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General Course Info

» General topic: solid-state optics (with some emphasis on semiconductor optics)

 Class jointly offered by Department of Physics and
Karlsruhe School of Optics and Photonics (KSOP)

» Lectures: Thursday 15:45 — 17:15, Friday 14:00 — 15:30, Kl. HS B, building 30.22

« All slides on ILIAS:
Repository > Organisationseinheiten > KIT-Fakultat fur Physik > WS 22/23
4020011 — Solid-State Optics



Overview

|. Motivation and introduction

Il. Maxwell equations and light propagation in vacuum
« Maxwell equations
« Waves in vacuum

lll. Light propagation in media
« Wave equation and dispersion
« Optical functions, extinction, absorption
« Boundary conditions at interfaces
 Anisotropic media



Overview

V. Interaction of light with matter — classical models

Drude—Lorentz model

Optical properties of solids in the Lorentz model
Optical properties of metals

Spectroscopy

V. Interaction of light with matter — quantum mechanical models

Electrons in periodical lattices

Descriptive interpretation of optical transitions
Treatment using perturbation theory
Calculation of transition probabilities

VI. Band to band transitions

Perturbative treatment
Joint density of states
van Hove singularities

Measurement of optical functions
(Absorption, Reflectance, Ellipsometry, Fourier spectroscopy,
modulation spectroscopy, ...)



Overview

VII. Excitons
«  Optical properties, binding energy and radius
«  Exciton wavefunction
«  Exciton polaritons

Spectroscopy

VIIl. Nonlinear optics
 Nonlinear processes (SHG, 3-wave mixing, parametric processes, ...)

* High excitation effects in semiconductors
(Burstein-Moss shift, band-gap renormalization, electron—hole plasma,

applications, ...)

IX. Group theory
Motivation
« Basics
«  Symmetry of eigenfunctions of the Hamiltonian
«  Applications



Info for Physics Students

7 13 ” (13 ”

Suitable as “Schwerpunktfach”, “Erganzungsfach”, “Nebenfach

Up to 8 ECTS points (depending on agreed coverage)

Combination with other classes (e.g., “Halbleiterphysik”)

No exercises but discussions on demand

 Credits based on oral exam
(individual agreement + registration at Prifungssekretariat, Zulassung needed)



Info for KSOP students

» Oral exam (individual agreement, register in CAS system before exam)

* Exercises:

No exercises, but possibility to discuss problems / questions individually
(after lecture or make appointment via e-mail before)
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Overview

|.  Motivation and introduction

II.  Maxwell equations and light propagation in vacuum

Ill. Light propagation in media

IVV. Interaction of light with matter — classical models

V. Interaction of light with matter — quantum mechanical models
VI. Group theory

VIl. Band to band transitions

VIIl. Excitons

IX. Nonlinear optics



|. Motivation and introduction — Why solid state optics?

» Understand optical properties of solids relevant for basic physics and applications
(e.g., LEDs, lasers, optoelectronics)

« Different types of materials are relevant:

- Insulators (amorphous, crystalline):
» (Quartz) glass
= Colored glass (insulators with dopand atoms, defects)

- Semiconductors
» Elementary semiconductors, e.g., Si, Ge
= Compound semiconductors with small band gaps, e.g., InAs, GaAs
= Compound semiconductors with large band gaps, e.g., GaN, ZnO
» Compound semiconductor heterostructures (quantum structures)

- Metals / doped semiconductors
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|. Motivation and introduction — Light and solids

 Important topics:

- Processes during light propagation through materials
- Generation of light in materials

Scattering:
Reflection at first surface « with change in energy: Raman
\ /  without change in energy: Rayleigh
I

humi

Absorption:
Aﬁ/ _ Transfer of energy into

r
/ Luminescence
y'
I

| excitations of crystal, e.g., heat

incident |

//ﬂlt |;

Transmitted light
through solid is

not a pure electro- | ggjig |- < «—_ Reflection at
magnetic wave second surface
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Overview

|.  Motivation and introduction

.  Maxwell equations and light propagation in vacuum

Ill. Light propagation in media

V. Interaction of light with matter — introduction

V. Interaction of light with matter — quantum mechanical models
VI. Group theory

VII. Interaction of light with matter — classical models

VIIl. Band to band transitions

IX. EXxcitons

X. Nonlinear optics
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Overview

. Motivation and introduction

. Maxwell equations and light propagation in vacuum
. Maxwell equations
. Waves in vacuum

lIl.  Light propagation in media

I\VV. Interaction of light with matter — classical models

V. Interaction of light with matter — quantum mechanical models
VI. Group theory

VIl. Band to band transitions

VIIl. Excitons

IX. Nonlinear optics
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lll. Maxwell equations and light propagation in vacuum

Maxwell equations

Maxwell-Faraday equation:

Ampére-Maxwell equation:

Laws of Gauss: V.D=p

with:

E :electricfield,units:X = N
m As

. . A
H : magnetic field, units: —
m

- . A
J :current density,units: oy

VXE:—@
ot

VxH :a—D+j
ot

V-B=0

N

. : . Vs
B :magnetic induction,units: T=— = —
m Am

- : .. As
D :electric displacement field, units: —-
m

p . charge density, units: £3
m
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lll. Maxwell equations and light propagation in vacuum

Material equations
D=¢g,E+P=¢gE
B=u(H+M)=puH

with:

&, =8.859-107" C‘—S . permittivity in free space
m

_ _ o .. As
P : dielectric polarization, units : —
m

Ly =4m-107" X—S . permeability of free space
m

g relative permittivi ty

.. A
M : magnetization, units: —

u . relative permeabili ty

m
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lll. Maxwell equations and light propagation in vacuum

Wave propagation in vacuum

Invacuum: P=0 = &=1 ; M=0 = u=1; =0 ; p=0
. o _ oH
Resulting Maxwell equations in vacuum: VxE =—u,— (1) and
ok

Vx H =do— 2)

0
Application of V x on (1) and a2 on (2) leads to:

O°E

?:VX(VX E)

— Hy&y

Using the identity V x (Vx E): V(V- E)—(V - V)E we get:

O°E

?:V-(V-E)—VZE

— Hp&
16



lll. Maxwell equations and light propagation in vacuum

1
with v.E=£-0 and Ho&y = c_2 we get the wave equation:

Simplest solution: Transverse electromagnetic plane wave: E(r,t) = Eoe'(k'r_a’t)

with wave vector k and angular frequency w

2
Plug solution into wave equation =  k*= —

c
=3 a)(k) =Cc-k  Dispersion relation

0w
J— _C:

Talrris =const!
ok EoHo

: 0, .
Phase velocity: V, = ? =Cc=const!  Group velocity: v

If no interaction with matter (!) : Linear dispersion, phase & group velocity const. !
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lll. Maxwell equations and light propagation in vacuum

Direction of vectors k,E and H :

VxE =1kxE =—y, a(; eoH = H=

KxE: kIl E|LH

Ho Wy

Energy flux density: Pointing vector S =E xH invacuum parallel to k

Average over time = light intensity I=£|EO><HO|:i x[ 1 K x EO)
Ho®@
Ey 1
with ax(bxc)=b(a-c)-cla-b): 1= |k|_—E
2 @ Z,

With wave impedance in vacuum: Z, = /ﬂ =377Q)
€0
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lll. Maxwell equations and light propagation in vacuum

Longitudinal modes in vacuum?

Split electric field into longitudinal and transverse components:

E=E +E; with E ||k and E; Lk

From this follows:

VxE=1kxE=1kxE; = H

V-E=ik-E=ik-E =0 dueto V.D=0 = k=0 or E_ =0

However, K # O, otherwise static field, not possible dueto p=0

— EL =(0 ,i.e. nolongitudinal modes in vacuum !
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Overview

|.  Motivation and introduction
.  Maxwell equations and light propagation in vacuum

Ill.  Light propagation in media
. Wave equation and dispersion
. Optical functions, extinction, absorption
. Boundary conditions at interfaces
. Anisotropic media

V. Interaction of light with matter — classical models

V. Interaction of light with matter — quantum mechanical models
VI. Group theory

VIl. Band to band transitions

VIIIl. Excitons

IX. Nonlinear optics
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V. Light propagation through media — wave equation

Wave equation and dispersion

Aim: derive wave equation and general dispersion relation using Maxwell’s equations

Assumptions:

« Material is semiconductor or insulator, not magnetic, i.e., U =1, M=0
* No space charges: p=0 = V.-D=0
* No free charges / currents: j=0 = VxH =0D/adt

Analogous to wave equation in vacuum:

Vx(Vx E):—IUOVX(?H/(?’[ = — 14, 0°D/6t? = —pye, O°E/ 0t? — 1y, 0P/ 6t?

= A time-dependent polarization with aZP/at2 #0 (e.g., an oscillating dipole)
acts as a source for electromagnetic waves
21



V. Light propagation through media — dielectric function

We need: relation between P and E | ‘ ‘ ‘ ‘

Question: How does material react to

applied electric (electro-magnetic) field? ‘ ‘ ‘ ‘ l E

Answer to this question (P(E)) provides
all optical properties of material ! ‘ ‘ ‘ ‘
In general (— section on non-linear optics): Taylor series

P .
S E Zij(l)Ej n E Zijk(z)EjEk n E Zijkl(s)EjEkEl +... g :susceptibility tensor
o . .

j jk

ikl

- Only “linear optics”, i.e., & = 0O

* Assume isotropic media (susceptibility scalar)

= P=gyyE
D=¢,E+P=¢,E+e,E=6,01+y)E=¢,¢ E

All optical properties of the medium are given by knowledge of permittivity &

22



V. Light propagation through media — dielectric function

In general: £(I', 1) or &(K,w)

Remarks:

« gis a linear response function, i.e., € connects D(r,t) with E(r¢,t") at all positions and previous
times (causality must be fulfilled):

D.(r,t) =ZIj-gij(r,r',t,t')goEj(r',t')dt'd3r'
J —0

Without time-dependent perturbations and assuming a homogeneous material
(or suitably averaged material properties) this can be rewritten as:

t
Di(r.1) =Z”8ij (r—riJt—tDeoE,; (r',t')dtd*r
j —
In Fourier space (mostly used in this lecture): Di (k, a)) — Zgij (k, a))goEj (k, a))
j

- Often, k ~ 0 is a good approximation (wave vector of light negligible — later):
& = &(w) with Fourier transform g(r,t)o(r)

i.e., local response D(r,t) depends only on the field E(r,t) at the same position 23



V. Light propagation through media — dielectric function

g(w) = &1 (w)+1- &5 () Ask yourself: Why is ¢ complex ?
e ™

real part Imaginary part

Due to restrictions implied by causality, there is a connection between

g and &, , given by the Kramers—Kronig relations:

o0

& (o) = &/() +E Pj 60'6;2 (a)')da)' and &,(w) = 2o P-‘-Mda)'

T @' —w? T @' —w°
0 0

where P is the Cauchy principal value:

o0

Pj 51:§(C‘)Zdw.: lim I...da)'+ jdw
)

a—0t
0 0 o+a
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V. Light propagation through media — dispersion

O°E o°P .
7 =Tt o with P =g, yE

2 2 82E ’E
AE — ,uogoa@t ,Uolgoa@t =0 & AE- ﬂogo(1+)() =0 o AE - e th

Consider again the wave equation: AE — &,

=0

Simplest solution in medium: Again E = E -e'(k'r_"’t)

Into wave eq. = In general, non-linear dispersion rel.: k2 = g(a), k)yogoa)(k)z =0
k

= Polariton Equation: &(K,®) =

Since ¢is complex, k is complex, too: K = k1 41 k2

/ \
real part: imaginary part: extinction
dispersion (spatial decrease in amplitude,

not necessarily absorption!)
—~ E= Eo 'ei(k-r—a)t) _ Eo e ker .ei(kl-r—a)t)

Exponential decrease wave with phase velocity V, = a)/ K,
in amplitude 25



V. Light propagation through media — optical functions

Optical functions, extinction and absorption

Consider complex index of refraction (refractive index): n(w) with ﬁz(a)) =&

For wave vector in medium: k =k

~ a ~ (0 .
vacuumn(a)) IFI’](CO) :?(n_HK)

with e n: real part of refractive index
(usually > 0 but can be negative — meta-materials)

e . extinction coefficient

ﬂ'\/acuum
n(2)

Light wave in isotropic medium:

Wavelength in medium: A =

E — E() ] ei(ﬁkvacuum'r_a)t) — EO . e_’((w)kvacuum’r . ei(n(a))kvacuum'r_wt)

™~ ~~ < ~ ~
1(z) =1, Wave with phase velocity
Beer’s law ye__o _C

with o = 2K, "k, nk N

vacuum

26



V. Light propagation through media — optical functions

Connection between g, & and n, kas well as &
2 2
Complex permittivity: consider polariton equation k° = a)—g(a)) =—n*(w)
c?
= &(o)=¢g(0)+is,(®) =n*(0) =n* (o) — k*(v) +i 2n(a))K(a))

5 £,(0)=n%(0) -« (0) and &,(0) = 20(0)x(0)

n(w)=\/§(\/ef<w)+ef<w) ra(@) and zc(w)=\/§(\/ef(w>+e£(w> —a(w))

a(a)):ﬁgz(w) — 52(0))
C n(a)) vacuum n(a))

Remarks:

« All optical functions (N, x, & and &,) depend on frequency

* One pair of & (w) and &,(w) or N(w) and x (w) is sufficient to describe
all optical properties

* Real and imaginary parts of these functions are connected through
Kramers—Kronig relations: & <> &, N <> K 27



V. Light propagation through media — boundary conditions

Boundary conditions, energy and momentum conservation at interfaces

In a typical experiment in solid state optics, we measure the

reflectivity R and transmittivity T of a sample = Find appropriate equations !

Def.: reflection coefficient; r = transmission coefficient; t =
0i EOi
ki
EOI EOr nl
Ny <N,
- /// n
N negative ) Eo. 2
’/I
ktr
2
Measured values: R = |r| and T |t|

28



V. Light propagation through media — boundary conditions

Derivation of Snell‘s law from Maxwell‘s equations

Gauss law: jV.AdT: §A-df Stokes: §(V>< A)-df = §A-ds
volume surface surface boundary
With V.-D=p = JV-DdT: §D-df= der
R df volume surface volume
n, Assumption: ratio height to radius is
infinitesimally small
n, — ignore side area

— (D, - D,)-df =(D,,-D,, )df = p df For ps=0: D,,=D,,

7 N Normal component of D continuous!
normal components only  surface charge density

Analogous for V-B=0 = B , =B , Normal component of B continuous!

Using the Maxwell equations for curl E, H and a closed path with infinitely small
height through the surface we get:

Et,l - Et,2 and Ht,l - Ht,2

Tangential components of E, H cont. !



V. Light propagation through media — boundary conditions

Now consider Noether's theorem:

From every invariant transformation of the Hamilton / Lagrange density
follows a conservation law, e.g.:

a) H invariant with respect to infinitesimal shifts in time: H(t) = H(t + dt)
— Total energy is conserved: E, = const.

b) H invariant with respect to infinitesimal shifts in space: H(x) = H(X + dXx)
= Momentum is conserved: p, = const.

From a) / continuity cond. for each time t follows: Zw=const. = o, =0, =o,
Translational invariance only in

From b) follows: \/ direction parallel to surface
J

r”, Ky 1 N, Conservation of momentum only
iIn component parallel to surface

with momentum 7K = k =k =k, (¥

Since incident and reflected wave propagate in the same medium: |k;| = [K,| (%) 3q



V. Light propagation through media — boundary conditions

Using (*) and (**), we get the law of reflection: ¢; = «,

. Sina. N
and with |k1| = nl |kvacuum| and |k2| =Ny |kvacuum| also Snell’s law: : L= -
sing,, Ny
Total internal reflection
ki kr
n .
1 . total reflection:
n, if o> o, with ¢ =arcsin (n,/n,)

Derivation: ¢; = arcsin (n,/ n, - sin ¢,), assume ¢, = 90° = sin ¢4, = 1
(limit for no transmitted beam)

However, boundary conditions still require a finite amplitude in medium 2

— evanescent wave parallel to interface

Frustrated total internal reflection

Consider another medium 3 with distance < A and n5 > n, below medium 2
— evanescent wave reaches medium 3 and can escape, application as beam splitter



V. Light propagation through media — boundary conditions

Fresnel formulas for angle-dependent reflection / transmission at interface

Consider polarization of light: L (S polar.) and || (p polar.) to plane of incidence

Calculate r and t for two transparent media (ignore k;, i.e., weak extinction : |x| < |n|)

N, COS®; — Ny COS Qg sin(a; — ay) . _ TM2C0SAi +7 COS Ay tan(a; — ;)
= = —= 1= — =
+ 7 ny cosa; + n, cos ay, sin(a; + ;) Ny COSAy + Ny COS tan(a; + a¢r)
2sin o, COS ¢ — 2 sin ay, cos a;
L= 1™ sin(a; + ;) cos(a; — agy)
Sin (ai + Oy, ) I tr i tr

W|th RJ_,” = (rJ_’”)Z and TJ_’” - (tJ_’”)Z
Special case: ¢; = 0 (polarization does not matter)

2 2
Weak extinction: R — (nz - n1)2 Strong extinction: R = (n2 _1)2 i Kzz
(n2+n1)2 n,=1 (n2+1) + K,

leads to high reflectivity!

Remarks:

« Rand T are related to energy flux densities
« R + T = 1 (without absorption) 32



Angular dependence of R, calculated for GaAs
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Reflection coefficient for perpendicular incidence

H. . b H Continuity of tangential fields
' r
/ ki K, /E Ei + By = Ety ()
r
M " Ny H; — H. = Hy,
H E k:
tr g
/. =1 = B,—B, =B,
tr n
' B = ZE = mE; —n B =nyky
(*) . nz — ani + anT — antr
E. ny—n, r<0 forn,>n; =
— = — =
" i nq{+n, Phase jump for reflectionon ,

optically denser material !



V. Light propagation through media — anisotropic media

Anisotropic media

Crystalline materials are generally anisotropic = ¢is a tensor

Typical examples:

- Crystals with uniaxial symmetry, e.g., wurtzite structure: ZnO, CdS, GaN
- Biaxial crystals

- Cubic crystals for k # 0 (however, only small effect)
- Materials under strain, application of external fields etc. (symmetry reduction)

Choice of coordinate system: z-axis corresponds to symmetry axis C
= in uniaxial materials:

gxx(a)) :gyy(a)) i gzz(a))a ‘9”(0)) =0 for I #]

= In blaxial materials:

(@) = &y(0) * &,()
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V. Light propagation through media — anisotropic media

Birefringence

* n(w) is polarization-dependent
* For uniaxial materials
— two beams

kl’
ki
Example:
calcite
[wikipedia]
Applications:

K

Z

extra-ordinary beam
polarization || C

does not follow

Snell's law of refraction

ordinary beam
polarization L C

crystal polarizers (large wavelength range, low absorption),
wave plates, non-linear optics (frequency doubling, see later)
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V. Light propagation through media — anisotropic media

Dichroism

» Transmission depends on polarization of incident light

T A
E|c
Elc
| | - ho
/ ha)l ha)z
N o J
Some resonance couples strongly region of dichroism

to perpendicular polarization
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