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Review: Finite Elements (FE)

Figure 1: Simulation of waves in the presence of strong
surface topography.

FE methods allow for the flexible space
discretization by using finite elements.

The weak formulation of the wave
equation inside of each element is
solved.

The inner wavefield is approximated by
basis functions.

At the edges boundary conditions are
applied.

Geological interfaces must be aligned
with the edges of the finite-elements.
This may require sophisticated meshing.
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Literature

Most of the material describing the methodology of the SEM presented in this lecture is
copied 1:1 from the book of Heiner Igel, which you find in the references (Igel 2016).

This book also includes many other seismic modelling approaches that could not be
discussed in our lecture, such as Finite Volumes and Discontinuous Galerkin Methods.

This book is therefore recommended for further studies on the subject seismic
modelling.
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Review: Finite Elements (FE)

1 We approximate u by an expansion of space dependent time-invariant basis functions
φi(x).

u(x , t) ≈ ū(x , t) =
N

∑
i=1

ui(t)φi(x) (1)

The coefficients ui(t) are time dependent only.
2 We solve the discrete weak formulation of the wave equation which becomes a system

of j linear equations

N

∑
i=1

∂2
t ui(t)

∫
D

ρφi φjdx +
N

∑
i=1

ui(t)
∫

D
µ∂x φi ∂x φjdx =

∫
D

φj fdx (2)
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Global Finite Element formulation

We re-formulate it using matrix-vector notation

MT ∂2
t u + K T u = f (3)

displacement u(t) → ui(t)

mass matrix M(x) → Mij =
∫

D
ρφi φjdx

stiffness matrix K (x) → Kij =
∫

D
µ∂x φi ∂x φjdx

force f (x) → fj(x) =
∫

D
φj fdx

which is integrated over time by an explicit FD scheme

u(t + dt) = dt2(MT )−1 [f − K T u
]
+ 2u(t)− u(t − dt) (4)
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Finite element formulation

In order to allow for flexibel (variable) space discretization we must introduce elements of
variable size and transform the equations to the element level.

Figure 2: The global domain is subdivided into finite elements which have standard local coordinate system ξ ∈ [−1, 1].
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Finite element formulation

The series expansion is then performed inside of each element

ū(x , t)|x∈De =
Np

∑
i=1

ue
i (t)φe

i (x) (5)

The global integrals (equation 2) are now local to one specific element De:
Np

∑
i=1

∂2
t ue

i (t)
∫
De

ρ(x)φe
i (x)φe

j (x)dx (6)

+
Np

∑
i=1

ue
i (t)

∫
De

µ(x)∂x φe
j (x)∂x φe

i (x)dx

=
∫
De

φe
j f (x , t)dx
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Coordinate transformation

For each element we define a local coordinate system:

Fe : [−1, 1] → De, x = Fe(ξ), (7)

ξ = ξ(x) = F−1
e (x), e = 1, ...ne (8)

where ne is the number of elements and ξ ∈ [−1, 1]. The global coordinate x can be
related to the local coordinate ξ and vice versa via (see Figure 2)

x(ξ) = Fe(ξ) = he
(ξ + 1)

2
+ xe, (9)

and vice versa

ξ(x) = Fe(ξ) = 2
(x − xe)

he
− 1, (10)
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Coordinate transformation

A coordinate change x → ξ leads to

∫
De

f (x)dx =

1∫
−1

f (ξ)
dx
dξ

dξ (11)

with the Jacobian J
J =

dx
dξ

=
he

2
(12)

The inverse of the Jacobian is required when derivatives of the basis functions are
integrated:

J−1 =
dξ

dx
=

2
he

(13)
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Finite element formulation

This leads finally to the system of linear equations which are solved for each element

Np

∑
i=1

∂2
t ue

i (t)
1∫

−1

ρ[x(ξ)]φe
j [x(ξ)]φ

e
i [x(ξ)]

dx
dξ

dξ (14)

+
Np

∑
i=1

ue
i (t)

1∫
−1

µ[x(ξ)]∂ξ φe
j [x(ξ)]∂ξ φe

i [x(ξ)]
(

dξ

dx

)2 dx
dξ

dξ

=

1∫
−1

φe
j [x(ξ)]f ([x(ξ)], t)

dx
dξ

dξ
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Spectral element formulation

We now start to describe the characteristics of the Spectral Element Formulation (SEM)
formulation.

1 We choose Langrange polynomials as basis functions
2 They allow for an exact representation of the wave field at collocation points within each

element
3 We make a specific choice for the collocation point: Gauss-Lobatto-Legendre (GLL)

points
4 Using the GLL points integration can be performed efficiently using

Gauss-Lobatto-Legendre (GLL) quadrature
5 The mass matrix becomes diagonal (and thus easy to invert) because interpolation and

integration are formulated for the same GLL points
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Interpolation with Lagrange Polynomials

For a set n + 1 pair of points (xi , fi)(i = 0, ..., n) with xi ̸= xj when i ̸= j it exists only one
polynomial Pn of order n with

Pn(xi) = fi . (15)

This polynomial can be constructed by

Pn(x) =
n

∑
i=0

fiLi(x) (16)

with the Lagrange interpolation polynomials

Li(x) := ∏
k ̸=i

x − xk

xi − xk
, i = 0, ..., n (17)
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Interpolation with Lagrange Polynomials

For illustration let us consider the following example for n=2:
i 0 1 2
xi 0 1 3
fi 1 3 2

The Langrange interpolation polynomials then are

L0(x) =
(x − 1)(x − 3)
(0 − 1)(0 − 3)

, L1(x) =
(x − 0)(x − 3)
(1 − 0)(1 − 3)

, L2(x) =
(x − 0)(x − 1)
(3 − 0)(3 − 1)

P2(x) = 1 · L0(x) + 3 · L1(x) + 2 · L2(x)

=
1
6
(−5x2 + 17x + 6)
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Lagrange polynomials

In FE/SEM method we seek to approximate ue(ξ, t) by a sum over space-dependent basis
functions φe

i weighted by time-dependent coefficients ue
i (t).

ue(ξ, t) ≈=
Np

∑
i=1

ue
i (t)φe

i (ξ)

For these basis functions we choose Lagrange polynomials as defined previously:

φi → ℓ
(N)
i (ξ) :=

N+1

∏
j ̸=i

ξ − ξ j

ξ i − ξ j
, i, j = 1, 2, . . . ,N + 1 (18)

where ξ i are specific points in the interval [−1, 1] (local coordinate system in each
element).
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Lagrange polynomials

Writing the sum explicitly we obtain

ℓ
(N)
i (ξ) =

ξ − ξ1

ξ i − ξ1

ξ − ξ2

ξ i − ξ2
. . .

ξ − ξN

ξ i − ξN

ξ − ξN+1

ξ i − ξN+1
(19)

For specific points we have

ℓ
(N)
i ̸=j (ξ j) =

ξ j − ξ1

ξ i − ξ1
. . .

ξ j − ξ j

ξ i − ξ j
. . .

ξ j − ξN+1

ξ i − ξN+1
= 0 (20)

and

ℓ
(N)
i (ξ i) =

N+1

∏
j ̸=i

ξ i − ξ j

ξ i − ξ j
= 1 (21)

which represents the orthogonality of the Lagrange polynomials:

ℓ
(N)
i (ξ j) = δij (22)
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Gauss-Lobatto-Legendre (GLL) points

The discretization points ξ i in the local coordinate system of each element [−1, 1] can be
chosen arbitrarily. However, a specific set of points has considerable numerical
advantages with respect to the integration and differentiation of the basis functions which
are required in the update formula equation 4. These points are called
Gauss-Lobatto-Legendre (GLL) points.
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Gauss-Lobatto-Legendre (GLL) points

Figure 3: Spatial distribution of Gauss-Lobatto-Legendre (GLL) points in the
local coordinate system ξ ∈ [−1, 1]. The point density increases towards the
edges with increasing polynomial order N.

N ξ i ωi

2: 0 4/3
± 1 1/3

3: ±
√

1/5 5/6
± 1 1/6

4: 0 32/45
±
√

3/7 49/90
± 1 1/10

Table 1: Collocation points and
integration weights of the GLL
quadrature for order N = 2, 3, 4.
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Interpolation with Lagrange polynomials

ue(ξ) =
N+1

∑
i=1

ue(ξ i)ℓi(ξ) with ℓi(ξ) =
N+1

∏
j ̸=i

ξ − ξ j

ξ i − ξ j
(23)

Interpolation with Lagrange polynomials for
N=2 and N=6. Left: Lagrange Polynomials.
Right: Approximation of function (solid) and
approximation (dashed). The approximation
is exact at the GLL points (squares).
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Finite element formulation using Langrange polyno-
mials
We insert equation 23 into our system of linear equations 14 and obtain

N+1

∑
i=1

∂2
t ue

i (t)
1∫

−1

ρ(ξ)ℓe
j (ξ)ℓ

e
i (ξ)

dx
dξ

dξ (24)

+
N+1

∑
i=1

ue
i (t)

1∫
−1

µ(ξ)∂ξℓ
e
j (ξ)∂ξℓ

e
i (ξ)

(
dξ

dx

)2 dx
dξ

dξ

=

1∫
−1

ℓe
j (ξ)f (ξ, t)

dx
dξ

dξ

where we allow that the material parameters (and forces) vary smoothly within each
element.

ρ(ξ) := ρ[x(ξ)], µ(ξ) := µ[x(ξ)], f (ξ) := f [x(ξ)]. (25)
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Numerical integration

The integrals appearing in equation 24 can be solved very efficiently by the
Gauss-Lobatto-Legendre quadrature. Consider a function f (x) defined in the interval
[−1, 1]. If we apply a Langrange interpolation the integral can be approximated by a
weighted sum of function values at the GLL points:

1∫
−1

f (x)dx ≈
1∫

−1

PN(x)dx =
N+1

∑
i=1

ωi f (xi) with PN(x) =
N+1

∑
i=1

f (xi)ℓ
N
i (x). (26)

The integration weights can be pre-calculated, examples are given in table 22:

ωi =

1∫
−1

ℓN
i (x)dx . (27)
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Numerical integration

We illustrate the Gauss quadrature with an example:

f (ξ) =
5

∑
i=1

sin(
π

ai
ξ + ai) with a = [0.5, 1,−3,−2,−5, 4]. (28)

Gauss integration with N=3 and N=6.
The exact function (thick solid line) is
approximated by a Lagrange polyno-
mials (thin solid line) that can be in-
tegrated analytically. Thus, the inte-
gral of the true function (thick solid) is
replaced by an integral over the poly-
nomial function (dark grey). The dif-
ference between the true and approxi-
mate functions is given in light grey.
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Spectral element formulation

We apply the GLL quadrature (equation 26) to our last formulation of the linear system of
equation (equation 24) leading to an additional sum over k .

N+1

∑
i,k=1

∂2
t ue

i (t)ωk ρ(ξ)ℓj(ξ)ℓi(ξ)
dx
dξ

|ξ=ξk (29)

+
N+1

∑
i,k=1

ωk ue
i (t)µ(ξ)∂ξℓj(ξ)∂ξℓi(ξ)

(
dξ

dx

)2 dx
dξ

|ξ=ξk

=
N+1

∑
k=1

ωkℓj(ξ)f (ξ, t)
dx
dξ

|ξ=ξk
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Spectral element formulation

This can be re-formulated using matrix notation:

N+1

∑
i=1

Me
ji ∂2

t ue
i (t) +

N+1

∑
i=1

K e
ji ue

i (t) = f e
j (t), e = 1, . . . , ne (30)

diagonal mass matrix: Me
ji = ωj ρ(ξ)

dx
dξ

δij |ξ=ξk

stiffness matrix: K e
ji =

N+1

∑
k=1

ωk µ(ξ)∂ξℓj(ξ)∂ξℓi(ξ)

(
dξ

dx

)2 dx
dξ

|ξ=ξk (31)

force: f e
j = ωj f (ξ, t)

dx
dξ

|ξ=ξk

The time integration is performed by an explicit (low-order) FD scheme (equation 4).
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Numerical differentiation

For the calculation of the stiffness matrix K e
ji in equation 31 we need the space derivatives

∂ξℓi of the Langrange polynomials. These can be precalculated using Legendre
polynomials:

LN(ξ) =
1

2NN !
dN

ξN

(
ξ2 − 1

)N
(32)

The Legendre Polynomials can be calculated using the following recursive formula

L0(ξ) = 1

L1(ξ) = ξ

Ln≥2(ξ) =
1
n
[(2n − 1)ξLn−1(ξ)− (n − 1)Ln−2(ξ)] .
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Numerical differentiation

The derivatives of the Lagrange polynomials can be calculated using:

∂ξℓi =
N

∑
j=0

djiℓk , k = 0, . . . ,N, (33)

with

dji =


− 1

4N(N + 1) if i = j = 0
LN (ξ i )
LN (ξ j )

1
ξ i−ξ j

if 0 ≤ i ≤ N, 0 ≤ j ≤ N, i ̸= j

0 if 1 ≤ i = j ≤ N − 1
1
4N(N + 1) if i = j = N

(34)

For a spectral-element simulation of a specific order N, a matrix with the derivatives
∂ξℓk (ξ i) for each polynomial k at all N + 1 collocation points ξ is precalculated and used
to evaluate the integrals.
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Spectral Element Method: Conclusions

The SEM combines the flexibility of FE methods with respect to computational meshes
with the spectral convergence of Lagrange basis functions used inside the elements.

The enormous success of the SEM is based upon the diagonal structure of the mass
matrix that needs to be inverted to extrapolate the system in time combined with the
spectral convergence of the basis functions.

The diagonal mass matrix is made possible by superimposing the collocation points of
both interpolation and integration schemes (Gauss-Lobatto-Legendre integration).

Due to the diagonality, no matrix inversion techniques need to be employed, allowing
straightforward parallelization of the algorithm.
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Spectral Element Method: Conclusions

Spectral element solutions are usually formulated for hexahedral computational grids.
For complex models (surface topography, internal curved boundaries) this might involve
cumbersome mesh generation. Formulations for triangles or tetrahedra are in principle
possible but the advantage of a diagonal mass matrix is lost.

The spectral element method is particularly useful for simulation problems where an
uneven free surface plays an important role, and/or in which surface waves need to be
accurately modelled. The reason is that the free-surface boundary is implicitly solved.

Several well-engineered community codes are available for Cartesian and spherical
geometries including basin scale, continental scale, and global Earth (or planetary
scale) calculation.

For further studies the book of Heiner Igel (LMU) (see References) is recommended.
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Example of SEM

In this example we present an application of SEM to a model on scale relevant for
seismic exploration. The model has significant topography of the free surface.

The code SPECFEM 2D by CNRS (France) and Princeton University (USA) has been
applied (Komatitsch & Vilotte 1998).

The resulting seismograms have been compared with the FD method (SOFI2D, KIT)

The results/figures are taken from the master thesis of Daniel Krieger (Krieger 2019).

The goal of the thesis was to compare FD and SEM based FWI in the presence of free
surface topography
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FD and SEM in the presence of free surface topogra-
phy

Figure 4: Qualitative comparison of the free surface in the FD model which is defined on a regular grid (left) and the SEM
model which is defined on an irregular mesh (right). In the FD model grey represents vacuum grid-points.
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Figure 5: P-wave velocity structure of the simplified model (right) which is used. Models of S-wave velocity and mass
density were derived by linear relations.
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Full Mesh

Figure 6: Full SEM mesh.
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Mesh Zoom 1

Figure 7: Zoomed SEM mesh.
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Mesh Zoom 2

Figure 8: Zoomed SEM mesh.
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Seismograms
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Figure 9: Seismograms obtained from SEM.
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Wavefield at t = 0.2 s, 0.4 s, 0.6 s
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Wavefield at t = 0.8 s, 1.0 s, 1.2 s
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Wavefield at t = 1.4 s, 1.6 s
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Seismogram comparisons
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Questions

1 What are the main improvements of the SEM compared to the FE method ?

2 What are the main advantages/disadvantages of SEM compared with the FD method ?

3 How can we increase the accuracy of the SEM ? How does this compare with the FD
method ?

4 Let us discuss the important properties of the different ingredients of the SEM. a)
Lagrange Polynomials, b) GLL points and integration. c) Numerical differentiation. How
do these properties ”work together” ?

5 Why does the mass matrix finally becomes diagonal and why is this important ?

6 Do we need to consider a CFL stability condition in the SEM ?
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Questions

7 Do we also have numerical dispersion in the SEM ?

8 Boundary conditions: How can we implement the free surface with topography in SEM
(and FD) ? Do we need to consider specific boundary conditions between neighboring
elements in the SEM ?

9 Which of the three methods a) FD, b) Reflectivity method, c) SEM should/can be
applied in the following scenarios: 1) Layered medium, 2) Alps, 3) Global Earth, 4)
Earthquakes, 5) Shallow seismic, 6) Non-destructive testing of concrete, 7) Medical
imaging.

10 Does it make sense to combine the two methods FD and SEM ? In which scenarios
could this be beneficial ? How would you implement this ?
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