KIT

Karlsruhe Institute of Technology

Seismic Modelling
Finite Element Method
Thomas Bohlen, Geophysical Institute, KIT-Faculty of Physics

Wave equations Discretization Solutions

Dij = >\65ij + 2M€ij

L1 (0w Oy
=5\ 0z, " O

KIT — The Research University in the Helmholtz Association www.kit.edu


http://www.kit.edu/

Agenda A“(

Karlsruhe Institute of Technology

1. Introduction

2|31 Bohlen - Seismic Modelling GPI, KIT



Multi-scale problems A\‘(IT

Karlsruhe Institute of Technology

In some practical problems “small-scale” features (structures much smaller than the
seismic wavelength) can affect wave propagation. Those structures often exhibit strong
contrasts in material properties.

@ earth topography variations (mountains)

@ boreholes, tunnels, TBM

@ gas accumulations, fractures, voids, cracks

@ earthquakes

@ interaction of seismic waves with constructions

@ problems in non-destructive material testing and medical imaging

To efficiently simulate “small-scale” features a spatially variable discretization must be
applied.
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Modelling of planar interfaces

Grid-based methods suffer from artifacts produced by stair-case approximation.
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Figure 1: Left: Ray paths of exact (red) and FD solution (blue). Center: FD velocity model with stair-cases, Right:
Seismograms of reflected P-wave at different offsets after dispersion correction (Habelitz 2016).
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Finite Elements (FE) A\‘(IT

@ FE methods allow for the flexible
I space discretization by using finite

2D Elements i

| elements.

@ The weak formulation of the wave
equation inside of each element is

Prismatic solved.

@ The inner wavefield is approximated
by basis functions.

@ At the edges boundary conditions are

7 applied.

Tettahedral Pyramidal Hexahedral @ Geological interfaces must be aligned

with the edges of the finite-elements.

This may require sophisticated

meshing. @Rl KIT
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Figure 2: Typical Finite Elements Source:Comsol-Multiphysics.
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https://www.comsol.com/multiphysics/finite-element-method

Finite Elements (FE)
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Figure 3: Example of Finite Element
discretization: stresses and deformations of a
wheel rim in a structural analysis.
(Source:Comsol-Multiphysics).
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2. Weak formulation of the wave equation
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Weak formulation of wave equation

A

We start with the strong form of the 1-D wave equation for SH-waves (Igel 2016):
p(x)0%u(x, t) = dxpu(x)dxu(x, t) + f(x) (1)

where u(x, t) = transverse displacement, j(x) = shear modulus, p(x)=density, f(x)=
external force. We omit the space and time dependencies:

092U = dypdyu + f )

We multiply equation 2 with an arbitrary, real, smooth, space-dependent test function
v = v(x) and integrate over a domain D (the volume of the element).

Ofudk — [ vaupduax = [ vid 3
/Dvp,ux Dvxyxux Dvx (3)
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Weak formulation of wave equation

We carry out an integration by parts:
— / VOxpdxudx = / UOx VO, udx + [VHdxu| ™ (4)
D D min

where (Xmin, Xmax ) define the edges of domain D. The last term on the RHS of equation 4
can be interpreted in terms of shear stress. According to Hooke’s law (1-D SH waves)

UXZ — ]/lax u (5)

This term vanishes if we assume a stress free surface at the edges of the elements:
oxz = 0. Assuming that we have a free surface at the edges of our domain D we obtain

Ofudk + [ po,vaxuax = [ vid 6
/DVPtUX+ Dy Vo udx Dvx (6)

which is the weak (integral) formulation of the 1D wave equation .
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3.1 Finite element formulation

3.2 Comparison of FE and FD formulation
3.3 FE for linear basis functions

10|31 Bohlen - Seismic Modelling GPI, KIT

e




Agenda

1. Introduction
2. Weak formulation of the wave equation

3. Finite element method
3.1 Finite element formulation

4. References

11|31 Bohlen - Seismic Modelling GPI, KIT

B




Finite element formulation A\‘(IT

To enter the discrete world of Finite elements we perform two steps
© We replace our exact solution u by an approximated solution &.

(X t U Z U, (7)

where ¢;(x) are space dependent basis functions. Note that the coefficients u;(t) are
time dependent only.

® We choose our test functions as

v(x) = ¢j(x) (8)
This choice is known as the Galerkin principle.
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Finite element formulation A\‘(IT
With these two steps we obtain one equation for each of the j test functions v(x) — ¢;(x)
/ po2ugdx + / 10 D0y X = / ¢ifdx 9)

D D D

By inserting equation 7 &i(x, t) = YN ; u;(t)@i(x) we can turn the continuous weak form
into a system of linear equations

N
/Dpa? (i;u,'(t >¢,dx+/ 140y <Zu, ) ch,dx-/(p,fdx (10)

Changing the order of integration and summation, we obtain a system of j linear equations
N N
Y 9Zu(t) /qu),-qo,-dx + Y ui(t) /Dyaxgo,-axgojdx = /D @;fdx (11)
i=1 i=1
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Finite element formulation

We now introduce a matrix-vector notation

displacement u(t) —

mass matrix M(x)

stiffness matrix K(x) —

force f(x) —

Thus we can write the system of j equations as

0?uM + uK = f

or with transposed system matrices as

M 2u+KTu=f
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u;(t)
Mjj = /ququ)fdx

Kj = / HOx PiOxpjaX
D

fx) = | it
(12)

(13)
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Finite element formulation

By approximating the second order time derivative by a second order FD approximation

u(t+dt) —2u(t) + u(t — dt)

mT =f—K'u 14
we finally obtain the explicit time update FE equation
u(t+dt) = d2(M")~" [f — K"u] +2u(t) — u(t — df) (15)
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Finite difference formulation

We compare the FE discretization of the weak formulation with the FD discretization of the
strong formulation of the 1-D wave equation for SH-waves assuming y = const.

p(x)02u(x, t) = udcu(x, t) + f(x) (16)

We apply second order FD-operators in both space and time O(2,2):

o(x) u(x, t+ dt) —2u((1;(2, t) —i—u(x,t—dt)] - [u(x—i—h, t) —2u§7);, t) +u(x —h, t)] +(x)

(17)
This gives the explicit update scheme

x+ht)—2u(xt)+u(x—ht)
2

” +2u(x, t) — u(x, t—at)

u(x, t+dt) = dt?p(x) " [f(x) +u [u(
(18)
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Comparison of FD and FE formulations A\‘(IT
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Finite elements
u(t+dt) =d*(M")" [f — KTu] +2u(t) — u(t — dt)
Finite differences

(x+h,t)—2u(x,t)+u(x —ht)
h2

u(x, t+dt) = dt?p(x)! [f(x) +u [u ” +2u(x, t) — u(x, t— dt)

(MT)_1 — p(x)_1 KT - — 10Oy

Finite elements Finite differences

@ global wavefields and operations @ |ocal wavefields and operations
® (M)~ costly to calculate ® o(x)~ ! easy to calculate

® KT easy to calculate ® —0,0x easy to calculate
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System matrices A\‘(IT
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We now calculate the entries for the mass and stiffness matrix for a simple choice of basis
function. The basis functions should be defined locally within each element. For this
purpose we introduce a local coordinate system

E = X—X
hi = X1 —X (19)

The element size h; may vary. The element i is located in the intervall x € [x;, Xj+1]
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Local linear basis functions A\‘(IT

In the local coordinate system simple linear ~ 10—
basis functions can be defined as z vlllh
s 8 T~
A+l —h 4 <E<0 § e
Q) =31-F o<g<h (200 ¢ —
0 elsewhere 2 4 A
2 /\‘
The linear basis functions are defined over 5 2
two elements. The derivatives are o
2 4 6 8 10
- —hi4<E<0
agfpi(é) = 7_7,1 0< &< h (21) Figure 4: Local basis function and first
0 ' elsewhere derivatives as defined in equations 20 and 21

(laal 2N18)
\UgCi cuio).
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The mass matrix

The mass matrix has been defined as
Mj = / PPigjax = / PPig;dd (22)
D De

For the diagonal elements we obtain

0 2 hi
Mu:Pif1 /h,'_1 (hicj1 +1> dC+p,/0 <1 _gl> dC— (Pl 1h1 1+Pl ) (23)

For the off-diagonal elements the basis functions overlap only in one element, for example

0 g —¢

M,’,,1 = Pi- /hf_1 <hi1 + 1 ) i 1d§— GP/ 1hi—1
hi

M1 = Pi—1/ ( g) gd‘f_ gPi-1hi-1
0 i

22|31 Bohlen - Seismic Modelling G




The mass matrix A\‘(IT
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The banded nature of the mass matrix, assumimg constant element size h and density p
reads

—_ N =
—_ N -
NG,

-
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The stiffness matrix
The stiffness matrix has been defined as
Kij = /D HOxPiOxpjax = /D HOz idz 9IS (26)
4
For the diagonal elements we obtain assuming constant shear modulus y in each element
0 1 2 hi 1\2 i i
Kii = -,/ d+-/ (—)d: — + 27
= i —hi_s <hi1> Gt 0 hi ¢ hi—1  hi &7)

For the off-diagonal elements

0 1 —1 Hi-1
K. P — P d = —
h Hi 1/h,_1 (hi1> hi—+ ¢ hi—+

hi 1 1 Ui
Ki i = uj_ / — ) —ge=-2
ii4-1 Hi—1 o ( h > h h
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The stiffness matrix

For the stiffness matrix we obtain in a similar way

-1 2 —1

H -1 2 -1
K= -1 2 —1
-1 2 -1

Which corresponds to second order Finite Difference operator matrix.
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System matrices ﬂ(“.

K M

Finite elements

u(t+dt) = o (M7) " [~ K u] +2u(t) - u(t— db)

*
3
5
gl
2

Finite differences

u(x,t+dt) = dPp(x)"" (f(x)
+a {u(x—i— ht) —ZUSI);, t)+u(x—h, t)})

-.l +2u(x, t) — u(x, t —dt)

Figure 5: System matrices for the FE and FD (MT)™" = p(x)™" KT — —pdydx
method (Igel 2016).
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Summary: Finite element method A\‘(IT

@ The FE method allows to simulate multi-scale problems by flexible discretization in
space. Furthermore, the edges of the FE can be aligned with interfaces to avoid
stair-case artifacts.

® The FE calculates local approximations inside of each element. This requires the
calculation of system matrices in the initialization phase.

@ The FE method is a series expansion method. The continuous solution is replaced by a
finite sum over basis functions.

@ The stress-free surface is implicitly solved. This is an advantage compared to the FD
method when free surface topography needs to be considered explicitly.

® The time update can be performed by a conventional FD-scheme.

@ For seismological applications the inversion of the mass matrix is expensive. The
spectral element methods solves this by a special choice of basis functions and
integration scheme.
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Questions A\‘(IT

Karlsruhe Institute of Technology

1 What are the main advantages of the FE method ? What are potential shortcomings ?
2 Why is the calculation of (MT)~" costly ?

3 Is the weak formulation fully equivalent to the strong formulation of the wave equation ?

Why do we solve the weak formulation with FE methods and not the strong formulation
?

4 Why can the FE method be considered as a series expansion method ?
5 What are the boundary conditions between adjacent elements ?

6 How can we deal with strong surface topography in the FE method and the FD method
?

7 Let us compare the FE and FD method w.r.t. the following aspects: accuracy,
computational efficiency, stability, numerical dispersion, implementation.
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8 Let us consider the following scenarios. Would you apply the FD or the FE method ?
wave propagation in (a) mountains, (b) marine environments, (c) bore holes, (e)
subduction zones, (f) global earth, (g) shallow sediments, (h) strongly heterogenous
media.
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