Solid-State Optics

Winter term 2022/23

Department of Physics / Karlsruhe School of Optics and Photonics

Priv.-Doz. Dr. Michael Hetterich / Prof. Dr. Heinz Kalt

Light Technology Institute (LTI) / Institute of Applied Physics (APH) Physics Tower, room 5-15b

☎ 0721 608 43402, michael.hetterich@kit.edu

General Course Info

- General topic: solid-state optics (with some emphasis on semiconductor optics)
- Class jointly offered by Department of Physics and Karlsruhe School of Optics and Photonics (KSOP)
- Lectures: Thursday 15:45 17:15, Friday 14:00 15:30, Kl. HS B, building 30.22
- All slides on ILIAS: Repository > Organisationseinheiten > KIT-Fakultät f
 ür Physik > WS 22/23 4020011 – Solid-State Optics

- I. Motivation and introduction
- II. Maxwell equations and light propagation in vacuum
 - Maxwell equations
 - Waves in vacuum
- III. Light propagation in media
 - Wave equation and dispersion
 - Optical functions, extinction, absorption
 - Boundary conditions at interfaces
 - Anisotropic media

- IV. Interaction of light with matter classical models
 - Drude–Lorentz model
 - Optical properties of solids in the Lorentz model
 - Optical properties of metals
 - Spectroscopy
- V. Interaction of light with matter quantum mechanical models
 - Electrons in periodical lattices
 - Descriptive interpretation of optical transitions
 - Treatment using perturbation theory
 - Calculation of transition probabilities
- VI. Band to band transitions
 - Perturbative treatment
 - Joint density of states
 - van Hove singularities
 - Measurement of optical functions (Absorption, Reflectance, Ellipsometry, Fourier spectroscopy, modulation spectroscopy, ...)

- VII. Excitons
 - Optical properties, binding energy and radius
 - Exciton wavefunction
 - Exciton polaritons
 - Spectroscopy
- VIII. Nonlinear optics
 - Nonlinear processes (SHG, 3-wave mixing, parametric processes, ...)
 - High excitation effects in semiconductors (Burstein-Moss shift, band-gap renormalization, electron-hole plasma, applications, ...)
- IX. Group theory
 - Motivation
 - Basics
 - Symmetry of eigenfunctions of the Hamiltonian
 - Applications

Info for Physics Students

- Suitable as "Schwerpunktfach", "Ergänzungsfach", "Nebenfach"
- Up to 8 ECTS points (depending on agreed coverage)
- Combination with other classes (e.g., "Halbleiterphysik")
- No exercises but discussions on demand
- Credits based on oral exam (individual agreement + registration at *Prüfungssekretariat*, *Zulassung* needed)

Info for KSOP students

- Oral exam (individual agreement, register in CAS system before exam)
- Exercises:

No exercises, but possibility to discuss problems / questions individually (after lecture or make appointment via e-mail before)

Literature

- H. Kalt, C.F. Klingshirn, Semiconductor optics 1 Linear optical properties of semiconductors, fifth edition, Springer 2019 (or older versions by C.F. Klingshirn)
- P.Y. Yu and M. Cardona, Fundamentals of semiconductors, Springer, 1995
- F. Wooten, Optical properties of solids, Academic Press, 1972
- P.K. Basu, Theory of optical processes in semiconductors, Oxford Science Publications, 1997

I. Motivation and introduction

- II. Maxwell equations and light propagation in vacuum
- III. Light propagation in media
- IV. Interaction of light with matter classical models
- V. Interaction of light with matter quantum mechanical models
- VI. Group theory
- VII. Band to band transitions
- VIII. Excitons
- IX. Nonlinear optics

I. Motivation and introduction – Why solid state optics?

- Understand optical properties of solids relevant for basic physics and applications (e.g., LEDs, lasers, optoelectronics)
- Different types of materials are relevant:
 - Insulators (amorphous, crystalline):
 - (Quartz) glass
 - Colored glass (insulators with dopand atoms, defects)
 - Semiconductors
 - Elementary semiconductors, e.g., Si, Ge
 - Compound semiconductors with small band gaps, e.g., InAs, GaAs
 - Compound semiconductors with large band gaps, e.g., GaN, ZnO
 - Compound semiconductor heterostructures (quantum structures)
 - Metals / doped semiconductors

I. Motivation and introduction – Light and solids

- Important topics:
 - Processes during light propagation through materials
 - Generation of light in materials

- I. Motivation and introduction
- II. Maxwell equations and light propagation in vacuum
- III. Light propagation in media
- IV. Interaction of light with matter introduction
- V. Interaction of light with matter quantum mechanical models
- VI. Group theory
- VII. Interaction of light with matter classical models
- VIII. Band to band transitions
- IX. Excitons
- X. Nonlinear optics

- I. Motivation and introduction
- II. Maxwell equations and light propagation in vacuum
 - Maxwell equations
 - Waves in vacuum
- III. Light propagation in media
- IV. Interaction of light with matter classical models
- V. Interaction of light with matter quantum mechanical models
- VI. Group theory
- VII. Band to band transitions
- VIII. Excitons
- IX. Nonlinear optics

Maxwell equations

Maxwell-Faraday equation:

Ampère-Maxwell equation:

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{j}$$

^

Laws of Gauss: $\nabla \cdot \boldsymbol{D} = \rho$ $\nabla \cdot \boldsymbol{B} = 0$

with:

$$E:$$
 electric field, units: $\frac{V}{m} = \frac{N}{As}$ $B:$ magnetic induction, units: $T = \frac{Vs}{m^2} = \frac{N}{Am}$ $H:$ magnetic field, units: $\frac{A}{m}$ $D:$ electric displacement field, units: $\frac{As}{m^2}$ $j:$ current density, units: $\frac{A}{m^2}$ $\rho:$ charge density, units: $\frac{As}{m^3}$

Material equations

$$\boldsymbol{D} = \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P} = \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}_0 \boldsymbol{E}$$

$$\boldsymbol{B} = \boldsymbol{\mu}_0(\boldsymbol{H} + \boldsymbol{M}) = \boldsymbol{\mu}\boldsymbol{\mu}_0\boldsymbol{H}$$

with:

$$\varepsilon_0 = 8.859 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}}$$
: permittivity in free space ε : relative permittivity ty
 P : dielectric polarization, units: $\frac{\text{As}}{\text{m}^2}$ M : magnetization, units: $\frac{\text{A}}{\text{m}}$

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}}$$
: permeability of free space

 μ : relative permeabili ty

Wave propagation in vacuum

In vacuum: $P = 0 \implies \varepsilon = 1$; $M = 0 \implies \mu = 1$; j = 0; $\rho = 0$

Resulting Maxwell equations in vacuum: $\nabla \times E = -\mu_0 \frac{\partial H}{\partial t}$ (1) and

$$\nabla \times \boldsymbol{H} = \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \qquad (2)$$

Application of
$$\nabla \times$$
 on (1) and $\frac{\partial}{\partial t}$ on (2) leads to:
 $-\mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = \nabla \times (\nabla \times E)$

Using the identity $\nabla \times (\nabla \times E) = \nabla (\nabla \cdot E) - (\nabla \cdot \nabla)E$ we get:

$$-\mu_0\varepsilon_0\frac{\partial^2 \boldsymbol{E}}{\partial t^2} = \nabla\cdot\left(\nabla\cdot\boldsymbol{E}\right) - \nabla^2\boldsymbol{E}$$

With $\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0} = 0$ and $\mu_0 \varepsilon_0 = \frac{1}{c^2}$ we get the wave equation: $\nabla^2 \boldsymbol{E} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$

Simplest solution: Transverse electromagnetic plane wave: $E(\mathbf{r},t) = E_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$

with wave vector \boldsymbol{k} and angular frequency ω

Plug solution into wave equation
$$\Rightarrow k^2 = \frac{\omega^2}{c^2}$$

 $\Rightarrow \omega(k) = c \cdot k$ Dispersion relation
Phase velocity: $v_p = \frac{\omega}{k} = c = const.!$ Group velocity: $v_g = \frac{\partial \omega}{\partial k} = c = \frac{1}{\varepsilon_0 \mu_0} = const.!$

If no interaction with matter (!) : Linear dispersion, phase & group velocity const. !

Direction of vectors k, E and H:

$$\nabla \times \boldsymbol{E} = i \boldsymbol{k} \times \boldsymbol{E} = -\mu_0 \frac{\partial \boldsymbol{H}}{\partial t} = i \mu_0 \omega \boldsymbol{H} \implies \boldsymbol{H} = \frac{1}{\mu_0 \omega_0} \boldsymbol{k} \times \boldsymbol{E} : \boldsymbol{k} \perp \boldsymbol{E} \perp \boldsymbol{H}$$

Energy flux density: Pointing vector $S = E \times H$ in vacuum parallel to k

Average over time
$$\Rightarrow$$
 light intensity $I = \frac{1}{2} | \boldsymbol{E}_0 \times \boldsymbol{H}_0 | = \frac{1}{2} | \boldsymbol{E}_0 \times \left(\frac{1}{\mu_0 \omega} \boldsymbol{k} \times \boldsymbol{E}_0 \right) |$

With
$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})$$
: $I = \frac{E_0^2}{2\mu_0 \omega} |\boldsymbol{k}| = \frac{1}{Z_0} E_0^2$

With wave impedance in vacuum:

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \,\Omega$$

Longitudinal modes in vacuum?

Split electric field into longitudinal and transverse components:

 $\boldsymbol{E} = \boldsymbol{E}_L + \boldsymbol{E}_T$ with $\boldsymbol{E}_L \parallel \boldsymbol{k}$ and $\boldsymbol{E}_T \perp \boldsymbol{k}$

From this follows:

 $\nabla \times \boldsymbol{E} = i\boldsymbol{k} \times \boldsymbol{E} = i\boldsymbol{k} \times \boldsymbol{E}_{T} \implies \boldsymbol{H}$ $\nabla \cdot \boldsymbol{E} = i\boldsymbol{k} \cdot \boldsymbol{E} = i\boldsymbol{k} \cdot \boldsymbol{E}_{L} \equiv 0 \text{ due to } \nabla \cdot \boldsymbol{D} = 0 \implies \boldsymbol{k} = 0 \text{ or } \boldsymbol{E}_{L} = 0$ However, $\boldsymbol{k} \neq 0$, otherwise static field, not possible due to $\rho = 0$

 $\Rightarrow E_L = 0$, i. e., no longitudinal modes in vacuum !

- I. Motivation and introduction
- II. Maxwell equations and light propagation in vacuum
- III. Light propagation in media
 - Wave equation and dispersion
 - Optical functions, extinction, absorption
 - Boundary conditions at interfaces
 - Anisotropic media
- IV. Interaction of light with matter classical models
- V. Interaction of light with matter quantum mechanical models
- VI. Group theory
- VII. Band to band transitions
- VIII. Excitons
- IX. Nonlinear optics

IV. Light propagation through media – wave equation

Wave equation and dispersion

Aim: derive wave equation and general dispersion relation using Maxwell's equations Assumptions:

- Material is semiconductor or insulator, not magnetic, i.e., $\mu = 1$, M = 0
- No space charges: $\rho = 0 \implies \nabla \cdot \boldsymbol{D} = 0$
- No free charges / currents: $j = 0 \implies \nabla \times H = \partial D / \partial t$

Analogous to wave equation in vacuum:

 $\nabla \times \left(\nabla \times \boldsymbol{E} \right) = -\mu_0 \nabla \times \partial \boldsymbol{H} / \partial t = -\mu_0 \partial^2 \boldsymbol{D} / \partial t^2 = -\mu_0 \varepsilon_0 \partial^2 \boldsymbol{E} / \partial t^2 - \mu_0 \partial^2 \boldsymbol{P} / \partial t^2$

$$\Rightarrow \Delta \boldsymbol{E} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = +\mu_0 \frac{\partial^2 \boldsymbol{P}}{\partial t^2}$$

⇒ A time-dependent polarization with $\partial^2 \mathbf{P} / \partial t^2 \neq 0$ (e.g., an oscillating dipole) acts as a source for electromagnetic waves

IV. Light propagation through media – dielectric function

We need: relation between **P** and **E** ! Question: How does material react to applied electric (electro-magnetic) field?

Answer to this question (P(E)) provides all optical properties of material !

In general (\rightarrow section on non-linear optics): Taylor series

$$\frac{P_i}{\varepsilon_0} = \sum_j \chi_{ij}^{(1)} E_j + \sum_{j,k} \chi_{ijk}^{(2)} E_j E_k + \sum_{j,k,l} \chi_{ijkl}^{(3)} E_j E_k E_l + \dots \qquad \chi: \text{susceptibility tensor}$$

• Only "linear optics", i.e., $\chi^{(>1)} = 0$

• Assume isotropic media (susceptibility scalar)

$$\Rightarrow \mathbf{P} = \varepsilon_0 \chi \mathbf{E}$$
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} + \varepsilon_0 \chi \mathbf{E} = \varepsilon_0 (1 + \chi) \mathbf{E} = \varepsilon_0 \varepsilon \mathbf{E}$$

All optical properties of the medium are given by knowledge of permittivity ε

IV. Light propagation through media – dielectric function

In general: $\mathcal{E}(\boldsymbol{r},t)$ or $\mathcal{E}(\boldsymbol{k},\omega)$

Remarks:

• ε is a linear response function, i.e., ε connects D(r,t) with E(r',t') at all positions and previous times (causality must be fulfilled):

$$D_{i}(\boldsymbol{r},t) = \sum_{j} \int \int_{-\infty}^{t} \varepsilon_{ij}(\boldsymbol{r},\boldsymbol{r}',t,t') \varepsilon_{0} E_{j}(\boldsymbol{r}',t') dt' d^{3}\boldsymbol{r}'$$

Without time-dependent perturbations and assuming a homogeneous material (or suitably averaged material properties) this can be rewritten as:

$$D_{i}(\boldsymbol{r},t) = \sum_{j} \int \int \int_{-\infty} \varepsilon_{ij} (|\boldsymbol{r}-\boldsymbol{r}'|, |t-t'|) \varepsilon_{0} E_{j}(\boldsymbol{r}',t') dt' d^{3}\boldsymbol{r}'$$

In Fourier space (mostly used in this lecture): $D_i(\boldsymbol{k},\omega) = \sum_j \varepsilon_{ij}(\boldsymbol{k},\omega)\varepsilon_0 E_j(\boldsymbol{k},\omega)$

• Often, $k \sim 0$ is a good approximation (wave vector of light negligible \rightarrow later):

$$\mathcal{E} = \mathcal{E}(\omega)$$
 with Fourier transform $\mathcal{E}(\boldsymbol{r},t)\delta(\boldsymbol{r})$

i.e., local response D(r,t) depends only on the field E(r,t) at the same position

IV. Light propagation through media – dielectric function

$$\mathcal{E}(\omega) = \mathcal{E}_1(\omega) + i \cdot \mathcal{E}_2(\omega) \qquad \text{Ask yourself: Why is } \mathcal{E} \text{ complex ?}$$
real part imaginary part

Due to restrictions implied by causality, there is a connection between ε_1 and ε_2 , given by the Kramers–Kronig relations:

$$\varepsilon_{1}(\omega) = \varepsilon_{1}(\infty) + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega' \varepsilon_{2}(\omega')}{{\omega'}^{2} - \omega^{2}} d\omega' \quad \text{and} \quad \varepsilon_{2}(\omega) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\varepsilon_{1}(\omega')}{{\omega'}^{2} - \omega^{2}} d\omega'$$

where P is the Cauchy principal value:

$$P\int_{0}^{\infty} \frac{\varepsilon_{1,2}(\omega')}{{\omega'}^{2} - \omega^{2}} d\omega' = \lim_{\alpha \to 0^{+}} \left(\int_{0}^{\omega - \alpha} \dots d\omega' + \int_{\omega + \alpha}^{\infty} \dots d\omega' \right)$$

IV. Light propagation through media – dispersion

Consider again the wave equation: $\Delta E - \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = +\mu_0 \frac{\partial^2 P}{\partial t^2}$ with $P = \varepsilon_0 \chi E$ $\Delta E - \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} - \mu_0 \chi \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = 0 \iff \Delta E - \mu_0 \varepsilon_0 (1 + \chi) \frac{\partial^2 E}{\partial t^2} = 0 \iff \Delta E - \mu_0 \varepsilon_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = 0$ Simplest solution in medium: Again $E = E_0 \cdot e^{i(k \cdot r - \omega t)}$ Into wave eq. \Rightarrow In general, *non-linear* dispersion rel.: $k^2 - \varepsilon(\omega, k)\mu_0\varepsilon_0\omega(k)^2 = 0$ \Rightarrow Polariton Equation: $\varepsilon(k,\omega) = \frac{k^2 c^2}{c^2}$ Since ε is complex, k is complex, too: $k = k_1 + i k_2$ real part: imaginary part: extinction dispersion (spatial decrease in amplitude, not necessarily absorption!) $\Rightarrow \mathbf{E} = \mathbf{E}_0 \cdot e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} = \mathbf{E}_0 \cdot e^{-\mathbf{k}_2 \cdot \mathbf{r}} \cdot e^{i(\mathbf{k}_1 \cdot \mathbf{r} - \omega t)}$ \longrightarrow Exponential decrease wave with phase velocity $v_p = \omega/k_1$ 25 in amplitude

IV. Light propagation through media – optical functions

Optical functions, extinction and absorption

Consider complex index of refraction (refractive index): $\tilde{n}(\omega)$ with $\tilde{n}^2(\omega) = \varepsilon$

For wave vector in medium: $k = k_{vacuum} \widetilde{n}(\omega) = \frac{\omega}{c} \widetilde{n}(\omega) = \frac{\omega}{c} (n + i\kappa)$

- with n : real part of refractive index (usually > 0 but can be negative \rightarrow meta-materials)
 - κ : extinction coefficient

Wavelength in medium: λ =

$$=\frac{\lambda_{vacuum}}{|n(\lambda)|}$$

Light wave in isotropic medium:

$$\mathbf{E} = \mathbf{E}_{0} \cdot e^{i(\tilde{n}\mathbf{k}_{vacuum} \cdot \mathbf{r} - \omega t)} = \underbrace{\mathbf{E}_{0} \cdot e^{-\kappa(\omega)\mathbf{k}_{vacuum} \cdot \mathbf{r}}}_{I(z) = I_{0}e^{-\alpha z}} \cdot \underbrace{e^{i(n(\omega)\mathbf{k}_{vacuum} \cdot \mathbf{r} - \omega t)}}_{Wave with phase velocity}$$

$$\underbrace{\mathbf{Beer's \ law}}_{\text{with } \alpha = 2k_{2}} \quad v_{p} = \frac{\omega}{k_{1}} = \frac{\omega}{nk_{vacuum}} = \frac{c}{n}$$

IV. Light propagation through media – optical functions

Connection between ε_1 , ε_2 and *n*, κ as well as α

Complex permittivity: consider polariton equation $k^2 = \frac{\omega^2}{c^2} \varepsilon(\omega) = \frac{\omega^2}{c^2} \widetilde{n}^2(\omega)$

$$\Rightarrow \varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) = \tilde{n}^2(\omega) = n^2(\omega) - \kappa^2(\omega) + i2n(\omega)\kappa(\omega)$$

$$\Rightarrow \varepsilon_1(\omega) = n^2(\omega) - \kappa^2(\omega) \text{ and } \varepsilon_2(\omega) = 2n(\omega)\kappa(\omega)$$

$$n(\omega) = \sqrt{\frac{1}{2} \left(\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} + \varepsilon_1(\omega) \right)} \quad \text{and} \quad \kappa(\omega) = \sqrt{\frac{1}{2} \left(\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} - \varepsilon_1(\omega) \right)}$$
$$\alpha(\omega) = \frac{\omega}{c} \frac{\varepsilon_2(\omega)}{n(\omega)} = k_{vacuum} \frac{\varepsilon_2(\omega)}{n(\omega)}$$

Remarks:

- All optical functions (n, κ , ε_1 and ε_2) depend on frequency ω
- One pair of $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ or $n(\omega)$ and $\kappa(\omega)$ is sufficient to describe all optical properties
- Real and imaginary parts of these functions are connected through Kramers–Kronig relations: $\varepsilon_1 \leftrightarrow \varepsilon_2$, $n \leftrightarrow \kappa$

Boundary conditions, energy and momentum conservation at interfaces

In a typical experiment in solid state optics, we measure the reflectivity *R* and transmittivity *T* of a sample \Rightarrow Find appropriate equations !

Derivation of Snell's law from Maxwell's equations

Gauss law:
$$\int_{volume} \nabla \cdot A \, d\tau = \oint_{surface} A \cdot df$$

Stokes:
$$\int_{surface} (\nabla \times A) \cdot df = \oint_{boundary} A \cdot ds$$

With

$$\nabla \cdot D = \rho \Rightarrow \int_{volume} \nabla \cdot D \, d\tau = \oint_{surface} D \cdot df = \int_{volume} \rho \, d\tau$$

Assumption: ratio height to radius is infinitesimally small
 $\Rightarrow (D_1 - D_2) \cdot df = (D_{n,1} - D_{n,2}) df = \rho_s \, df$
normal components only surface charge density
Analogous for $\nabla \cdot B = 0 \Rightarrow B_{n,1} = B_{n,2}$
Normal component of B continuous!
Using the Maxwell equations for curl E , H and a closed path with infinitely small

height through the surface we get:

 $E_{t,1} = E_{t,2}$ and $H_{t,1} = H_{t,2}$

Tangential components of E, H cont. !

Now consider Noether's theorem:

From every invariant transformation of the Hamilton / Lagrange density follows a conservation law, e.g.:

- a) H invariant with respect to infinitesimal shifts in time: H(t) = H(t + dt)
 - \Rightarrow Total energy is conserved: $E_{total} = \text{const.}$
- b) H invariant with respect to infinitesimal shifts in space: H(x) = H(x + dx)
 - \Rightarrow Momentum is conserved: $p_x = \text{const.}$

From a) / continuity cond. for each time *t* follows:

 $\hbar \omega = \text{const.} \implies \omega_i = \omega_r = \omega_{tr}$

Translational invariance only in direction parallel to surface ↓ Conservation of momentum only in component parallel to surface

with momentum $\hbar k \Rightarrow k_{i,||} = k_{r,||} = k_{tr,||}$ (*)

Since incident and reflected wave propagate in the same medium: $|k_i| = |k_r|$ (**) 30

Using (*) and (**), we get the law of reflection: $\alpha_i = \alpha_r$ and with $|k_1| = n_1 |k_{vacuum}|$ and $|k_2| = n_2 |k_{vacuum}|$ also Snell's law: $\frac{\sin \alpha_i}{\sin \alpha_{tr}} = \frac{n_2}{n_1}$

Total internal reflection

Derivation: $\alpha_i = \arcsin(n_2/n_1 \cdot \sin \alpha_{tr})$, assume $\alpha_{tr} = 90^\circ \Rightarrow \sin \alpha_{tr} = 1$ (limit for no transmitted beam) However, boundary conditions still require a finite amplitude in medium 2 \Rightarrow evanescent wave parallel to interface

Frustrated total internal reflection

Consider another medium 3 with distance < λ and $n_3 > n_2$ below medium 2

 \Rightarrow evanescent wave reaches medium 3 and can escape, application as beam splitter

Fresnel formulas for angle-dependent reflection / transmission at interface

Consider *polarization* of light: \perp (*s* polar.) and \parallel (*p* polar.) to plane of incidence Calculate *r* and *t* for two transparent media (ignore κ , i.e., weak extinction : $|\kappa| < |n|$)

$$r_{\perp} = \frac{n_1 \cos \alpha_i - n_2 \cos \alpha_{tr}}{n_1 \cos \alpha_i + n_2 \cos \alpha_{tr}} = -\frac{\sin(\alpha_i - \alpha_{tr})}{\sin(\alpha_i + \alpha_{tr})} \quad r_{\parallel} = \frac{-n_2 \cos \alpha_i + n_1 \cos \alpha_{tr}}{n_1 \cos \alpha_{tr} + n_2 \cos \alpha_i} = -\frac{\tan(\alpha_i - \alpha_{tr})}{\tan(\alpha_i + \alpha_{tr})}$$

$$t_{\perp} = \frac{2\sin\alpha_{tr}\cos\alpha_{i}}{\sin(\alpha_{i} + \alpha_{tr})} \qquad \qquad t_{\parallel} = \frac{2\sin\alpha_{tr}\cos\alpha_{i}}{\sin(\alpha_{i} + \alpha_{tr})\cos(\alpha_{i} - \alpha_{tr})}$$

with $R_{\perp,\parallel} = (r_{\perp,\parallel})^2$ and $T_{\perp,\parallel} = (t_{\perp,\parallel})^2$

Special case: $\alpha_i = 0$ (polarization does not matter)

Weak extinction: $R = \frac{(n_2 - n_1)^2}{(n_2 + n_1)^2}$ Strong extinction: R

$$R = \frac{(n_2 - 1)^2 + {\kappa_2}^2}{(n_2 + 1)^2 + {\kappa_2}^2}$$

leads to high reflectivity!

Remarks:

- R and T are related to energy flux densities
- R + T = 1 (without absorption)

Angular dependence of R, calculated for GaAs

Reflection coefficient for perpendicular incidence

$$\Rightarrow r = \frac{E_r}{E_i} = \frac{n_1 - n_2}{n_1 + n_2}$$

r < 0 for $n_2 > n_1 \Rightarrow$ Phase jump for reflection on optically denser material !

34

IV. Light propagation through media – anisotropic media

Anisotropic media

Crystalline materials are generally anisotropic $\Rightarrow \varepsilon$ is a tensor

Typical examples:

- Crystals with uniaxial symmetry, e.g., wurtzite structure: ZnO, CdS, GaN
- Biaxial crystals
- Cubic crystals for $k \neq 0$ (however, only small effect)
- Materials under strain, application of external fields etc. (symmetry reduction)

Choice of coordinate system: z-axis corresponds to symmetry axis c

 \Rightarrow in *uniaxial* materials:

$$\varepsilon_{xx}(\omega) = \varepsilon_{yy}(\omega) \neq \varepsilon_{zz}(\omega), \ \varepsilon_{ij}(\omega) = 0 \text{ for } i \neq j$$

 \Rightarrow in *biaxial* materials:

$$\mathcal{E}_{xx}(\omega) \neq \mathcal{E}_{yy}(\omega) \neq \mathcal{E}_{zz}(\omega)$$
 35

IV. Light propagation through media – anisotropic media

Birefringence

- $n(\omega)$ is polarization-dependent
- For uniaxial materials
 → two beams

extra-ordinary beam

polarization || *c* does not follow Snell's law of refraction

ordinary beam

polarization $\perp c$

Example: calcite

[wikipedia]

Applications:

crystal polarizers (large wavelength range, low absorption), wave plates, non-linear optics (frequency doubling, see later)

IV. Light propagation through media – anisotropic media

Dichroism

• Transmission depends on polarization of incident light

