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Summary of last lecture (1)

We studied the 1-D second order wave equation

∂2p(x , t)
∂t2 = c2 ∂2p(x , t)

∂x2 (1)

and derived the discrete form of accuracy O(2,2M):
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We inserted a plane wave pn
j = p0 exp(i(kjh + ωn△t) and obtained the dispersion relation
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Summary of last lecture (1)

Figure 1: Numerical dispersion O(2,4) (M=2, equation 3)

Strong effect of Courant number
r = c△t

h

cfd /c > 1 for large r

cfd /c < 1 for small r

→ effect of time discretization
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This lecture (2)

1 Study the effect of time discretization in more detail
a Dispersion
b Stability

2 Extension to 2D and 3D acoustic FD modelling
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Agenda

1. The Finite-Difference Method
1.3 1D Dispersion analysis (time discretization)
1.4 1D Stability analysis
1.5 Extension to 2D and 3D acoustic FD modelling
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Numerical dispersion due to time discretization

We want to analyze the dispersion caused by time discretization only. For this purpose we
discretize w.r.t. time t = n△t only (x=continuous)

1
△t2 (p

n+1 − 2pn + pn−1) = c2 ∂2pn(x)
∂x2 (4)

We insert a discrete plane wave

pn(x) = p0 exp(i(kx + ωn△t)

and obtain with zt = exp(i△tω)

(z1
t − 2z0

t + z−
t 1)

△t2 =
2(cos(ω△t)− 2)

△t2 = −c2k2 (cfd=ω/k)
=

c2ω2

c2
fd

(5)

c2
fd

c2 =
−(ω△t)2

2(cos(ω△t)− 1)
(ω△t=rkh)

=
−(rkh)2

2(cos(rkh)− 1)
Taylor
≈ 1 +

(rkh)2

12
> 1 (6)
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Numerical dispersion due to time discretization

Figure 2: Numerical dispersion of 1D FD scheme due
to second order time discretization only (equation 6).

time dispersion leads to cfd /c > 1

strong dispersion for large r (coarse
△t)

however, this can compensate for
the opposite dispersion (cfd /c < 1)
intruced by space discretization !

→ find balance between time and
space discretization and order of
accuray 2M to minimize effective
dispersion
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Agenda

1. The Finite-Difference Method
1.3 1D Dispersion analysis (time discretization)
1.4 1D Stability analysis
1.5 Extension to 2D and 3D acoustic FD modelling
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Von Neumann stability analysis

We first consider the 1D acoustic wave equation

∂2p
∂t2 = c2 ∂2p

∂x2 (7)

We perform an analysis of the numerical stability of the explicit 1D acoustic FD integration

pn+1
j = 2pn

j − pn−1
j + r2

(
a0pn

j +
M

∑
m=1

am
(
pn

j+m + pn
j−m
))

(8)

where

a0 = −2
M

∑
m=1

am (9)

and the Courant number is

r =
c△t

h
(10)
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Von Neumann stability analysis

We first want to abbreviate the sum. By defining

a−m = am (11)

we can write equation 8 in a more condensed form

pn+1
j = 2pn

j − pn−1
j + r2

M

∑
m=−M

ampn
j+m with a0 = −2

M

∑
m=1

am (12)

In order to separate the time and space discretization we make the following Ansatz

pn
j = pneikx = pneikjh (13)

Inserting this gives

pn+1eikjh = −pn−1eikjh + 2pneikjh + r2
M

∑
m=−M

ampneik(j+m)h (14)
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Von Neumann stability analysis

Dividing by eikjh gives

pn+1 = −pn−1 + 2pn + r2
M

∑
m=−M

ampneikmh (15)

We factor out pn

pn+1 = −pn−1 + pn

[
2 + r2

M

∑
m=−M

ameikmh

]
= −pn−1 + 2Apn (16)

with

A = 1 +
r2

2

M

∑
m=−M

ameikmh (17)
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Von Neumann stability analysis

We define the time amplification factor

γ :=
pn+1

pn =
pn

pn−1 (18)

The criterion for stability is
|γ| ≤ 1 f .a.n ∈ N+

This ensures that amplitudes do not increase at every time step due to the
discretization.
By dividing equation 16 by pn−1 we get

γ2 = −1 + 2Aγ or γ2 − 2Aγ + 1 = 0 (19)

The solutions are
γ1,2 = A ±

√
A2 − 1 (20)
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Von Neumann stability analysis

The criterion for stability |γ| ≤ 1 is fulfilled if

−1 ≤ A ≤ 1 (21)

Consequently

−1 ≤ 1 +
r2

2

M

∑
m=−M

ameikmh ≤ 1 (22)

We subtract 1 and multiply with 2

−4 ≤ r2
M

∑
m=−M

ameikmh ≤ 0 (23)
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Von Neumann stability analysis

The term

M

∑
m=−M

ameikmh =
M

∑
m=1

am(eikmh − e−ikmh) + a0 (24)

=
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= −
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= −
M
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Von Neumann stability analysis

Therefore, the requirement for stability is

r2|
M

∑
m=−M

ameikmh| ≤ 4 (25)

An upper limit for the sum is

|
M

∑
m=−M

ameikmh| ≤
M

∑
m=−M

|am| (26)

This gives

r2
M

∑
m=−M

|am| ≤ 4 or r ≤ 2√
M
∑

m=−M
|am|

:= rmax (27)

This is the upper limit of the Courant number to ensure numerical stability for the 1D
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Von Neumann stability analysis

1D explicit FD modelling with equation 8 is stable if

r =
c△t

h
≤ rmax (28)

where

rmax =
2√

M
∑

m=1
2|am|+ |a0|

, a0 = −2
M

∑
m=1

am (29)
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FD coefficients and maximum Courant numbers rmax

M a0 a1 a2 a3 a4 a5 accuracy rmax

= 2 ∑M
m=1 am order (2M)

1 2 1 2 1
2 5/2 4/3 -1/12 4

√
3

2

3 49/18 3/2 -3/20 1/90 6
√

765
34

4 205/72 8/5 -1/5 8/315 -1/560 8
√

630
32

5 5269/1800 5/3 -5/21 5/126 -5/1008 1/3150 10
√

150
16

Table 1: FD-coefficients and maximum Courant numbers in 1D.
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Stability limits for 1D FD modelling

Figure 3: Maximum Courant numbers for 1D FD
modelling calculated with equation 29.

rmax decreases with increasing
M
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Numerical verification of stability criteria

We perform 1D FD-simulations with O(2,4). The maximum Courant number is

rc =
c△t

h
≤

√
3

2
= 0.8660254 (30)

We choose a homogeneous medium with c = 500 m/s. △t = 1.732 ms and h = 1m. In
our first simulation we have

r1 = 0.866 < rc (31)

The simulation shoud be stable.
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Stability for acoustic FD modelling

Figure 4: Movie of snapshots (1DFD, O(2,4)), r1 = 0.866 < rc = 0.8660254 .
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Numerical verification of stability criteria

Now we increase the velocity at the single gridpoint located at x = 600m to c = 500.05
m/s. The velocity remains at c = 500 m/s elsewhere. We thus now have

r2 = 0.86608 > rc = 0.8660254 at x = 600m (32)

r1 = 0.866 < rc = 0.8660254 elsewhere

We violate the criterion at one grid point slightly.
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Stability for acoustic FD modelling

Figure 5: Movie of snapshots (1DFD, O(2,4)) where
r > rc at one single grid point located at x = 600m.

amplitides ”explode” immediately

the stability criterion must be
fulfilled strictly
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Agenda

1. The Finite-Difference Method
1.3 1D Dispersion analysis (time discretization)
1.4 1D Stability analysis
1.5 Extension to 2D and 3D acoustic FD modelling
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2D/3D acoustic FD modelling

We show the 3D case. In 3D (D=3) we have the scalar wave equation

∂2p
∂t2 = c2

(
∂2p
∂x2 +

∂2p
∂y2 +

∂2p
∂z2

)
(33)

We discretize x = ih, y = jh, z = kh

pn+1
ijk = 2pn

ijk − pn−1
ijk (34)

+r2
M

∑
m=−M

ampn
i+m,j,k

+r2
M

∑
m=−M

ampn
i,j+m,k

+r2
M

∑
m=−M

ampn
i,j,k+m
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Dispersion analysis for 2D acoustic FD modelling

We insert a harmonic plane wave of the form

p = po exp (i (wt − kx sin(θ)− kz cos(θ)) (35)

where θ denotes the angle between the vertical axis z and the direction of propagation.
We introduce the following abbreviations zt = eiω△t , zx = eikh sin(θ), zz = eikh cos(θ).
This gives

z1
t + z−1

t − 2 = r2

(
M

∑
m=1

am
(
zm

x + z−m
x − 2

)
+

M

∑
m=1

am
(
zm

z + z−m
z − 2

))
(36)

We make use of

zm + z−m − 2 = e(ikmh) + e(−ikmh) − 2 = 2 (cos(mkh)− 1)) = −4 sin2(mkh/2) (37)
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Dispersion analysis for 2D acoustic FD modelling

Therefore

sin2(
ω△t

2
) = r2

M

∑
m=1

am

[
sin2

(
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2

)
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2
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(38)

The dispersion for the 2D acoustic O(2,2M) FD integration thus is
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Dispersion for 2D acoustic FD modelling O(2,2)

Figure 6: Numerical dispersion of 2D acoustic FD modelling O(2,2) (equation 39).
Click on first frame to play
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Dispersion for 2D acoustic FD modelling O(2,2)

Figure 7: Plot of |cfd /c − 1| of equation 39
using kh=1 and 2M=2.

Figure 8: Snapshot of acoustic O(2,2) FD
modelling (kh = 1, r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,4)

Figure 9: Plot of |cfd /c − 1| of equation 39
using kh=1 and 2M=4.

Figure 10: Snapshot of acoustic O(2,4) FD
modelling (kh = 1, r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,20)

Figure 11: Plot of |cfd /c − 1| of equation 39
using kh=1 and 2M=20.

Figure 12: Snapshot of acoustic O(2,20) FD
modelling (kh = 1, r = 0.5)
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Dispersion for 2D acoustic FD modelling O(2,20)

Figure 13: Plot of |cfd /c − 1| of equation 39
using kh=1 and 2M=20.

Figure 14: Snapshot of acoustic O(2,20) FD
modelling (kh = 1, r = 0.1)
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Stability for 2D and 3D acoustic FD modelling

If we perform the same Von Neumann stability analysis for the 2D (D=2) and 3D (D=3)
discrete wave equations 34 the criterion for stability is simply

r2
M

∑
m=−M

D|am| ≤ 4 (40)

We therefore get the factor
√

D in the final stability condition

r =
c△t

h
≤ 2

√
D

√
M
∑

m=−M
|am|

=
2

√
D

√
M
∑

m=1
2|am|+ |a0|

(41)

Equation 41 defines the upper limit of the Courant number to ensure numerical stability of
O(2,2M) acoustic FD modelling in D=1,2,3 dimensions.
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Stability limits for 1D FD modelling

Figure 15: Maximum Courant numbers for acoustic
O(2,2M) FD modelling calculated with equation 41.

rmax decreases with increasing
M and dimension D

33 | 36 Bohlen – Seismic Modelling GPI, KIT



Summary of lecture

We studied the numerical dispersion caused by time discretization: cfd /c > 1

Dispersion caused by space and time discretization can counterbalance.

Von Neumann stability analysis: r < rmax . Strict stability condition must be met.
Extension of the analysis of disersion and stability to 2D and 3D is straightforward.

Numerical dispersion cfd /c = f (r , kh, 2M, θ)

In higher dimensions D = 2, 3 the stability limit is reduced by a factor (1/
√

D)
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Questions

1 How can we distinguish between the numerical dispersion produced by a too coarse
time discretization from the numerical dispersion produced by a too coarse space
discretization ?

2 Do the opposite effects of numerical dispersion caused by time and space discretization
generally partly compensate each other and is this generally advantageous ? Ich which
case can we observe a perfect cancellation ?

3 Do you know numerical methods that allow to increase the accuracy order of the time
discretization beyond second order ?

4 Please recap the principle assumption and central idea of the Von Neumann stability
analysis.

5 Can we in most cases expect a stronger or weaker numerical error for waves that
propagate along the cartesian directions ?
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Questions

6 Let us consider a complex velocity model with a minimum velocity of 200 m/s in the
shallow part and 2000 m/s in the deeper part. The main frequency of the seismic
source shall be 50 Hz. We want to simulate waves with a 2D O(2,2) acoustic FD
scheme. How should we choose the space interval h and time step △t to ensure a
stable and sufficiently accurate simulation ?

7 Can we predict the dispersion error in FD modeling analytically ? If yes, how could we
correct the synthetic seismograms to obtain (more) accurate solutions ?
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