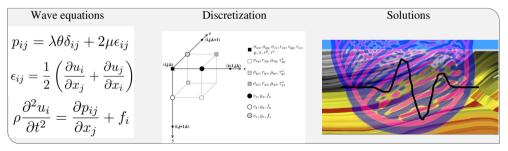


Seismic Modelling

Finite Element Method

Thomas Bohlen, Geophysical Institute, KIT-Faculty of Physics



www.kit.edu

1. Introduction

2. Weak formulation of the wave equation

3. Finite element method

- 3.1 Finite element formulation
- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

Multi-scale problems

In some practical problems "small-scale" features (structures much smaller than the seismic wavelength) can affect wave propagation. Those structures often exhibit strong contrasts in material properties.

- earth topography variations (mountains)
- boreholes, tunnels, TBM
- gas accumulations, fractures, voids, cracks
- earthquakes
- interaction of seismic waves with constructions
- problems in non-destructive material testing and medical imaging

To efficiently simulate "small-scale" features a spatially variable discretization must be applied.

Modelling of planar interfaces

Grid-based methods suffer from artifacts produced by stair-case approximation.

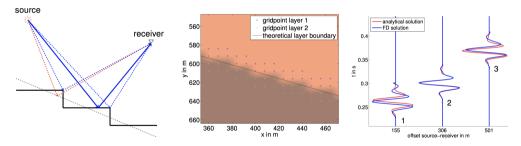


Figure 1: Left: Ray paths of exact (red) and FD solution (blue). Center: FD velocity model with stair-cases, Right: Seismograms of reflected P-wave at different offsets after dispersion correction (Habelitz 2016).

Finite Elements (FE)

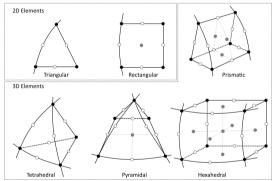


Figure 2: Typical Finite Elements Source:Comsol-Multiphysics.

- FE methods allow for the flexible space discretization by using finite elements.
- The weak formulation of the wave equation inside of each element is solved.
- The inner wavefield is approximated by basis functions.
- At the edges boundary conditions are applied.
- Geological interfaces must be aligned with the edges of the finite-elements. This may require sophisticated meshing.

Finite Elements (FE)

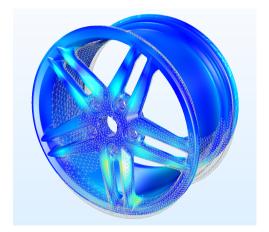


Figure 3: Example of Finite Element discretization: stresses and deformations of a wheel rim in a structural analysis. (Source:Comsol-Multiphysics).

1. Introduction

2. Weak formulation of the wave equation

3. Finite element method

- 3.1 Finite element formulation
- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

Weak formulation of wave equation

We start with the strong form of the 1-D wave equation for SH-waves (Igel 2016):

$$\rho(x)\partial_t^2 u(x,t) = \partial_x \mu(x)\partial_x u(x,t) + f(x)$$
(1)

where u(x, t) = transverse displacement, $\mu(x)$ = shear modulus, $\rho(x)$ =density, f(x)= external force. We omit the space and time dependencies:

$$\rho \partial_t^2 u = \partial_x \mu \partial_x u + f \tag{2}$$

We multiply equation 2 with an arbitrary, real, smooth, space-dependent test function v = v(x) and integrate over a domain D (the volume of the element).

$$\int_{D} v \rho \partial_t^2 u dx - \int_{D} v \partial_x \mu \partial_x u dx = \int_{D} v f dx$$
(3)

.

Weak formulation of wave equation

We carry out an integration by parts:

$$-\int_{D} v \partial_{x} \mu \partial_{x} u dx = \int_{D} \mu \partial_{x} v \partial_{x} u dx + [v \mu \partial_{x} u]_{x_{min}}^{x_{max}}$$
(4)

where (x_{min}, x_{max}) define the edges of domain *D*. The last term on the RHS of equation 4 can be interpreted in terms of shear stress. According to Hooke's law (1-D SH waves)

$$\sigma_{xz} = \mu \partial_x u \tag{5}$$

This term vanishes if we assume a stress free surface at the edges of the elements: $\sigma_{xz} = 0$. Assuming that we have a free surface at the edges of our domain *D* we obtain

$$\int_{D} v\rho \partial_{t}^{2} u dx + \int_{D} \mu \partial_{x} v \partial_{x} u dx = \int_{D} v f dx$$
(6)

which is the weak (integral) formulation of the 1D wave equation .

1. Introduction

2. Weak formulation of the wave equation

3. Finite element method

- 3.1 Finite element formulation
- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

1. Introduction

- 2. Weak formulation of the wave equation
- 3. Finite element method

3.1 Finite element formulation

- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

To enter the discrete world of Finite elements we perform two steps

• We replace our exact solution u by an approximated solution \bar{u} .

$$u(x,t) \approx \bar{u}(x,t) = \sum_{i=1}^{N} u_i(t)\varphi_i(x)$$
(7)

where $\varphi_i(x)$ are space dependent basis functions. Note that the coefficients $u_i(t)$ are time dependent only.

We choose our test functions as

$$\mathbf{v}(\mathbf{x}) := \varphi_j(\mathbf{x})$$
 (8)

This choice is known as the Galerkin principle.

With these two steps we obtain one equation for each of the *j* test functions $v(x) \rightarrow \varphi_j(x)$

$$\int_{D} \rho \partial_{t}^{2} \bar{u} \varphi_{j} dx + \int_{D} \mu \partial_{x} \bar{u} \partial_{x} \varphi_{j} dx = \int_{D} \varphi_{j} f dx$$
(9)

By inserting equation 7 $\bar{u}(x, t) = \sum_{i=1}^{N} u_i(t)\varphi_i(x)$ we can turn the continuous weak form into a system of linear equations

$$\int_{D} \rho \partial_{t}^{2} \left(\sum_{i=1}^{N} u_{i}(t) \varphi_{i} \right) \varphi_{j} dx + \int_{D} \mu \partial_{x} \left(\sum_{i=1}^{N} u_{i}(t) \varphi_{i} \right) \partial_{x} \varphi_{j} dx = \int_{D} \varphi_{j} f dx$$
(10)

Changing the order of integration and summation, we obtain a system of *j* linear equations

$$\sum_{i=1}^{N} \partial_t^2 u_i(t) \int_D \rho \varphi_i \varphi_j dx + \sum_{i=1}^{N} u_i(t) \int_D \mu \partial_x \varphi_i \partial_x \varphi_j dx = \int_D \varphi_j f dx$$
(11)

13 | 31

We now introduce a matrix-vector notation

displacement
$$\boldsymbol{u}(t) \rightarrow u_i(t)$$

mass matrix $\boldsymbol{M}(x) \rightarrow M_{ij} = \int_D \rho \varphi_i \varphi_j dx$
stiffness matrix $\boldsymbol{K}(x) \rightarrow K_{ij} = \int_D \mu \partial_x \varphi_i \partial_x \varphi_j dx$
force $\boldsymbol{f}(x) \rightarrow f_j(x) = \int_D \varphi_j f dx$

Thus we can write the system of *j* equations as

$$\partial_t^2 \boldsymbol{u}\boldsymbol{M} + \boldsymbol{u}\boldsymbol{K} = \boldsymbol{f} \tag{12}$$

or with transposed system matrices as

$$\boldsymbol{M}^{T}\partial_{t}^{2}\boldsymbol{u} + \boldsymbol{K}^{T}\boldsymbol{u} = \boldsymbol{f}$$
(13)

GPI, KIT

By approximating the second order time derivative by a second order FD approximation

$$\boldsymbol{M}^{T}\left[\frac{\boldsymbol{u}(t+dt)-2\boldsymbol{u}(t)+\boldsymbol{u}(t-dt)}{dt^{2}}\right]=\boldsymbol{f}-\boldsymbol{K}^{T}\boldsymbol{u}$$
(14)

we finally obtain the explicit time update FE equation

$$\boldsymbol{u}(t+dt) = dt^2 (\boldsymbol{M}^T)^{-1} \left[\boldsymbol{f} - \boldsymbol{K}^T \boldsymbol{u} \right] + 2\boldsymbol{u}(t) - \boldsymbol{u}(t-dt)$$
(15)

1. Introduction

- 2. Weak formulation of the wave equation
- 3. Finite element method
 3.1 Finite element formulation
 3.2 Comparison of FE and FD formulation
 3.3 FE for linear basis functions

Finite difference formulation

We compare the FE discretization of the weak formulation with the FD discretization of the strong formulation of the 1-D wave equation for SH-waves assuming $\mu = const$.

$$\rho(x)\partial_t^2 u(x,t) = \mu \partial_x^2 u(x,t) + f(x)$$
(16)

We apply second order FD-operators in both space and time O(2,2):

$$\rho(x) \left[\frac{u(x, t+dt) - 2u(x, t) + u(x, t-dt)}{dt^2} \right] = \mu \left[\frac{u(x+h, t) - 2u(x, t) + u(x-h, t)}{h^2} \right] + f(x)$$
(17)

This gives the explicit update scheme

$$u(x, t+dt) = dt^{2}\rho(x)^{-1} \left[f(x) + \mu \left[\frac{u(x+h, t) - 2u(x, t) + u(x-h, t)}{h^{2}} \right] \right] + 2u(x, t) - u(x, t-dt)$$
(18)

Comparison of FD and FE formulations

Finite elements

$$\boldsymbol{u}(t+dt) = dt^2 (\boldsymbol{M}^T)^{-1} \left[\boldsymbol{f} - \boldsymbol{K}^T \boldsymbol{u} \right] + 2\boldsymbol{u}(t) - \boldsymbol{u}(t-dt)$$

Finite differences

$$u(x, t+dt) = dt^{2}\rho(x)^{-1} \left[f(x) + \mu \left[\frac{u(x+h, t) - 2u(x, t) + u(x-h, t)}{h^{2}} \right] \right] + 2u(x, t) - u(x, t-dt)$$

$$(\mathbf{M}^{T})^{-1} \rightarrow \rho(x)^{-1} \quad \mathbf{K}^{T} \rightarrow -\mu \partial_{x} \partial_{x}$$

Finite elements

- global wavefields and operations
- $(\mathbf{M}^{T})^{-1}$ costly to calculate
- \mathbf{K}^{T} easy to calculate

Finite differences

- local wavefields and operations
- $\rho(x)^{-1}$ easy to calculate
- $-\mu\partial_x\partial_x$ easy to calculate

1. Introduction

- 2. Weak formulation of the wave equation
- 3. Finite element method
- 3.1 Finite element formulation
- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

System matrices

We now calculate the entries for the mass and stiffness matrix for a simple choice of basis function. The basis functions should be defined locally within each element. For this purpose we introduce a local coordinate system

$$\xi = x - x_i h_i = x_{i+1} - x_i$$
 (19)

The element size h_i may vary. The element *i* is located in the intervall $x \in [x_i, x_{i+1}]$

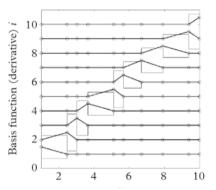
Local linear basis functions

In the local coordinate system simple linear basis functions can be defined as

$$\varphi_{i}(\xi) = \begin{cases} \frac{\xi}{h_{i-1}} + 1 & -h_{i-1} \leq \xi \leq 0\\ 1 - \frac{\xi}{h_{i}} & 0 \leq \xi \leq h_{i} \\ 0 & \text{elsewhere} \end{cases}$$
(20)

The linear basis functions are defined over two elements. The derivatives are

$$\partial_{\xi} \varphi_i(\xi) = egin{cases} rac{1}{h_{i-1}} & -h_{i-1} \leq \xi \leq 0 \ -rac{-1}{h_i} & 0 \leq \xi \leq h_i \ 0 & ext{elsewhere} \end{cases}$$



(21) Figure 4: Local basis function and first derivatives as defined in equations 20 and 21 (Igel 2016).

21 | 31

The mass matrix

The mass matrix has been defined as

$$M_{ij} = \int_{D} \rho \varphi_{i} \varphi_{j} dx = \int_{D_{\xi}} \rho \varphi_{i} \varphi_{j} d\xi$$
(22)

For the diagonal elements we obtain

$$M_{ii} = \rho_{i-1} \int_{-h_{i-1}}^{0} \left(\frac{\xi}{h_{i-1}} + 1\right)^2 d\xi + \rho_i \int_{0}^{h_i} \left(1 - \frac{\xi}{h_i}\right)^2 d\xi = \frac{1}{3} (\rho_{i-1}h_{i-1} + \rho_i h_i) \quad (23)$$

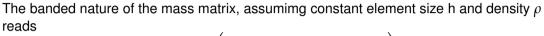
For the off-diagonal elements the basis functions overlap only in one element, for example

$$M_{i,i-1} = \rho_{i-1} \int_{-h_{i-1}}^{0} \left(\frac{\xi}{h_{i-1}} + 1\right) \frac{-\xi}{h_{i-1}} d\xi = \frac{1}{6} \rho_{i-1} h_{i-1}$$
$$M_{i,i+1} = \rho_{i-1} \int_{0}^{h_{i}} \left(1 - \frac{\xi}{h_{i}}\right) \frac{\xi}{h_{i}} d\xi = \frac{1}{6} \rho_{i-1} h_{i-1}$$

22 | 31

(24) GPI, KIT

The mass matrix



$$\boldsymbol{M} = \frac{\rho h}{6} \begin{pmatrix} \dots & & & & \\ & 1 & 4 & 1 & & \\ & & 1 & 4 & 1 & & \\ & & & 1 & 4 & 1 & \\ & & & & 1 & 4 & 1 & \\ & & & & & & \dots \end{pmatrix}$$

(25)

(28)

GPI, KI

The stiffness matrix

The stiffness matrix has been defined as

$$K_{ij} = \int_{D} \mu \partial_{x} \varphi_{i} \partial_{x} \varphi_{j} dx = \int_{D_{\xi}} \mu \partial_{\xi} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi$$
(26)

For the diagonal elements we obtain assuming constant shear modulus μ in each element

$$K_{ii} = \mu_{i-1} \int_{-h_{i-1}}^{0} \left(\frac{1}{h_{i-1}}\right)^2 d\xi + \mu_i \int_{0}^{h_i} \left(-\frac{1}{h_i}\right)^2 d\xi = \frac{\mu_{i-1}}{h_{i-1}} + \frac{\mu_i}{h_i}$$
(27)

For the off-diagonal elements

$$K_{i,i-1} = \mu_{i-1} \int_{-h_{i-1}}^{0} \left(\frac{1}{h_{i-1}}\right) \frac{-1}{h_{i-1}} d\xi = -\frac{\mu_{i-1}}{h_{i-1}}$$

$$K_{i,i+1} = \mu_{i-1} \int_{0}^{h_{i}} \left(\frac{-1}{h_{i}}\right) \frac{1}{h_{i}} d\xi = -\frac{\mu_{i}}{h_{i}}$$

The stiffness matrix

For the stiffness matrix we obtain in a similar way

$$\boldsymbol{\kappa} = \frac{\mu}{h} \begin{pmatrix} \dots & & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 & \\ & & & -1 & 2 & -1 & \\ & & & & -1 & 2 & -1 & \\ & & & & & & \dots \end{pmatrix}$$

Which corresponds to second order Finite Difference operator matrix.

(29)

System matrices

к

Figure 5: System matrices for the FE and FD method (Igel 2016).

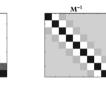
Finite elements

$$\boldsymbol{u}(t+dt) = dt^2 (\boldsymbol{M}^T)^{-1} \left[\boldsymbol{f} - \boldsymbol{K}^T \boldsymbol{u}\right] + 2\boldsymbol{u}(t) - \boldsymbol{u}(t-dt)$$

Finite differences

$$u(x, t + dt) = dt^{2}\rho(x)^{-1} (f(x) + \mu \left[\frac{u(x + h, t) - 2u(x, t) + u(x - h, t)}{h^{2}} \right]) + 2u(x, t) - u(x, t - dt)$$

$$(\boldsymbol{M}^{T})^{-1} \rightarrow \rho(x)^{-1} \quad \boldsymbol{K}^{T} \rightarrow -\mu \partial_{x} \partial_{x}$$



Summary: Finite element method

- The FE method allows to simulate multi-scale problems by flexible discretization in space. Furthermore, the edges of the FE can be aligned with interfaces to avoid stair-case artifacts.
- The FE calculates local approximations inside of each element. This requires the calculation of system matrices in the initialization phase.
- The FE method is a series expansion method. The continuous solution is replaced by a finite sum over basis functions.
- The stress-free surface is implicitly solved. This is an advantage compared to the FD method when free surface topography needs to be considered explicitly.
- The time update can be performed by a conventional FD-scheme.
- For seismological applications the inversion of the mass matrix is expensive. The spectral element methods solves this by a special choice of basis functions and integration scheme.

1. Introduction

2. Weak formulation of the wave equation

3. Finite element method

- 3.1 Finite element formulation
- 3.2 Comparison of FE and FD formulation
- 3.3 FE for linear basis functions

- Habelitz, P. (2016), Genauigkeit der Finite-Differenzen Simulation reflektierter elastischer Wellen auf einem geschachtelten Gitter , Bachelorthesis, Karlsruher Institut für Technologie.
- Igel, H. (2016), Computational Seismology: A Practical Introduction, 1. edn, Oxford University Press. URL: https://global.oup.com/academic/product/computational-seismology-9780198717409?cc=de&lang=en&

Questions

- 1 What are the main advantages of the FE method ? What are potential shortcomings ?
- 2 Why is the calculation of $(M^T)^{-1}$ costly ?
- 3 Is the weak formulation fully equivalent to the strong formulation of the wave equation ? Why do we solve the weak formulation with FE methods and not the strong formulation ?
- 4 Why can the FE method be considered as a series expansion method ?
- 5 What are the boundary conditions between adjacent elements ?
- 6 How can we deal with strong surface topography in the FE method and the FD method ?
- 7 Let us compare the FE and FD method w.r.t. the following aspects: accuracy, computational efficiency, stability, numerical dispersion, implementation.

Questions

8 Let us consider the following scenarios. Would you apply the FD or the FE method ? wave propagation in (a) mountains, (b) marine environments, (c) bore holes, (e) subduction zones, (f) global earth, (g) shallow sediments, (h) strongly heterogenous media.