$                      | a <sub>1</sub> | a <sub>2</sub> | $a_3$ | $a_4$   | $a_5$  | accuracy   | r <sub>max</sub>        |
|---|----------------------------|----------------|----------------|-------|---------|--------|------------|-------------------------|
|   | $=$ 2 $\sum_{m=1}^{M} a_m$ |                |                |       |         |        | order (2M) |                         |
| 1 | 2                          | 1              |                |       |         |        | 2          | 1                       |
| 2 | 5/2                        | 4/3            | -1/12          |       |         |        | 4          | $\frac{\sqrt{3}}{2}$    |
| 3 | 49/18                      | 3/2            | -3/20          | 1/90  |         |        | 6          | $\frac{\sqrt{765}}{34}$ |
| 4 | 205/72                     | 8/5            | -1/5           | 8/315 | -1/560  |        | 8          | $\frac{\sqrt{630}}{32}$ |
| 5 | 5269/1800                  | 5/3            | -5/21          | 5/126 | -5/1008 | 1/3150 | 10         | $\frac{\sqrt{150}}{16}$ |

Table 1: FD-coefficients and maximum Courant numbers in 1D.

# Stability limits for 1D FD modelling





Figure 3: Maximum Courant numbers for 1D FD modelling calculated with equation 29.

# Numerical verification of stability criteria



We perform 1D FD-simulations with O(2,4). The maximum Courant number is

$$r_c = \frac{c \triangle t}{h} \le \frac{\sqrt{3}}{2} = 0.8660254$$
 (30)

We choose a homogeneous medium with c = 500 m/s.  $\triangle t = 1.732$  ms and h = 1m. In our first simulation we have

$$r_1 = 0.866 < r_c \tag{31}$$

The simulation shoud be stable.

# Stability for acoustic FD modelling





Figure 4: **Movie** of snapshots (1DFD, O(2,4)),  $r_1 = 0.866 < r_c = 0.8660254$ .

20 | 36

# Numerical verification of stability criteria



Now we increase the velocity at the single gridpoint located at x = 600m to c = 500.05 m/s. The velocity remains at c = 500 m/s elsewhere. We thus now have

$$r_2 = 0.86608 > r_c = 0.8660254$$
 at  $x = 600m$  (32)  
 $r_1 = 0.866 < r_c = 0.8660254$  elsewhere

We violate the criterion at one grid point slightly.

# Stability for acoustic FD modelling





 amplitides "explode" immediately
 the stability criterion must be fulfilled strictly

Figure 5: **Movie** of snapshots (1DFD, O(2,4)) where  $r > r_c$  at one single grid point located at x = 600m.



# Agenda

#### 1. The Finite-Difference Method

- 1.3 1D Dispersion analysis (time discretization)
- 1.4 1D Stability analysis

#### 1.5 Extension to 2D and 3D acoustic FD modelling

### 2D/3D acoustic FD modelling



We show the 3D case. In 3D (D=3) we have the scalar wave equation

$$\frac{\partial^2 p}{\partial t^2} = c^2 \left( \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right)$$
(33)

We discretize x = ih, y = jh, z = kh

24 | 36

### Dispersion analysis for 2D acoustic FD modelling



We insert a harmonic plane wave of the form

$$\boldsymbol{p} = \boldsymbol{p}_o \exp\left(i\left(wt - kx\sin(\theta) - kz\cos(\theta)\right)\right) \tag{35}$$

where  $\theta$  denotes the angle between the vertical axis *z* and the direction of propagation. We introduce the following abbreviations  $z_t = e^{i\omega \Delta t}$ ,  $z_x = e^{ikh\sin(\theta)}$ ,  $z_z = e^{ikh\cos(\theta)}$ . This gives

$$z_t^1 + z_t^{-1} - 2 = r^2 \left( \sum_{m=1}^M a_m \left( z_x^m + z_x^{-m} - 2 \right) + \sum_{m=1}^M a_m \left( z_z^m + z_z^{-m} - 2 \right) \right)$$
(36)

We make use of

$$z^{m} + z^{-m} - 2 = e^{(ikmh)} + e^{(-ikmh)} - 2 = 2\left(\cos(mkh) - 1\right) = -4\sin^{2}(mkh/2)$$
(37)



# Dispersion analysis for 2D acoustic FD modelling

Therefore

$$\sin^{2}\left(\frac{\omega \triangle t}{2}\right) = r^{2} \sum_{m=1}^{M} a_{m} \left[\sin^{2}\left(\frac{mkh\sin(\theta)}{2}\right) + \sin^{2}\left(\frac{mkh\cos(\theta)}{2}\right)\right]$$
(38)

The dispersion for the 2D acoustic O(2,2M) FD integration thus is

$$\frac{c_{fd}}{c} = \frac{\omega \triangle t}{khr} = \frac{2}{khr} \arcsin\left[r_{\sqrt{\sum_{m=1}^{M} a_m \left[\sin^2\left(\frac{mkh\sin(\theta)}{2}\right) + \sin^2\left(\frac{mkh\cos(\theta)}{2}\right)\right]}\right]$$
(39)



# **Dispersion for 2D acoustic FD modelling O(2,2)**



Figure 6: Numerical dispersion of 2D acoustic FD modelling O(2,2) (equation 39). Click on first frame to play



# **Dispersion for 2D acoustic FD modelling O(2,2)**



Figure 7: Plot of  $|c_{fd}/c - 1|$  of equation 39 Figure 8: Snapshot of acoustic O(2,2) FD using kh=1 and 2M=2. modelling (kh = 1, r = 0.5)



# **Dispersion for 2D acoustic FD modelling O(2,4)**



Figure 9: Plot of  $|c_{fd}/c - 1|$  of equation 39 Figure 10: Snapshot of acoustic O(2,4) FD using kh=1 and 2M=4. modelling (kh = 1, r = 0.5)



# **Dispersion for 2D acoustic FD modelling O(2,20)**



Figure 11: Plot of  $|c_{fd}/c - 1|$  of equation 39 Figure 12: Snapshot of acoustic O(2,20) FD using kh=1 and 2M=20. modelling (kh = 1, r = 0.5)



# **Dispersion for 2D acoustic FD modelling O(2,20)**



Figure 13: Plot of  $|c_{fd}/c - 1|$  of equation 39 Figure 14: Snapshot of acoustic O(2,20) FD using kh=1 and 2M=20. modelling (kh = 1, r = 0.1)

# Stability for 2D and 3D acoustic FD modelling



If we perform the same Von Neumann stability analysis for the 2D (D=2) and 3D (D=3) discrete wave equations 34 the criterion for stability is simply

$$r^2 \sum_{m=-M}^{M} D|a_m| \le 4 \tag{40}$$

We therefore get the factor  $\sqrt{D}$  in the final stability condition

$$\boxed{r = \frac{c \triangle t}{h} \leq \frac{2}{\sqrt{D} \sqrt{\sum\limits_{m=-M}^{M} |a_m|}} = \frac{2}{\sqrt{D} \sqrt{\sum\limits_{m=1}^{M} 2|a_m| + |a_0|}}}$$

Equation 41 defines the upper limit of the Courant number to ensure numerical stability of O(2,2M) acoustic FD modelling in D=1,2,3 dimensions.

(41)

# Stability limits for 1D FD modelling





*r<sub>max</sub>* decreases with increasing *M* and dimension *D* 

Figure 15: Maximum Courant numbers for acoustic O(2,2M) FD modelling calculated with equation 41.

# Summary of lecture



- We studied the numerical dispersion caused by time discretization:  $c_{fd}/c > 1$
- Dispersion caused by space and time discretization can counterbalance.
- Von Neumann stability analysis:  $r < r_{max}$ . Strict stability condition must be met.
- Extension of the analysis of disersion and stability to 2D and 3D is straightforward.
  - Numerical dispersion  $c_{fd}/c = f(r, kh, 2M, \theta)$
  - In higher dimensions D = 2, 3 the stability limit is reduced by a factor  $(1/\sqrt{D})$

# Questions



- 1 How can we distinguish between the numerical dispersion produced by a too coarse time discretization from the numerical dispersion produced by a too coarse space discretization ?
- 2 Do the opposite effects of numerical dispersion caused by time and space discretization generally partly compensate each other and is this generally advantageous ? Ich which case can we observe a perfect cancellation ?
- 3 Do you know numerical methods that allow to increase the accuracy order of the time discretization beyond second order ?
- 4 Please recap the principle assumption and central idea of the Von Neumann stability analysis.
- 5 Can we in most cases expect a stronger or weaker numerical error for waves that propagate along the cartesian directions ?

# Questions



- 6 Let us consider a complex velocity model with a minimum velocity of 200 m/s in the shallow part and 2000 m/s in the deeper part. The main frequency of the seismic source shall be 50 Hz. We want to simulate waves with a 2D O(2,2) acoustic FD scheme. How should we choose the space interval h and time step  $\Delta t$  to ensure a stable and sufficiently accurate simulation ?
- 7 Can we predict the dispersion error in FD modeling analytically ? If yes, how could we correct the synthetic seismograms to obtain (more) accurate solutions ?