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Multi-scale problems

In some practical problems ”small-scale” features (structures much smaller than the
seismic wavelength) can affect wave propagation. Those structures often exhibit strong
contrasts in material properties.

earth topography variations (mountains)

boreholes, tunnels, TBM

gas accumulations, fractures, voids, cracks

earthquakes

interaction of seismic waves with constructions

problems in non-destructive material testing and medical imaging

To efficiently simulate ”small-scale” features a spatially variable discretization must be
applied.
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Modelling of planar interfaces

Grid-based methods suffer from artifacts produced by stair-case approximation.

Figure 1: Left: Ray paths of exact (red) and FD solution (blue). Center: FD velocity model with stair-cases, Right:
Seismograms of reflected P-wave at different offsets after dispersion correction (Habelitz 2016).
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Finite Elements (FE)

Figure 2: Typical Finite Elements Source:Comsol-Multiphysics.

FE methods allow for the flexible
space discretization by using finite
elements.

The weak formulation of the wave
equation inside of each element is
solved.

The inner wavefield is approximated
by basis functions.

At the edges boundary conditions are
applied.

Geological interfaces must be aligned
with the edges of the finite-elements.
This may require sophisticated
meshing.5 | 31 Bohlen – Seismic Modelling GPI, KIT
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Finite Elements (FE)

Figure 3: Example of Finite Element
discretization: stresses and deformations of a
wheel rim in a structural analysis.
(Source:Comsol-Multiphysics).
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Weak formulation of wave equation

We start with the strong form of the 1-D wave equation for SH-waves (Igel 2016):

ρ(x)∂2
t u(x , t) = ∂x µ(x)∂xu(x , t) + f (x) (1)

where u(x , t) = transverse displacement, µ(x) = shear modulus, ρ(x)=density, f (x)=
external force. We omit the space and time dependencies:

ρ∂2
t u = ∂x µ∂xu + f (2)

We multiply equation 2 with an arbitrary, real, smooth, space-dependent test function
v = v(x) and integrate over a domain D (the volume of the element).∫

D
vρ∂2

t udx −
∫

D
v∂x µ∂xudx =

∫
D

vfdx (3)
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Weak formulation of wave equation

We carry out an integration by parts:

−
∫

D
v∂x µ∂xudx =

∫
D

µ∂xv∂xudx + [vµ∂xu]xmax
xmin

(4)

where (xmin, xmax ) define the edges of domain D. The last term on the RHS of equation 4
can be interpreted in terms of shear stress. According to Hooke’s law (1-D SH waves)

σxz = µ∂xu (5)

This term vanishes if we assume a stress free surface at the edges of the elements:
σxz = 0. Assuming that we have a free surface at the edges of our domain D we obtain∫

D
vρ∂2

t udx +
∫

D
µ∂xv∂xudx =

∫
D

vfdx (6)

which is the weak (integral) formulation of the 1D wave equation .
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Finite element formulation

To enter the discrete world of Finite elements we perform two steps
1 We replace our exact solution u by an approximated solution ū.

u(x , t) ≈ ū(x , t) =
N

∑
i=1

ui(t)φi(x) (7)

where φi(x) are space dependent basis functions. Note that the coefficients ui(t) are
time dependent only.

2 We choose our test functions as

v(x) := φj(x) (8)

This choice is known as the Galerkin principle.
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Finite element formulation

With these two steps we obtain one equation for each of the j test functions v(x) → φj(x)∫
D

ρ∂2
t ūφjdx +

∫
D

µ∂x ū∂x φjdx =
∫

D
φj fdx (9)

By inserting equation 7 ū(x , t) = ∑N
i=1 ui(t)φi(x) we can turn the continuous weak form

into a system of linear equations∫
D

ρ∂2
t

(
N

∑
i=1

ui(t)φi

)
φjdx +

∫
D

µ∂x

(
N

∑
i=1

ui(t)φi

)
∂x φjdx =

∫
D

φj fdx (10)

Changing the order of integration and summation, we obtain a system of j linear equations
N

∑
i=1

∂2
t ui(t)

∫
D

ρφi φjdx +
N

∑
i=1

ui(t)
∫

D
µ∂x φi ∂x φjdx =

∫
D

φj fdx (11)
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Finite element formulation

We now introduce a matrix-vector notation

displacement u(t) → ui(t)

mass matrix M(x) → Mij =
∫

D
ρφi φjdx

stiffness matrix K (x) → Kij =
∫

D
µ∂x φi ∂x φjdx

force f (x) → fj(x) =
∫

D
φj fdx

Thus we can write the system of j equations as

∂2
t uM + uK = f (12)

or with transposed system matrices as

MT ∂2
t u + K T u = f (13)
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Finite element formulation

By approximating the second order time derivative by a second order FD approximation

MT
[

u(t + dt)− 2u(t) + u(t − dt)
dt2

]
= f − K T u (14)

we finally obtain the explicit time update FE equation

u(t + dt) = dt2(MT )−1 [f − K T u
]
+ 2u(t)− u(t − dt) (15)
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Finite difference formulation

We compare the FE discretization of the weak formulation with the FD discretization of the
strong formulation of the 1-D wave equation for SH-waves assuming µ = const .

ρ(x)∂2
t u(x , t) = µ∂2

xu(x , t) + f (x) (16)

We apply second order FD-operators in both space and time O(2,2):

ρ(x)
[

u(x , t + dt)− 2u(x , t) + u(x , t − dt)
dt2

]
= µ

[
u(x + h, t)− 2u(x , t) + u(x − h, t)

h2

]
+ f (x)

(17)
This gives the explicit update scheme

u(x , t +dt) = dt2ρ(x)−1
[

f (x) + µ

[
u(x + h, t)− 2u(x , t) + u(x − h, t)

h2

]]
+2u(x , t)−u(x , t −dt)

(18)
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Comparison of FD and FE formulations

Finite elements

u(t + dt) = dt2(MT )−1 [f − K T u
]
+ 2u(t)− u(t − dt)

Finite differences

u(x , t +dt) = dt2ρ(x)−1
[

f (x) + µ

[
u(x + h, t)− 2u(x , t) + u(x − h, t)

h2

]]
+2u(x , t)−u(x , t −dt)

(MT )−1 → ρ(x)−1 K T → −µ∂x ∂x

Finite elements

global wavefields and operations

(MT )−1 costly to calculate

K T easy to calculate

Finite differences

local wavefields and operations

ρ(x)−1 easy to calculate

−µ∂x ∂x easy to calculate
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System matrices

We now calculate the entries for the mass and stiffness matrix for a simple choice of basis
function. The basis functions should be defined locally within each element. For this
purpose we introduce a local coordinate system

ξ = x − xi

hi = xi+1 − xi (19)

The element size hi may vary. The element i is located in the intervall x ∈ [xi , xi+1]
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Local linear basis functions

In the local coordinate system simple linear
basis functions can be defined as

φi (ξ) =


ξ

hi−1
+ 1 −hi−1 ≤ ξ ≤ 0

1 − ξ
hi

0 ≤ ξ ≤ hi

0 elsewhere

(20)

The linear basis functions are defined over
two elements. The derivatives are

∂ξ φi (ξ) =


1

hi−1
−hi−1 ≤ ξ ≤ 0

−−1
hi

0 ≤ ξ ≤ hi

0 elsewhere

(21) Figure 4: Local basis function and first
derivatives as defined in equations 20 and 21
(Igel 2016).
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The mass matrix

The mass matrix has been defined as

Mij =
∫

D
ρφi φjdx =

∫
Dξ

ρφi φjdξ (22)

For the diagonal elements we obtain

Mii = ρi−1

∫ 0

−hi−1

(
ξ

hi−1
+ 1
)2

dξ + ρi

∫ hi

0

(
1 − ξ

hi

)2

dξ =
1
3
(ρi−1hi−1 + ρihi) (23)

For the off-diagonal elements the basis functions overlap only in one element, for example

Mi,i−1 = ρi−1

∫ 0

−hi−1

(
ξ

hi−1
+ 1
)

−ξ

hi−1
dξ =

1
6

ρi−1hi−1

Mi,i+1 = ρi−1

∫ hi

0

(
1 − ξ

hi

)
ξ

hi
dξ =

1
6

ρi−1hi−1

(24)
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The mass matrix

The banded nature of the mass matrix, assumimg constant element size h and density ρ
reads

M =
ρh
6


...

1 4 1
1 4 1

1 4 1
1 4 1

...

 (25)
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The stiffness matrix

The stiffness matrix has been defined as

Kij =
∫

D
µ∂x φi ∂x φjdx =

∫
Dξ

µ∂ξ φi ∂ξ φjdξ (26)

For the diagonal elements we obtain assuming constant shear modulus µ in each element

Kii = µi−1

∫ 0

−hi−1

(
1

hi−1

)2

dξ + µi

∫ hi

0

(
− 1

hi

)2

dξ =
µi−1

hi−1
+

µi

hi
(27)

For the off-diagonal elements

Ki,i−1 = µi−1

∫ 0

−hi−1

(
1

hi−1

)
−1
hi−1

dξ = −µi−1

hi−1

Ki,i+1 = µi−1

∫ hi

0

(
−1
hi

)
1
hi

dξ = −µi

hi

(28)
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The stiffness matrix

For the stiffness matrix we obtain in a similar way

K =
µ

h


...

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

...

 (29)

Which corresponds to second order Finite Difference operator matrix.
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System matrices

Figure 5: System matrices for the FE and FD
method (Igel 2016).

Finite elements

u(t + dt) = dt2(MT )−1
[
f − K T u

]
+ 2u(t)−u(t − dt)

Finite differences

u(x , t + dt) = dt2ρ(x)−1 (f (x)

+µ

[
u(x + h, t)− 2u(x , t) + u(x − h, t)

h2

])
+2u(x , t)− u(x , t − dt)

(MT )−1 → ρ(x)−1 K T → −µ∂x ∂x
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Summary: Finite element method

The FE method allows to simulate multi-scale problems by flexible discretization in
space. Furthermore, the edges of the FE can be aligned with interfaces to avoid
stair-case artifacts.
The FE calculates local approximations inside of each element. This requires the
calculation of system matrices in the initialization phase.
The FE method is a series expansion method. The continuous solution is replaced by a
finite sum over basis functions.
The stress-free surface is implicitly solved. This is an advantage compared to the FD
method when free surface topography needs to be considered explicitly.
The time update can be performed by a conventional FD-scheme.
For seismological applications the inversion of the mass matrix is expensive. The
spectral element methods solves this by a special choice of basis functions and
integration scheme.
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Questions

1 What are the main advantages of the FE method ? What are potential shortcomings ?

2 Why is the calculation of (MT )−1 costly ?

3 Is the weak formulation fully equivalent to the strong formulation of the wave equation ?
Why do we solve the weak formulation with FE methods and not the strong formulation
?

4 Why can the FE method be considered as a series expansion method ?

5 What are the boundary conditions between adjacent elements ?

6 How can we deal with strong surface topography in the FE method and the FD method
?

7 Let us compare the FE and FD method w.r.t. the following aspects: accuracy,
computational efficiency, stability, numerical dispersion, implementation.
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Questions

8 Let us consider the following scenarios. Would you apply the FD or the FE method ?
wave propagation in (a) mountains, (b) marine environments, (c) bore holes, (e)
subduction zones, (f) global earth, (g) shallow sediments, (h) strongly heterogenous
media.
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