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The Reflectivity Method

The Reflectivity method (RM) is a powerfull analytic method that allows to calculate
complete synthetic seismograms for layered acoustic, elastic, visco-elastic, anisotropic
media.
The RM was the first method that allowed for the interpretation of complete
seismograms (traveltimes and amplitudes) in the 1960-70s.
It was introduced by Karl Fuchs and Gerhard Müller (Fuchs 1968, Fuchs & Müller 1971,
Mueller 1985).
It is still widely used today as an efficient algorithm to compute full seismograms on
small computers (→ exercise).
Typical applications are

surface waves in layered media
crustal and upper mantle deep seismic sounding
core/mantle inner core/outer core boundaries for long period body waves
concepts are also used in seismic migration
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The Reflectivity Method

The Reflectivity Method is based on two fundamental concepts:
1 The calculation of the response of a stack of horizontal layers to an incident harmonic

wave with certain frequency and angle of incidence: Rpp(ω, φ). This response can be
computed by a matrix formalism (Haskell 1953). It takes most of the computing time in
the RM.

2 The decomposition of a spherical wave radiating from a point source above the stack of
layers into plane waves and vice versa using the Sommerfeld integral. This requires the
numerical integration of Rpp(ω, φ) over φ or wavenumber k .
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The Reflectivity Method

Figure 1: Calculation of the Point Source Response of a layered medium (Fuchs 1980). All wave
phenomena in the layered medium are considered: surface waves, multiple reflections and
refractions, mode conversions P-S, S-P etc. Attenuation and Anisotropy can be considered as well.
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Reflection and transmission of a layered acoustic
medium

Figure 2: Calculation of the reflection and
transmission response of a stack of liquids
(acoustic approximation).

The displacement potential Φj in the j-th
layer (j = 1, 2, . . . , n) satisfies

∂2Φj

∂x2 +
∂2Φj

∂z2 =
1
α2

j

∂2Φj

∂t2

Potential ansatz

Φj = Aj exp [i (ωt − kjx − lj(z − zj))] (1)

+Bj exp
[
i
(
ωt − k ′

j x + l ′j (z − zj)
)]

ω2

α2
j

= k2
j + l2j = k ′2

j + l ′2j (2)

Bn = 0. (3)
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Incident P-wave

A1 exp [i (ωt − k1x − l1z)] of Φ1 is inter-
preted as incident P-wave. Therefore

k1 =
ω

α1
sin φ

l1 =
ω

α1
cos φ (4)

The incident P-wave is decribed by am-
plitude A1, angular frequency ω and inci-
dent angle φ.
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Reflectivity Rpp and transmittivity Bpp

B1 exp [i (ωt − k ′
1x + l ′1z)] of Φ1 is the

reflected wave. We want to compute
the displacement reflection coefficient
Rpp (also called Reflectivity) and the
displacement refraction coefficient Bpp
(also called Transmittivity) of the layered
medium

Rpp(ω, φ) =
B1

A1

Bpp(ω, φ) =
α1

αn
· An

A1
(5)
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Displacement boundary conditions

The boundary conditions require continuity of the vertical displacement at each interface
z = z2, z3, . . . , zn

∂Φj

∂z
=

∂Φj−1

∂z
(6)

We insert our ansatz

Φj = Aj exp [i (ωt − kjx − lj(z − zj))] + Bj exp
[
i
(
ωt − k ′

j x + l ′j (z − zj)
)]

and obtain

−ljAj exp [−ikjx ] + l ′j Bj exp
[
−ik ′

j x
]

= −lj−1Aj−1 exp [i (−kj−1x − lj−1dj−1)]

+l ′j−1Bj−1 exp
[
i
(
−k ′

j−1x + l ′j−1dj−1
)]

(7)

with layer thickness dj−1 := zj − zj−1, (d1 = 0)
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Stress boundary conditions

The boundary conditions require continuity of the normal stress

pzz = λ∇2Φ = ρ∂2Φ/∂t2

at each interface z = z2, z3, . . . , zn.

ρj
∂2Φj

∂t2 = ρj−1
∂2Φj−1

∂t2 (8)

We insert our ansatz

Φj = Aj exp [i (ωt − kjx − lj(z − zj))] + Bj exp
[
i
(
ωt − k ′

j x + l ′j (z − zj)
)]

and obtain

ρjAj exp [−ikjx ] + ρjBj exp
[
−ik ′

j x
]

= ρj−1Aj−1 exp [i (−kj−1x − lj−1dj−1)]

+ρj−1Bj−1 exp
[
i
(
−k ′

j−1x + l ′j−1dj−1
)]

(9)
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Boundary Conditions

In order to fulfill the boundary conditions the exponential terms depending on x must
cancel. With eq. 4 this gives

k ′
n = kn = k ′

n−1 = kn−1 = . . . = k ′
1 = k1 =

ω

α1
sin φ (10)

which is an alternative form of Snell’s law. With

ω2

α2
j
= k2

j + l2j = k ′2
j + l ′2j

this leads to

l ′j = lj =

(
ω2

α2
j
− k2

1

) 1
2

=
ω

αj

(
1 −

α2
j

α2
1
sin2 φ

) 1
2

. (11)

If sin φ > α1/αj , lj must be negative imaginary so that Φn remains bounded for z → ∞.
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Matrix formalism

Equations 7 and 9 lead to the following system of equations, that relate Aj and Bj with Aj−1
and Bj−1, respectively

Aj − Bj =
lj−1

lj

[
Aj−1e−ilj−1dj−1 − Bj−1eilj−1dj−1

]
Aj + Bj =

ρj−1

ρj

[
Aj−1e−ilj−1dj−1 + Bj−1eilj−1dj−1

]
In matrix form(

Aj
Bj

)
=

e−ilj−1dj−1

2lj ρj

(
lj−1ρj + lj ρj−1 (−lj−1ρj + lj ρj−1)e2ilj−1dj−1

−lj−1ρj + lj ρj−1 (lj−1ρj + lj ρj−1)e2ilj−1dj−1

)
·
(

Aj−1
Bj−1

)
= mj ·

(
Aj−1
Bj−1

)
(12)

where mj is the layer matrix.
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Matrix formalism

Repeated application of eq. 12 gives(
An
Bn

)
= mn · mn−1 · . . . · m3 · m2

(
A1
B1

)
= M

(
A1
B1

)
=

(
M11M12
M21M22

)(
A1
B1

)
(13)

The total layer matrix M(ω, φ) can be calculated efficiently for a given frequency ω and
angle of incidence φ of the inicident P-wave. The lj ’s are calculated by eq. 15

lj =
ω

αj

(
1 −

α2
j

α2
1
sin2 φ

) 1
2
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Reflectivity Rpp and transmittivity Bpp

1 Reflectivity
Bn = M21A1 + M22B1 = 0

Rpp(ω, φ) :=
B1

A1
= −M21

M22
(14)

2 Transmittivity
An = M11A1 + M12B1

Bpp(ω, φ) :=
An

A1
= M11 −

M12M21

M22
=

α1

αn

(
M11 −

M12M21

M22

)
(15)
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Reflectivity method

Figure 3: Reflectivity method: Calculation of point
source response of a stack of homogeneous layers.

Now we calculate the point source
response of the stack of
homogeneous layers.

This is called Reflectivity Method
(Fuchs 1968, Fuchs & Müller 1971).

We assume that we know Rpp(ω, φ)
from the product of layer matrices.
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Potential Ansatz

The displacement potential of a point source located at height h and frequency ω is (see
lecture TSW):

Φ1e =
1
R

eiω
(

t− R
α1

)
, R2 = r2 + (z + h)2 (16)

Wave equations in cylindrical coordinates (r , z)

∂2Φj

∂r2 +
1
r

∂Φj

∂r
+

∂2Φj

∂z2 =
1
α2

j

∂2Φj

∂t2 (17)
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Potential Ansatz

Elementary solutions of this equation are

J0(kr) exp [i (ωt ± lj (z − zj))] , lj =

(
ω2

α2
j
− k2

) 1
2

(18)

J0(kr) is the Bessel function (see Appendix) of first kind and zeroth order.
Equation (18) is an analogue to the solutions

e−ikx · ei(ωt±lj (z−zj ))

of the 2D wave equation in cartesian coordinates

∂2Φj

∂x2 +
∂2Φj

∂z2 =
1
α2

j

∂2Φj

∂t2

20 | 45 Bohlen – Seismic Modelling GPI, KIT



Potential Ansatz

Togehther with (18), the functions

∫ ∞

0
f (k)J0(kr)ei(ωt±lj (z−zj ))dk with lj(k) =

(
ω2

α2
j
− k2

) 1
2

(19)

are also solutions of (17) if the integral converges. Therefore, we come to the ansatz

Φj =
∫ ∞

0
J0(kr)

{
Aj(k)ei(ωt−lj (z−zj )) + Bj(k)ei(ωt+lj (z−zj ))

}
dk . (20)
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Incident wave

A spherical wave can be written as a superposition of plane harmonic waves (Sommerfeld
integral, see Appendix):

1
R

eiω
(

t− R
α1

)
=
∫ ∞

0
J0(kr)

k
il1

ei(ωt−l1|z+h|)dk , l1(k) =
(

ω2

α2
1
− k2

) 1
2

, k =
ω

α1
sin φ

(21)
We can therefore interpret the first part of Φ1 with z1 = 0 as the incident wave

Φ1e =
∫ ∞

0
J0(kr)A1ei(ωt−l1(z−h))dk , A1 =

k
il1

(22)
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Displacements

The second part is the reflected wave

Φ1r =
∫ ∞

0
J0(kr)B1ei(ωt+l1(z−h))dk (23)

With
B1(k) = A1(k)Rpp(ω, k) =

k
il1

Rpp(ω, k)

we get

Φ1r =
∫ ∞

0

k
il1

J0(kr)Rpp(ω, k)ei(ωt+l1(z−h))dk
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Displacements

The vertical displacement is

w1r (r , z,ω, t) =
∂Φ1r

∂z
= eiωt

∫ ∞

0
kJ0(kr)Rpp(ω, k)eil1(z−h)dk (24)

The horizontal displacement is (with J ′
0(x) = −J1(x))

u1r (r , z,ω, t) =
∂Φ1r

∂r
= eiωt

∫ ∞

0

−k2

il1
J1(kr)Rpp(ω, k)eil1(z−h)dk . (25)

The integrals in (24) and (25) can be computed numerically.
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Impulsive excitation

The transition to impulse excitation

Φ1e =
1
R

F
(

t − R
α1

)
can be performed by Fourier transformation. Let F (ω) denote the Fourier spectrum of
F (t). Then

Φ1e =
1

2πR

∫ +∞

−∞
F (ω)eiω

(
t− R

α1

)
dω

The corresponding displacements of the reflected wave are obtained via

W1r (r , z, t)
U1r (r , z, t)

}
= 1

2π

∫ +∞
−∞ F (ω)

{
w1r (r , z,ω, t)
u1r (r , z,ω, t)

}
dω (26)
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Refraction and Reflection at Moho

Figure 4: Moho as first order discontinuity ?
(Fuchs 1968).

Very first application: Nature of the
Mohovičić-zone (Fuchs 1968)

Beyond critical point r ∗ = 74.91 km
high amplitudes and change of
waveform

NOT predictable by Zoeppritz
equations (Červený effect)
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Červený effect

Figure 5: Reflection amplitude versus offset as a
function of frequency (Červený 1961)

According to Zoeppritz |Rpp| has its
maximum directly at the critical point.
The reflectivity methods predicts a
shift to larger distances.

This is due to the interference of
headwave and reflected wave, and
pulse shape of the super-critical
reflection.

As an interference phenomenon, the
shifting of the amplitude maximum of
the reflected wave is dependent upon
dominant frequency of the incident
signal, depth of the reflector, and the
velocity contrast at the reflector.
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Complete seismograms for global earth

Figure 6: Global SH-seismograms at the Earth
surface.

SH-waves excited by a horizontal
single force at the Earth’s surface of
20 s dominant period.

Love waves have large amplitudes

Body wave phases are mantle wave
S and SS, core reflection ScS and
diffraction at the core Sdiff .

29 | 45 Bohlen – Seismic Modelling GPI, KIT



Seismic prospecting for coal

Figure 7: Simulation of multiple reflections/refractions in coal (Mueller 1985).
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The Reflectivity Method - Summary

The Reflectivity method is an efficient analytic method to calculate complete synthetic
seismograms for layered media.

1 We first calculate the response of a stack of layers for an incident harmonic plane wave
Rpp(ω, φ) by a matrix formalism.

2 Then we apply a numerical integration of Rpp(ω, φ) over wavenumber k to obtain the
point source response.

3 We consider many frequencies by multiplication with the source spectrum and inverse
Fourier transformation.

The method can be applied to efficiently calculate complete seismograms on a broad
range of spatial scales (global seismology to near surface) where the changes in elastic
parameters vary along one direction only.
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Bessel functions

The differential equation of the Bessel function of integer order n = 0, 1, 2, . . . is

x2y ′′ + xy ′ +
(
x2 − n2) y = 0. (27)

The two linearly independent solutions of this equation are

y = Jn(x) = Bessel function of first kind and n − order

y = Yn(x) =
Bessel function of second kind and n − th order
or Neumann′s function of n − th order.
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Graphical images of Bessel functions

The graphic representation for x ≥ 0 of Bessel and Neumann functions:

Figure 8: Graphs of Bessel and Neumann functions.
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Hankel functions

Neumann’s functions have a singularity at x = 0.

The Hankel functions, or Bessel functions of the third kind, are defined as

H(1)
n (x) = Jn(x) + iYn(x) Hankel function of first kind (28)

H(2)
n (x) = Jn(x)− iYn(x) Hankel function of second kind . (29)

H(1)
n (x) and H(2)

n (x) are linearly independent. The general solution of (27) is, therefore,
(with the arbitrary constants A,B,C,D) either

y = AJn(x) + BYn(x)

or
y = CH(1)

n (x) + DH(2)
n (x).
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Analogies to Trigonometric Functions

There are analogies between Bessel functions and trigonometric functions. Trigonometric
functions follow from the equation of oscillation:

y ′′ + n2y = 0

Fundamental solutions are (cos(nx), sin(nx)), and (einx , e−inx ).
The analogies are

Bessel functions Trigonometric functions
Jn(x) cos nx
Yn(x) sin nx

H(1)
n (x) einx = cos nx + i sin nx

H(2)
n (x) e−inx = cos nx − i sin nx .
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Asymptotic representation

For x ≫ 1 the functions can be approximated by

Jn(x) ≃
( 2

πx

) 1
2 cos

(
x − nπ

2 − π
4

)
Yn(x) ≃

( 2
πx

) 1
2 sin

(
x − nπ

2 − π
4

)
H(1)

n (x) ≃
( 2

πx

) 1
2 exp

[
i
(
x − nπ

2 − π
4

)]
H(2)

n (x) ≃
( 2

πx

) 1
2 exp

[
−i
(
x − nπ

2 − π
4

)]


(30)
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Sommerfeld Integral

The Sommerfeld integral describes the rule for superposition of homogeneous (real l1) and
inhomogeneous plane waves (complex l1) to built a spherical wave.

Figure 9: Superposition of homogeneous plane waves. 7 plane waves (left), 13 plane waves (right)
(Tygel & Hubral 1987).
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Sommerfeld Integral

The Sommerfeld integral describes the rule for superposition of homogeneous (real l1) and
inhomogeneous plane waves (complex l1) to built a spherical wave.

Figure 10: Superposition of 181 homogeneous plane waves. (Tygel & Hubral 1987).
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Questions

1 Here we describe the RM for acoustic media. Can the RM method be extended to
elastic media (P-SV) as well ? Are Rayleigh waves included in the RM for elastic media
?

2 Do we need a separate RM for SH/Love waves ?
3 Which parts of the RM are computationally most expensive ?
4 Can we easily model specific reflections only and ignore all other reflections and

multiples ?
5 Can the RM also be used to calculate the transmittiviy of a stack of layers ? Can the

RM be applied to calculate VSP seismograms ?
6 Does the calculation time of the RM depend upon (a) number of layers ? (b) frequency

bandwidth of the source, (c) distance between source and receiver ? (d) number of
sources and receivers ?
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Questions

7 Let us compare the RM with the 2D FD method for a layered model consisting of many
layers such as the example on slide 30. Which method may be faster especially for
large distances between source and receiver ? Should the RM and 2D FD method
generally produce the same results (seismograms) ? Which of the two methods is more
realistic ?

8 What is the so-called Cerveny effect (slide 28)? Does this mean that the reflection
amplitudes extracted from observed seismograms do not completely mimic the trend of
reflection coefficients ?

9 Let us consider the Sommerfeld integral on slide 22 and the appendix. Can you think of
other applications of this superposition ? (e.g. scattering)
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