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The Reflectivity Method
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@ The Reflectivity method (RM) is a powerfull analytic method that allows to calculate

4|45

complete synthetic seismograms for layered acoustic, elastic, visco-elastic, anisotropic
media.

The RM was the first method that allowed for the interpretation of complete
seismograms (traveltimes and amplitudes) in the 1960-70s.

It was introduced by Karl Fuchs and Gerhard Miller (Fuchs 1968, Fuchs & Miiller 1971,
Mueller 1985).

It is still widely used today as an efficient algorithm to compute full seismograms on
small computers (— exercise).

Typical applications are

@ surface waves in layered media

@ crustal and upper mantle deep seismic sounding

@ core/mantle inner core/outer core boundaries for long period body waves

& concepts are also used in seismic migration

Bohlen - Seismic Modelling GPI, KIT




The Reflectivity Method A\‘(IT
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The Reflectivity Method is based on two fundamental concepts:

© The calculation of the response of a stack of horizontal layers to an incident harmonic
wave with certain frequency and angle of incidence: Rpp(w, ¢). This response can be

computed by a matrix formalism (Haskell 1953). It takes most of the computing time in
the RM.

® The decomposition of a spherical wave radiating from a point source above the stack of
layers into plane waves and vice versa using the Sommerfeld integral. This requires the
numerical integration of Ryp(w, ¢) over ¢ or wavenumber k.
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Figure 1: Calculation of the Point Source Response of a layered medium (Fuchs 1980). All wave
phenomena in the layered medium are considered: surface waves, multiple reflections and
refractions, mode conversions P-S, S-P etc. Attenuation and Anisotropy can be considered as well.
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2. Response of a stack of horizontal layers
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Reflection and transmission of a layered acoustic
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Figure 2: Calculation of the reflection and
transmission response of a stack of liquids
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(acoustic approximation).
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The displacement potential ®; in the j-th
layer (j =1,2,..., n) satisfies
2P, 92D,

1 0%9;
ox2 0z2

2 N2
o ot

Potential ansatz

P = Aexp [i(wt—ij_lj(z_zj))] (1)
+Bjexp [i (wt — Kx + /(2 — )]

w? K2 + - + /2 2

a2 VA | @)

i

B, =

= 0. (3)
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Incident P-wave
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Aqexp [i (wt — kix — lz)] of @ is inter-
preted as incident P-wave. Therefore

w
k = — g
1 ; sin @
w
o= = 4
1= s (4)

The incident P-wave is decribed by am-
plitude Ay, angular frequency w and inci-
dent angle ¢.
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Reflectivity R,, and transmittivity B,

incident wave
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Biexp [i (wt — kix + [[z)] of @y is the
reflected wave. We want to compute
the displacement reflection coefficient
Rpp (also called Reflectivity) and the
displacement refraction coefficient By,
(also called Transmittivity) of the layered
medium

B
Rop(w, @) = A%

wy A
Bop(w, ) = ;lf: ()

GPI, KIT
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Displacement boundary conditions

The boundary conditions require continuity of the vertical displacement at each interface

Z=22,23,...,2n
8<I>j B 8(1),-_1
9z~ oz ©

We insert our ansatz
D; = Ajexp [i (wt — kix — [j(z — z))] + Bjexp [i (wt — kix + [[(z — Z)) ]
and obtain
—[jAjexp [—ikix] + I Bjexp [—ikix] = —[ 1A _1exp[i(—K_1x —i_1d;_1)]
1By exp [ (—ki_ix +l_1d-1)]  (7)
with layer thickness dj_1 := zj — zj_1, (di = 0)
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Stress boundary conditions

The boundary conditions require continuity of the normal stress
P2z = AV2D = pd°® /ot
at each interface z = 25, z3, ..., Z.

0°®; 0°®;_4
PigE =PIt ®

We insert our ansatz
D; = Ajexp [i (wt — kix — [j(z — z))] + Bjexp [i (wt — kix + [[(z — Z)) ]
and obtain
pjAjexp [—ikix] + pjBjexp [—ikix] = pj1Ai1exp[i(—Ki1x = [1dj1)]
+pj-1B-1exp [i (=KX +[_1di1)]  (9)
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Boundary Conditions

In order to fulfill the boundary conditions the exponential terms depending on x must
cancel. With eq. 4 this gives

kf/‘):kn:kr/7—1 :kn_‘] = ...

which is an alternative form of Snell’s law. With

gz_k2+/2 k/2_|_l/2
w2 T T /
J
this leads to , .
) 2 2 2
I 2 _w & o
Ij_//_<lxjg—k1> —“j<1—“$sm (p> . (11)

If sin @ > ay/aj, [y must be negative imaginary so that ®, remains bounded for z — co.
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Equations 7 and 9 lead to the following system of equations, that relate A; and B; with A;_1
and B;_4, respectively

A—-B = — [A/.71 e M-19-1 _ B 1 ei/,-qd/q]
A+ B = it A_re =191 4 B eli-19-
il ] pj \j )

In matrix form

( A ) R ( he1pi+lpj—1 (—l1pj + hpj—1) €219 ) (A
5 2lpj —li—10j+ hpj—1 (10 + fjpj—1) €219

(12)
where my; is the layer matrix.
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Matrix formalism

Repeated application of eq. 12 gives

An '\ _ A\ A\ [ MM Aq
( B, > = Min " Mn—1 ""'ms'm2< B ) _M< B ) - < M1 Moo ) ( B ) (13)

The total layer matrix M(w, ¢) can be calculated efficiently for a given frequency w and
angle of incidence ¢ of the inicident P-wave. The /s are calculated by eq. 15

1

2 2
w & o2
Ij:;/ (1 —;?Sln (P)
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Reflectivity R,, and transmittivity B,

O Reflectivity
By, = Mz1Ay + MxBy = 0

Bi Mgy

Rop(w, = 14
op(w, @) = A (14)
® Transmittivity
An = My1Ar + Mi2B;
An MioMoy ay Mi2 Mo+
(<0, ) Aq " Moo Xp < B Moo > (19)
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3. Reflectivity method
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Reflectivity method
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Figure 3: Reflectivity method: Calculation of point

source response of a stack of homogeneous layers.
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@ Now we calculate the point source
response of the stack of
homogeneous layers.

@ This is called Reflectivity Method
(Fuchs 1968, Fuchs & Mduller 1971).

® We assume that we know Ryp(w, @)
from the product of layer matrices.

GPI, KIT
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Potential Ansatz

The displacement potential of a point source located at height h and frequency w is (see
lecture TSW):

1 jw(t—F
Pre = Re’“’(’ 8 R= P+ (z+h)? (16)
Wave equations in cylindrical coordinates (r, z)

D, 10D; PP 1 PP,
or2  r or 0z2 ocl? ot2
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Potential Ansatz

Elementary solutions of this equation are

1

w2

Jo(kr)expli(wt+ 1 (z—2z))], = ({xz —k2> (18)
ji

Jo(kr) is the Bessel function (see Appendix) of first kind and zeroth order.
Equation (18) is an analogue to the solutions

—ikx | Ai(wtE](z—Z))

e e

of the 2D wave equation in cartesian coordinates
2P, 029, 1 02D,
X2 0z2 a2 of
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Potential Ansatz

Togehther with (18), the functions

1 4n

(e i 2 2
/ f(Kk)do(kr)e'@WEIZ=2) gk with (k) = (“’2—k2> (19)
0
J

are also solutions of (17) if the integral converges. Therefore, we come to the ansatz

@, :/ Jo(kr) { Ay(k) e =1z=30) 4 (k) et (2=2)) L g (20)
0
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Incident wave

A spherical wave can be written as a superposition of plane harmonic waves (Sommerfeld
integral, see Appendix):

1

1 iw(tfﬂ) /°° K i w? 2 w .
_ « _ kr) — i(wt—I|z+h|) k LK) = | = — k2 k= —
Re i ; Jo( r)il1e dk, (k) 2 , ” sing
(21)
We can therefore interpret the first part of ®4 with z; = 0 as the incident wave
) . k
Do = / Jolkr) Arelth iz Mg, Ay = < (22)
0
22|45 Bohlen - Seismic Modelling GPI, KIT

=




KIT

Displacements

The second part is the reflected wave

Oy, = / Jo(kr) By &/ «WiHh(z=h)) gy (23)
0
With ,
Bi(k) = A1 (k) Rop(w, k) = == Rop(w, k)
we get
Dy, = / ;./o(kr)Rpp(w, k) e/ @trh(z=h)) gy
0 1
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Displacements

The vertical displacement is

0P wt [© -
wi(r.z,w,1) = S — et / Ko (Kr) Rop (0, k)€ (2= alk (24)
0
The horizontal displacement is (with Ji(x) = —Ji(x))
0P o [ —K2 .
uie(r,z,w, t) = 7” = g/t / —— 1 (k) Rpp(w, k)e" (=M gk (25)
o ih

The integrals in (24) and (25) can be computed numerically.

24|45 Bohlen - Seismic Modelling GPI, KIT
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Impulsive excitation

The transition to impulse excitation

1 R
Pro=—F(t——

can be performed by Fourier transformation. Let F(w) denote the Fourier spectrum of
F(t). Then

o 1 Too iw(t—aﬂ)
Do = 2717[00 F(w)e 1/ dw

The corresponding displacements of the reflected wave are obtained via

Wir(r, z,1) } _ o4 +°°F(w){ wirlr. 2., 1) }dw (26)

Uir(r,z, t) 21 J—co ut,(r, z, w, t)

25|45 Bohlen - Seismic Modelling GPI, KIT




Agenda A“(

Karlsruhe Institute of Technology

4. Examples
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Refraction and Reflection at Moho A\‘(IT
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3o “ W Very first application: Nature of the
* % ¥ Mohovici¢-zone (Fuchs 1968)
T ® e DI ® Beyond critical point r* = 74.91 km
T high amplitudes and change of
i eI e waveform
E; REFLECTION AND REFRACTION @ NOT predictable by Zoeppritz
" FROM A I OFOER DISCONTRTY equations (Cerveny effect)

Figure 4: Moho as first order discontinuity ?
(Fuchs 1968).
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Cerveny effect

® According to Zoeppritz | Ryp| has its
maximum directly at the critical point.
reflection amplitude The reflectivity methods predicts a

(vertical displacement)

| pact shift to larger distances.

@ This is due to the interference of
) } f<s, ~headwave and reflected wave, and
pulse shape of the super-critical
| reflection.

= g @ As an interference phenomenon, the
shifting of the amplitude maximum of
the reflected wave is dependent upon
dominant frequency of the incident
signal, depth of the reflector, and the

sAalamidi: Ammtvant At dan vafl At

‘VUIUbIly CuUllliast al UiIe 1eleuLul.
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Figure 5: Reflection amplitude versus offset as a
function of frequency (Cerveny 1961)
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Complete seismograms for global earth

single force at the Earth’s surface of
20 s dominant period.

X - @ [ove waves have large amplitudes
T @ Body wave phases are mantle wave

[TTTTTII111 S and SS, core reflection ScS and
0 2022 eass esss  ssee 1111 diffraction at the core Sgyj.

R KM

1 ‘ / | @ SH-waves excited by a horizontal

Figure 6: Global SH-seismograms at the Earth
surface.
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Seismic prospecting for coal
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Figure 7: Simulation of multiple reflections/refractions in coal (Mueller 1985).
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The Reflectivity method is an efficient analytic method to calculate complete synthetic
seismograms for layered media.

© We first calculate the response of a stack of layers for an incident harmonic plane wave
Rop(w, @) by a matrix formalism.

® Then we apply a numerical integration of Rpp(w, ¢) over wavenumber k to obtain the
point source response.

© We consider many frequencies by multiplication with the source spectrum and inverse
Fourier transformation.

The method can be applied to efficiently calculate complete seismograms on a broad
range of spatial scales (global seismology to near surface) where the changes in elastic
parameters vary along one direction only.
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The differential equation of the Bessel function of integer order n =0, 1,2, ...is

xX2y" +xy' + (x* —nP) y = 0. (27)

The two linearly independent solutions of this equation are

y = Jn(x) = Bessel function of first kind and n — order

Bessel function of second kind and n — th order
y = Yn(x ) =

or Neumann' s function of n — th order.
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Graphical images of Bessel functions A\‘(IT

The graphic representation for x > 0 of Bessel and Neumann functions:

1.0 T 1T
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r .
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Hankel functions

Neumann’s functions have a singularity at x = 0.

The Hankel functions, or Bessel functions of the third kind, are defined as
H,(,1) (x) = Jn(x)+iYn(x)  Hankel function of first kind (28)
H,(,Z) (x) = Jn(x)—iYn(x)  Hankel function of second kind . (29)

H,(,1)(x) and H,(,z) (x) are linearly independent. The general solution of (27) is, therefore,
(with the arbitrary constants A,B,C,D) either

y = Adn(x)+ BYn(x)
or
y = CH"(x)+ DHP (x).
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There are analogies between Bessel functions and trigonometric functions. Trigonometric

functions follow from the equation of oscillation:
y// + n2y =0

Fundamental solutions are (cos(nx), sin(nx)), and (€™, e=™).
The analogies are

Bessel functions Trigonometric functions

J,,( ) cos nx

Yn(x) sin nx
HY (x) €™ = cos nx + isin nx
HP (x) e ™ = cos nx — isin nx.

39|45 Bohlen - Seismic Modelling

GPI, KIT



Asymptotic representation A\‘(IT

For x > 1 the functions can be approximated by

Jn(x) =~ (%)f cos (x — 1 — )

Yo(x) (%)? sin (X -z %) 50
H(x) ~ (%)fexp [i (x — 2 — )]

HE )~ (B) e i (e F ~ 7))
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Sommerfeld Integral

The Sommerfeld integral describes the rule for superposition of homogeneous (real /;) and
inhomogeneous plane waves (complex /1) to built a spherical wave.
. 2

Figure 9: Superposition of homogeneous plane waves. 7 plane waves (left), 13 plane waves (right)
(Tvgel & Hubral 1987).
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Sommerfeld Integral

The Sommerfeld integral describes the rule for superposition of homogeneous (real /;) and
inhomogeneous plane waves (complex /1) to built a spherical wave.

Figure 10: Superposition of 181 homogen 1987).
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.
Questions Katrane stiute o Technaogy

1 Here we describe the RM for acoustic media. Can the RM method be extended to
elastic media (P-SV) as well ? Are Rayleigh waves included in the RM for elastic media

?
2 Do we need a separate RM for SH/Love waves ?
3 Which parts of the RM are computationally most expensive ?

4 Can we easily model specific reflections only and ignore all other reflections and
multiples ?

5 Can the RM also be used to calculate the transmittiviy of a stack of layers ? Can the
RM be applied to calculate VSP seismograms ?

6 Does the calculation time of the RM depend upon (a) number of layers ? (b) frequency
bandwidth of the source, (c) distance between source and receiver ? (d) number of
sources and receivers ?
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.
Questions Katrane stiute o Technaogy

7 Let us compare the RM with the 2D FD method for a layered model consisting of many
layers such as the example on slide 30. Which method may be faster especially for
large distances between source and receiver ? Should the RM and 2D FD method
generally produce the same results (seismograms) ? Which of the two methods is more
realistic ?

8 What is the so-called Cerveny effect (slide 28)? Does this mean that the reflection
amplitudes extracted from observed seismograms do not completely mimic the trend of
reflection coefficients ?

9 Let us consider the Sommerfeld integral on slide 22 and the appendix. Can you think of
other applications of this superposition ? (e.g. scattering)
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