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General Course Info

• General topic: solid-state optics (with some emphasis on semiconductor optics)

• Class jointly offered by Department of Physics and 

Karlsruhe School of Optics and Photonics (KSOP)

• Lectures: Thursday 15:45 – 17:15, Friday 14:00 – 15:30, Kl. HS B, building 30.22

• All slides on ILIAS: 

Repository > Organisationseinheiten > KIT-Fakultät für Physik > WS 22/23

4020011 – Solid-State Optics
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Overview

I. Motivation and introduction

II. Maxwell equations and light propagation in vacuum

• Maxwell equations

• Waves in vacuum

III. Light propagation in media

• Wave equation and dispersion

• Optical functions, extinction, absorption

• Boundary conditions at interfaces

• Anisotropic media
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Overview

IV. Interaction of light with matter – classical models

• Drude–Lorentz model

• Optical properties of solids in the Lorentz model

• Optical properties of metals

• Spectroscopy

V. Interaction of light with matter – quantum mechanical models

• Electrons in periodical lattices

• Descriptive interpretation of optical transitions

• Treatment using perturbation theory

• Calculation of transition probabilities

VI. Band to band transitions

• Perturbative treatment

• Joint density of states

• van Hove singularities

• Measurement of optical functions 

(Absorption, Reflectance, Ellipsometry, Fourier spectroscopy, 

modulation spectroscopy, …)
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Overview

VII. Excitons

• Optical properties, binding energy and radius

• Exciton wavefunction

• Exciton polaritons

• Spectroscopy

VIII. Nonlinear optics

• Nonlinear processes (SHG, 3-wave mixing, parametric processes, …)

• High excitation effects in semiconductors 

(Burstein-Moss shift, band-gap renormalization, electron–hole plasma, 

applications, …)

IX. Group theory

• Motivation

• Basics

• Symmetry of eigenfunctions of the Hamiltonian

• Applications
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Info for Physics Students

• Suitable as “Schwerpunktfach”, “Ergänzungsfach”, “Nebenfach”

• Up to 8 ECTS points (depending on agreed coverage)

• Combination with other classes (e.g., “Halbleiterphysik”)

• No exercises but discussions on demand

• Credits based on oral exam 

(individual agreement + registration at Prüfungssekretariat, Zulassung needed) 
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Info for KSOP students

• Oral exam (individual agreement, register in CAS system before exam)

• Exercises: 

No exercises, but possibility to discuss problems / questions individually

(after lecture or make appointment via e-mail before)
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Literature

• H. Kalt, C.F. Klingshirn, Semiconductor optics 1 – Linear optical properties of 

semiconductors, fifth edition, Springer 2019 (or older versions by C.F. Klingshirn)

• P.Y. Yu and M. Cardona, Fundamentals of semiconductors, Springer, 1995

• F. Wooten, Optical properties of solids, Academic Press, 1972

• P.K. Basu, Theory of optical processes in semiconductors, Oxford Science 

Publications, 1997
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Overview

I. Motivation and introduction

II. Maxwell equations and light propagation in vacuum

III. Light propagation in media

IV. Interaction of light with matter – classical models

V. Interaction of light with matter – quantum mechanical models

VI. Group theory

VII. Band to band transitions

VIII. Excitons

IX. Nonlinear optics
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I. Motivation and introduction – Why solid state optics?

• Understand optical properties of solids relevant for basic physics and applications 

(e.g., LEDs, lasers, optoelectronics)

• Different types of materials are relevant:

- Insulators (amorphous, crystalline):

▪ (Quartz) glass

▪ Colored glass (insulators with dopand atoms, defects)

- Semiconductors

▪ Elementary semiconductors, e.g., Si, Ge

▪ Compound semiconductors with small band gaps, e.g., InAs, GaAs

▪ Compound semiconductors with large band gaps, e.g., GaN, ZnO

▪ Compound semiconductor heterostructures (quantum structures)

- Metals / doped semiconductors
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I. Motivation and introduction – Light and solids

• Important topics:

- Processes during light propagation through materials

- Generation of light in materials

Iincident

It‘

Ir

Reflection at first surface

Ir‘
Reflection at

second surface

Is

Scattering:

• with change in energy: Raman

• without change in energy: Rayleigh

It

Transmitted light

through solid is

not a pure electro-

magnetic wave

Ia

Absorption:

Transfer of energy into

excitations of crystal, e.g., heat

Solid

Ilumi

Luminescence
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Overview

I. Motivation and introduction

II. Maxwell equations and light propagation in vacuum

III. Light propagation in media

IV. Interaction of light with matter – introduction

V. Interaction of light with matter – quantum mechanical models

VI. Group theory

VII. Interaction of light with matter – classical models

VIII. Band to band transitions

IX. Excitons

X. Nonlinear optics
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Overview

I. Motivation and introduction

II. Maxwell equations and light propagation in vacuum

• Maxwell equations

• Waves in vacuum

III. Light propagation in media

IV. Interaction of light with matter – classical models

V. Interaction of light with matter – quantum mechanical models

VI. Group theory

VII. Band to band transitions

VIII. Excitons

IX. Nonlinear optics
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III. Maxwell equations and light propagation in vacuum

Maxwell equations

t


−=

B
EMaxwell-Faraday equation:

Ampère-Maxwell equation:

Laws of Gauss:

with:

Am

N

m

Vs
T :units induction,magnetic  

2
==:B

m

A
 :units field,magnetic :H

2m

As
 :units field, ntdisplacemeelectric :D

j
D
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=

t

= D 0= B

2m

A
 :units density, current:j 3m

As
 :units density, charge:

As

N

m

V
 :units field,electric =:E
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III. Maxwell equations and light propagation in vacuum

Material equations

EPED 00  =+=

HMHB 00 )(  =+=

with:

space free inty permittivi  
Vm

As
:10859.8 12

0
−= typermittivi relative  :

2m

As
 :units on,polarizati dielectric:P

m

A
 :units ion,magnetizat  :Μ

space free ofty permeabili  
Am

Vs
:104 7

0
−=  typermeabili relative :
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III. Maxwell equations and light propagation in vacuum

Wave propagation in vacuum

;    10 == PIn vacuum: ;    10 == M 00 == ;    j

Resulting Maxwell equations in vacuum: and
t


−=

H
E 0

t


=

E
H 0

(1)

(2)

Application of           on  (1)  and         on  (2)  leads to:
t



( )E
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2
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we get:
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III. Maxwell equations and light propagation in vacuum

Simplest solution:

Phase velocity: Group velocity:! .constc
k

v p ===


! .
1

00

constc
k

vg ===



=





If no interaction with matter (!) : Linear dispersion, phase & group velocity const. ! 

2

2
2

c
k


=Plug solution into wave equation  

)(
0),( tiet −= rkErE

k

Transverse electromagnetic plane wave:

With and we get the wave equation:0
0

==



E 200
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c
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0
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2
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E
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with wave vector     and angular frequency 

 ( ) kck = Dispersion relation
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III. Maxwell equations and light propagation in vacuum

:  and HEk,

:        EkHH
H

EkE ==
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Direction of vectors

HEk ⊥⊥

Energy flux density: Pointing vector in vacuum parallel toHES = k

Average over time   light intensity
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With wave impedance in vacuum: Ω 377=
0

0
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With ( ) ( ) ( ) :  baccabba −= c
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III. Maxwell equations and light propagation in vacuum

kEkEEEE ⊥+= TLTL andwith ||

HEkEkE == Tii

0000 ===== LLii EkDEkEkE    or     to due  

Longitudinal modes in vacuum?

From this follows:

However, 0k , otherwise static field, not possible due to   = 0

 0=LE , i. e., no longitudinal modes in vacuum !

Split electric field into longitudinal and transverse components:
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Overview

I. Motivation and introduction

II. Maxwell equations and light propagation in vacuum

III. Light propagation in media

• Wave equation and dispersion

• Optical functions, extinction, absorption

• Boundary conditions at interfaces

• Anisotropic media

IV. Interaction of light with matter – classical models

V. Interaction of light with matter – quantum mechanical models

VI. Group theory

VII. Band to band transitions

VIII. Excitons

IX. Nonlinear optics
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Assumptions: 

• Material is semiconductor or insulator, not magnetic, i.e.,

• No space charges:

• No free charges / currents:

 A time-dependent polarization with                      (e.g., an oscillating dipole) 

acts as a source for electromagnetic waves

Wave equation and dispersion

Aim: derive wave equation and general dispersion relation using Maxwell’s equations

IV. Light propagation through media – wave equation

( ) 22
0

22
00

22
00 tttt −−=−=−= PEDHE 


2

2

02

2

2

1

ttc 


+=




−

PE
E 

0,1 == Μ 

00 == D

t== DHj 0

Analogous to wave equation in vacuum:

022  tP
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• Only “linear  optics”, i.e.,

• Assume isotropic media (susceptibility scalar)

IV. Light propagation through media – dielectric function

In general (→ section on non-linear optics): Taylor series

+++= 
lkj

lkjijkl

kj

kjijk

j

jij
i EEEEEE

P

,,

)3(

,

)2()1(

0




EP 0=

 : susceptibility tensor

EEEEPED  00000 )1( =+=+=+=

All optical properties of the medium are given by knowledge of permittivity 

We need: relation between P and E !

Question: How does material react to 

applied electric (electro-magnetic) field?

Answer to this question (P(E)) provides 

all optical properties of material ! 

0)1( =

E
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IV. Light propagation through media – dielectric function

In general: or),( tr


−

=

j

t

jiji ddttEtttD '')','()',,',(),( 3
0 rrrrr 

Remarks:

•  is a linear response function, i.e.,  connects D(r,t) with E(r‘,t‘) at all positions and previous 

times (causality must be fulfilled):


−

−−=

j

t

jiji ddttEtttD '')','()','(),( 3
0 rrrrr 

=

j

jiji ED ),(),(),( 0  kkk

  )( =

i.e., local response D(r,t) depends only on the field E(r,t) at the same position 

• Often, k ~ 0 is a good approximation (wave vector of light negligible → later):

Without time-dependent perturbations and assuming a homogeneous material 

(or suitably averaged material properties) this can be rewritten as:

In Fourier space (mostly used in this lecture): 

)(),( rr  twith Fourier transform

),(  k
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IV. Light propagation through media – dielectric function

)()()( 21  += i

real part imaginary part
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1 and 2 , given by the Kramers–Kronig relations:

and

where P is the Cauchy principal value:
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Due to restrictions implied by causality, there is a connection between 

Ask yourself: Why is  complex ?



Dr. Daniel M. Schaadt 25

25

IV. Light propagation through media – dispersion

Consider again the wave equation:
2
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Simplest solution in medium: Again
( )tie −= rkEE 0

Into wave eq.    In general, non-linear dispersion rel.: ( ) ( ) 0,
2

00
2 =− kkk 

Polariton Equation:
2
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0
2

2
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t

E
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Since  is complex, k is complex, too:
21 kkk i+=

real part: 

dispersion

imaginary part: extinction 

(spatial decrease in amplitude,

not necessarily absorption!)
( ) ( )titi eee

 −−− ==
rkrkrk EEE 12

00




Exponential decrease

in amplitude

wave with phase velocity 1kvp =
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IV. Light propagation through media – optical functions

Optical functions, extinction and absorption

Consider complex index of refraction (refractive index):

For wave vector in medium:

)(~ n

zeIzI −= 0)(

)(




n

vacuum=

)()(~)(~ 





 in
c

n
c

nkk vacuum +===

with • n : real part of refractive index 

(usually > 0 but can be negative → meta-materials)

•  : extinction coefficient

Wavelength in medium:

Light wave in isotropic medium:

( ) ( )tnitni vacuumvacuumvacuum eee
 −−−

==
rkrkrk

EEE
)()(

0

~

0

Beer’s law

with  = 2k2

Wave with phase velocity

n

c

nkk
v
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p ===


1

with  =)(~2n
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IV. Light propagation through media – optical functions
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Complex permittivity: consider polariton equation
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• Real and imaginary parts of these functions are connected through 

Kramers–Kronig relations: 1  2, n  

Remarks:

• All optical functions (n, , 1 and 2) depend on frequency 

• One pair of 1() and 2() or n() and  () is sufficient to describe 

all optical properties

Connection between 1, 2 and n,  as well as 
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IV. Light propagation through media – boundary conditions

Boundary conditions, energy and momentum conservation at interfaces

In a typical experiment in solid state optics, we measure the

reflectivity R and transmittivity T of a sample   Find appropriate equations !

Def.: reflection coefficient: transmission coefficient:

i

r

E

E
r

0

0=
i

tr

E

E
t

0

0=

n negative

ik
i0E

trk

tr0E

rk

r0E
n1

n2

n1 < n2

Measured values: and
2

rR =
2

tT =
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IV. Light propagation through media – boundary conditions

Derivation of Snell‘s law from Maxwell‘s equations

Gauss law:  =

surfacevolume

ddτ fAA Stokes: ( )  =

boundarysurface

dd sAfA

With  ===

volumesurfacevolume

ddd  fDDD

fd

n1

n2

Assumption: ratio height to radius is 

infinitesimally small 

 ignore side area 

( ) ( ) dfdfDDd Snn =−=− 2,1,21 fDD

normal components only surface charge density

For S = 0 :   Dn,1 = Dn,2

= 0B  for Analogous

Using the Maxwell equations for curl E, H and a closed path with infinitely small 

height through the surface we get:

2,1,2,1, tttt HHEE == and Tangential components of E, H cont. !

Normal component of D continuous!

Normal component of B continuous!2,1, nn BB =
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IV. Light propagation through media – boundary conditions

Now consider Noether‘s theorem:

From every invariant transformation of the Hamilton / Lagrange density 

follows a conservation law, e.g.:

a) H invariant with respect to infinitesimal shifts in time: H(t) = H(t + dt)

 Total energy is conserved:  Etotal = const.

b) H invariant with respect to infinitesimal shifts in space: H(x) = H(x + dx)

 Momentum is conserved:   px = const.

From a) / continuity cond. for each time t follows:

From b) follows:

= const.

ik

||,||, ; trr kk   

rk
n1

n2||,ik

Translational invariance only in

direction parallel to surface



Conservation of momentum only

in component parallel to surface

with momentum  ki,II = kr,II = ktr,II ()

Since incident and reflected wave propagate in the same medium: |ki| = |kr| ()

k

trri  ==
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IV. Light propagation through media – boundary conditions

Using () and (), we get the law of reflection: i = r

and with  |k1| = n1 |kvacuum|  and  |k2| = n2 |kvacuum|   also   Snell’s law:

1

2

sin

sin

n

n

tr

i =




ik rk
n1

n2

with   n1 > n2

total reflection:

if  i > t with  t = arcsin (n2 / n1)

Derivation: i = arcsin (n2 / n1 · sin tr), assume tr = 90°  sin tr = 1

(limit for no transmitted beam)

However, boundary conditions still require a finite amplitude in medium 2 

 evanescent wave parallel to interface

Total internal reflection

Frustrated total internal reflection

Consider another medium 3 with distance <  and n3 > n2 below medium 2

 evanescent wave reaches medium 3 and can escape, application as beam splitter
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IV. Light propagation through media – boundary conditions

Fresnel formulas for angle-dependent reflection / transmission at interface

Consider polarization of light: ⊥ (s polar.) and || (p polar.) to plane of incidence

Calculate r and t for two transparent media (ignore , i.e., weak extinction : || < |n|)

𝑟⊥ =
𝑛1 cos𝛼𝑖−𝑛2 cos𝛼𝑡𝑟
𝑛1 cos𝛼𝑖+𝑛2 cos𝛼𝑡𝑟

= −
sin 𝛼𝑖 − 𝛼𝑡𝑟
sin 𝛼𝑖 + 𝛼𝑡𝑟

𝑟|| =
−𝑛2 cos𝛼𝑖 +𝑛1 cos𝛼𝑡𝑟
𝑛1 cos𝛼𝑡𝑟 +𝑛2 cos 𝛼𝑖

= −
tan 𝛼𝑖 − 𝛼𝑡𝑟
tan 𝛼𝑖 + 𝛼𝑡𝑟

( )tri

itrt




+
=⊥

sin

cossin2
𝑡|| =

2 sin 𝛼𝑡𝑟 cos𝛼𝑖
sin 𝛼𝑖 + 𝛼𝑡𝑟 cos 𝛼𝑖 − 𝛼𝑡𝑟

with  R⊥,|| = (r⊥,||)
2 and  T⊥,|| = (t⊥,||)

2

Remarks:

• R and T are related to energy flux densities

• R + T = 1 (without absorption)

Weak extinction:
( )
( ) 2

12

2

12

nn

nn
R

+

−
= Strong extinction:

n1 = 1 

( )
( ) 2

2

2

2

2

2

2

2

1

1





++

+−
=

n

n
R

leads to high reflectivity!

Special case: i = 0 (polarization does not matter)
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Angular dependence of R, calculated for GaAs

Brewster

Angle
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Reflection coefficient for perpendicular incidence

n1

n2 

ki

Hi

Ei

kr Er

Hr

ktr

Htr

Etr

𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡𝑟 (∗)

𝐻𝑖 − 𝐻𝑟 = 𝐻𝑡𝑟

𝜇 = 1 ⇒ 𝐵𝑖 − 𝐵𝑟 = 𝐵𝑡𝑟

𝐵 =
𝑛

𝑐
𝐸 ⇒ 𝑛1𝐸𝑖 − 𝑛1𝐸𝑟 = 𝑛2𝐸𝑡𝑟

∗ ∙ 𝑛2 ⇒ 𝑛2𝐸𝑖 + 𝑛2𝐸𝑟 = 𝑛2𝐸𝑡𝑟

⇒ 𝑟 =
𝐸𝑟
𝐸𝑖

=
𝑛1 − 𝑛2
𝑛1 + 𝑛2

𝑟 < 0 for 𝑛2 > 𝑛1 ⇒

Phase jump for reflection on 

optically denser material !

Continuity of tangential fields
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Choice of coordinate system: z-axis corresponds to symmetry axis c

 in uniaxial materials:

xx() = yy()  zz(), ij() = 0 for i  j

 in biaxial materials:

xx()  yy()  zz()

IV. Light propagation through media – anisotropic media

Anisotropic media

Crystalline materials are generally anisotropic   is a tensor

Typical examples:

- Crystals with uniaxial symmetry, e.g., wurtzite structure: ZnO, CdS, GaN

- Biaxial crystals

- Cubic crystals for k  0 (however, only small effect)

- Materials under strain, application of external fields etc. (symmetry reduction)
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IV. Light propagation through media – anisotropic media

Birefringence

• n() is polarization-dependent

• For uniaxial materials

→ two beams

ik

rk

c

ok

eok

ordinary beam

polarization ⊥ c

extra-ordinary beam

polarization || c

does not follow 

Snell’s law of refraction

Example:

calcite

[wikipedia]

Applications:

crystal polarizers (large wavelength range, low absorption), 

wave plates, non-linear optics (frequency doubling, see later)
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IV. Light propagation through media – anisotropic media

Dichroism

• Transmission depends on polarization of incident light

cE ⊥

cE ||

T


1 2

Some resonance couples strongly

to perpendicular polarization
region of dichroism


