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1D first order wave equation

In previous lectures we discretized the 1-D second order wave equation

∂2p(x , t)
∂t2 = c2 ∂2p(x , t)

∂x2 (1)

Now we study the first order wave equation which is composed of the
stress-strain relation

∂p
∂t

= −λ
∂v
∂x

(2)

and the equation of motion
∂v
∂t

= −1
ρ

∂p
∂x

(3)

with p(x , t): pressure, v(x , t): particle velocity, λ(x): Lamé parameter, ρ(x): mass
density.
Note that c2(x) = λ(x)/ρ(x).
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Discretization of 1D first order wave equation

We now discretize using full and staggered positions in space and time

x = jh , t = n△t (4)

λ(jh) := λj , ρ((j + 1/2)h) := ρj+1/2 (5)

p(jh, (n + 1/2)△t) := pn+1/2
j , v((j + 1/2)h, n△t) := vn

j+1/2 (6)

A second order approximation O(2,2) of wave equation on a so-called staggered grid reads

∂p
∂t

∣∣∣∣n
j
≈

pn+1/2
j − pn−1/2

j

△t
= −λj

vn
j+1/2 − vn

j−1/2

h
≈ −λj

∂v
∂x

∣∣∣∣n
j

(7)

∂v
∂t

∣∣∣∣n−1/2

j+1/2
≈

vn
j+1/2 − vn−1

j+1/2

△t
= −1

ρ j+1/2

pn−1/2
j+1 − pn−1/2

j

h
≈ −1

ρ j+1/2

∂p
∂x

∣∣∣∣n−1/2

j+1/2
(8)
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1D Staggered grid velocity-stress formulation

The explicit FD time update O(2,2) then is

pn+1/2
j = pn−1/2

j − λj△t
h

(
vn

j+1/2 − vn
j−1/2

)
vn

j+1/2 = vn−1
j+1/2 −

ρ−1
j+1/2△t

h

(
pn−1/2

j+1 − pn−1/2
j

)
Figure 1: Staggered positions of
pressure and particle velocities and FD
stencils.
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Staggered grid FD approximation of the first order
derivative

We perform a Taylor series expansion around pj+1/2

pj+m = pj+1/2 + p(1)
j+1/2(m − 1/2)h +

N

∑
k=2

p(k)
j+1/2(m − 1/2)k hk

k !

We set m = 1, ...,M > 0 and subtract

pj+m − pj−m = 2p(1)
j+1/2(m − 1/2)h + 2

N

∑
k=2

p(2k−1)
j+1/2 (m − 1/2)2k−1h2k−1

(2k − 1)!

to eliminate even derivatives. We move our desired derivative to the LHS:

(2m − 1)p(1)
j+1/2 =

1
h
(pj+m − pj−m)−

1
h

N

∑
k=2

p(2k−1)
j+1/2 (2m − 1)2k−1h2k−1

(2k − 1)!
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Staggered grid FD approximation of the first order
derivative

We multiply for each m with βm

βm(2m − 1)p(1)
j+1/2 =

1
h

βm (pj+m − pj−m)−
1
h

βm

N

∑
k=2

p(2k−1)
j+1/2 (2m − 1)2k−1h2k−1

(2k − 1)!

We sum the equations for m = 1, ...,M:

M

∑
m=1

βm(2m−1)p(1)
j+1/2 =

1
h

M

∑
m=1

βm (pj+m − pj−m)−
1
h

M

∑
m=1

βm

N

∑
k=2

p(2k−1)
j+1/2 (2m − 1)2k−1h2k−1

(2k − 1)!
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Staggered grid FD approximation of the first order
derivative

If we choose βm so that

M

∑
m=1

βm(2m − 1) = 1 and
M

∑
m=1

βm(2m − 1)2k−1 = 0 with k = 2, ...,M (9)

we obtain

p(1)
j+1/2 =

1
h

M

∑
m=1

βm (pj+m − pj−m)−
1
h

N

∑
k=M+1

p(2k−1)
j+1/2 (2m − 1)2k−1h2k−1

(2k − 1)!

8 | 34 Bohlen – Seismic Modelling GPI, KIT



Staggered grid FD approximation of the first order
derivative

The accuracy order is defined as smallest exponent of h in the error term

−1
h

N

∑
k=M+1

p(2k−1)
j+1/2 (2m − 1)2k−1h2k−1

(2k − 1)!
= O(h2M)

which is 2(M + 1)− 1 − 1 = 2M. So we finally obtain the following staggered FD
aproximation for the first order derivative:

p(1)
j+1/2 =

1
h

M

∑
m=1

βm (pj+m − pj−m) +O(h2M) (10)
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FD coefficients for the first derivative

2M β1 β2 β3 β4 β5

2 1
4 9/8 -1/24
6 75/64 -25/389 3/640
8 1225/1024 -245/3072 49/5120 -5/7168
10 19845/16384 -735/8192 567/40960 -405/229376 35/294912

Table 1: FD-coefficients for the staggered approximation of the first derivative (equation 10)
calculated via equation 9. The accuracy order is 2M.
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FD update O(2,2M)

The explicit FD time update O(2,2M) for the 1D wave equation then becomes

pn+1/2
j = pn−1/2

j − λj△t
h

M

∑
m=1

βm

(
vn

j+m−1/2 − vn
j−m+1/2

)
vn

j+1/2 = vn−1
j+1/2 −

ρ−1
j+1/2△t

h

M

∑
m=1

βm

(
pn−1/2

j+m − pn−1/2
j−m+1

)
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Dispersion analysis

We consider the equations

∂p
∂t

= −λ
∂v
∂x

,
∂v
∂t

= −1
ρ

∂p
∂x

(11)

We now perform the dispersion analysis for the staggered approximation O(2,2M)

pn+1/2
j − pn−1/2

j

△t
= −λj

h

M

∑
m=1

βm

(
vn

j+m−1/2 − vn
j−m+1/2

)
(12)

vn
j+1/2 − vn−1

j+1/2

△t
= −

ρ−1
j+1/2

h

M

∑
m=1

βm

(
pn−1/2

j+m − pn−1/2
j−m+1

)
(13)
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Dispersion analysis

Ansatz
p = p0 exp i(kx + ωt), v = v0 exp i(kx + ωt) (14)

We insert eq. 14 into eq. 11 and obtain

iωp0 = λikv0 → p0

v0
= −λk

ω
= −λ

c
(15)

The discrete form of eq. 14 is

pn
j = p0 exp i(kjh + ωn△t) vn

j = v0 exp i(kjh + ωn△t) (16)

We insert this into eq. 12

p0 (exp(iω△t/2)− exp(−iω△t/2)) =
v0λ△t

h

M

∑
m=1

βm

(
exp(ikh(m − 1

2
))− exp(−ikh(m − 1

2
))

)
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Dispersion analysis

We apply
exp(iu)− exp(−iu) = −2i sin(u)

and get

−p02i sin(
ω△t

2
) = 2i

v0λ△t
h

M

∑
m=1

βm sin(kh(m − 1
2
))

With eq. 15 we get

sin(
ω△t

2
) = r

M

∑
m=1

βm sin(kh(m − 1
2
)) (17)

with the Courant number

r =
c△t

h
(18)
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Dispersion analysis

With this we obtain the ratio between numerical velocity and model velocity for the 1D
staggered FD scheme approximating the first order wave equation

cfd

c
=

ω△t
khr

=
2

khr
arcsin

[
r

(
M

∑
m=1

βm sin(kh(m − 1/2))

)]
(19)

This differs from the dispersion relation for the FD scheme approximating the second order
wave equation

cfd

c
=

ω△t
khr

=
2

khr
arcsin

r

√√√√ M

∑
m=1

amsin2(
mkh

2
)

 (20)
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Dispersion analysis

Figure 2: Numerical dispersion for staggered and non-staggered 1D FD schemes for
2M=2 (left) and 2M=4 (right) (calculated with eq. 19 and 20).

.
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Stability analysis

A von Neumann stability analysis gives the following upper limit for the Courant number.
We omit the details of the derivation.

r =
c△t

h
≤ 1

∑M
m=1 |βm|

(21)

(When can identify this already by inspecting the dispersion relation 17 when we insert
sin(kh(m − 1/2)) = 1 and sin(ω△t/2) = 1).
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Stability analysis

Figure 3: Maximum Courant numbers for
staggered and full grid FD modelling in 1D.

1. Order (staggered grid)

rmax =
1

∑M
m=1 |βm|

2. Order (full grid)

rmax =
2√

M
∑

m=1
2|am|+ |a0|

, a0 = −2
M

∑
m=1

am
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2D elastic wave equation
Stress-strain relation

∂σxx

∂t
= Π

∂vx

∂x
+ (Π − 2µ)

∂vy

∂y
(22)

∂σyy

∂t
= Π

∂vy

∂y
+ (Π − 2µ)

∂vx

∂x
∂σxy

∂t
= µ

(
∂vx

∂y
+

∂vy

∂x

)

Equation of motion
ρ

∂vx

∂t
=

∂σxx

∂x
+

∂σxy

∂y
+ fx (23)

ρ
∂vy

∂t
=

∂σxy

∂x
+

∂σyy

∂y
+ fy

Π := λ + 2µ P-wave modulus; α2 = Π/ρ: P-wave velocity; α2 = µ/ρ: SV-wave velocity.
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Standard Staggered grid

Stress-strain relation
σn+

xx [i, j ]− σn−
xx [i, j ]

△t
= Π[i, j ]

vn
x [i+, j ]− vn

x [i−, j ]
h

+ λ[i, j ]
vn

y [i, j+]− vn
x [i, j−]

h
(24)

σn+
yy [i, j ]− σn−

yy [i, j ]
△t

= Π[i, j ]
vn

y [i, j+]− vn
y [i, j−]

h
+ λ[i, j ]

vn
x [i+, j ]− vn

x [i−, j ]
h

σn+
xy [i+, j+]− σn−

xy [i+, j+]

△t
= µ[i+, j+]

(
vn

x [i+, j + 1]− vn
x [i+, j ]

h
+

vn
y [i + 1, j+]− vn

x [i, j+]

h

)

Equation of motion

vn
x [i+, j ]− vn−1

x [i+, j ]
△t

= ρ−1[i+, j ]

(
σn−

xx [i + 1, j ]− σn−
xx [i, j ]

h
+

σn−
xy [i+, j+]− σn−

xy [i+, j−]

h

)
(25)

vn
y [i, j+]− vn−1

y [i, j+]

△t
= ρ−1[i, j+]

(
σn−

xy [i+, j+]− σn−
xy [i−, j+]

h
+

σn−
yy [i, j + 1]− σn−

yy [i, j ]
h

)
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Standard staggered grid

x

(i,j+1)

(i+1,j)(i,j)

y

Figure 4: 2D elastic Standard Staggered Grid
(SSG).

ρx [i+, j ] =
ρ[i + 1, j ] + ρ[i, j ]

2
(26)

ρy [i, j+] =
ρ[i, j + 1] + ρ[i, j ]

2

µ−1
xy [i+, j+] =

1
4

(
µ−1[i, j + 1] + µ−1[i, j ]+

+µ−1[i + 1, j ] + µ−1[i + 1, j + 1]
)
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Point sources

An explosive sources at grid point [is, js] is generated by adding the source signal
S(n△t) = Sn to the diagonal components of the stress tensor:

σn+
xx [is, js] = σn+

xx [is, js] + Sn+ (27)

σn+
yy [is, js] = σn+

yy [is, js] + Sn+

A directional force sources is produced by adding the source signal S(n△t) = Sn to the
particle velocities:

vn
x [is, js] = vn

x [is, js] + Sn horizontal force (28)

vn
y [is, js] = vn

y [is, js] + Sn vertical force
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Movies

Explosion

Vertical Force
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Free surface boundary condition - image method

The free surface is defined by the boundary condition

σxy = σyy = 0 at y = 0. (29)

If we define the depth of the planar free surface to be in y = 1 · h (j = 1). then this can be
realized by the so-called image method:

σyy [i, 1] = 0 (30)

σxy [i+, 1+] = −σxy [i+, 0+]
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Vertical point force at free surface of half space.

Figure 5: A point force at the free surface radiates Rayleigh waves, P- and SV-waves. Plots show snapshots of vertical
particle velocity vy . The free surface is realized by the image method. Click on first frame to play (fc = 30Hz Vp = 1500m/s,

Vs = 800m/s, ϱ = 2000kg/m3 , λp = 50m, λs = 23m) .
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Domain decomposition

Figure 6: Decomposition of the global grid into
subgrids each computed by a different
processing element (PE).

Domain decomposition using MPI

Very efficient for HPC

Width of padding layer is M for
exchange of wavefield
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Tunnel seismic prediction

Figure 7: Tunnel seismic prediction

.

Seismic waves must be excited
and recorded behind the TBM

Source: hammer (point force)

Receiver: geophones (particle
velocities)

Goal: look ahead into the drilling
direction
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3D elastic FD modelling

Figure 8: Snapshots of ∇ · v⃗ (compressional part) and
(∇× v⃗)y (shear part).

.

1 Rayleigh wave propagates to the
front face

2 conversion into S-wave
3 S-S reflection at interface
4 conversion back into Rayleigh

wave

RSSR has highest amplitudes and
contains information about reflectors
ahead of the tunnel.
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Tunnel seismic prediction

Figure 9: Migration of RSSR waves

.

Summation of RSSR waves
recorded along the side walls

Back-projection (migration) to
reflector location

Image of S-S reflections ahead
of tunnel
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Summary of lecture

We studied the FD approximation of the first order wave equations on staggered grids.

The numerical properties (dispersion and stabilty) are almost identical to the FD
discretization of second order wave equation on regular (non-staggered) grids.

The staggered grid approximation is widely applied to the first order elastic wave
equation because of the existence of a unique staggered distribution of wavefield
parameters.

Sources and boundary conditions aligned with the grid can be realized efficiently in
elastic FD modelling.

Elastic wave simulation in complex environments (tunnels) can be helpful to understand
wave propgation effects and develop new ideas for seismic imaging.
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Questions

1 What are the main differences between acoustic and elastic wave propagation in
general ?

2 What are the challenges of elastic versus acoustic FD modelling ?
3 What are the advantages and disadvantages of the discretization of the first order wave

equation on staggered grids compared to the discretization of the second order wave
equation on non-staggered (full) grids ? Let us discuss the following aspects: (1) wave
equation formulation, (2) dispersion, (3) stability, (4) source and receiver locations, (5)
realization of explicit boundary conditions, (6) material parameter averaging, (7) number
of floating point operations per grid point.

4 How can the boundary conditions at ordinary geological discontinuities (continuity of
stress and displacement) in the FD method be fulfilled ? Do we have to consider them
explicitly ? How can we realize the boundary condition of the (topographic) free surface
?
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Questions

5 Why do we have to average the material parameters on a staggered grid (slide 22) ?

6 Let us consider the domain decomposition illustrated on slide 27. How would you
generally choose the size of the individual subgrids and the width of the padding layer ?

7 Let us consider the example of tunnel seismic prediction. What are the the advantages
and disadvantages of RSSR waves compared to conventional P-wave reflection
seismics ?
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