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Motivation

Interaction of matter with incident wave (represented by a perturbation H’):  

transition matrix element for, e.g., absorption from state m → n: 

Using symmetry considerations, we can determine if matrix element vanishes

or not (transition forbidden / allowed)  selection rules

Gj Gs Gi

i.e., initial state i with symmetry Gi , final state j with symmetry Gj

perturbation H’ has symmetry Gs

E

k

Gj

Gi

 group theory!

( ) ( ) ( ) iHjdHtH
V

ijji ''' 3* ==  rrr 

Further applications (see later): 

• band structure (degeneracy of electronic states) 

• matrix elements in general





=

GGGGGGG
=

reasons)symmetry  (for otherwise

  if

0

0
'

1 isjisj
iHj

Note: 

In this case 

the matrix 

element

could still be 

„coincidentally“

= 0
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Group theory – general remarks

Consider Noether‘s theorem again:

From the invariance of the Hamiltonian towards a transformation follows a conserved quantity,

e.g.:

a) H invariant for infinitesimal shifts in time: H(t) = H(t + dt)

 total energy is conserved: Etotal = const.

b) H invariant for infinitesimal shifts in space: H(x) = H(x + dx)

 momentum is conserved: px = const.

c) H invariant for infinitesimal rotations around some axis: H(f) = H(f + df)

 angular momentum is conserved: = const.

In a crystal:

a) still satisfied

b) H is only invariant for translation about a lattice vector

 is only conserved for shifts about a reciprocal lattice vector

c) H is at most invariant for specific rotation angles  is not conserved

k G

L

 Bands cannot be characterized by angular momentum quantum numbers

 Replacement for charact. of bands / derivation of selection rules etc.: symm. prop.

L
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Group theory – basics

Definition: group (G, “•”):

Set of elements {xi} and operations with the following properties:

1) Closure:  x, y  G follows xy = z  G

2) Associativity:  x, y, z  G follows x(yz) = (xy)z

3) Identity / neutral element E  G,  x  G follows Ex = xE = x

4) Inverse element:  x, E  G  x-1  G  x-1x = xx-1 = E

• Number of elements xi  G is called order g of the group

• There are finite and infinite groups

Definition: Abelian group G:

 x, y  G follows xy = yx

Examples:

1) {0, 1, 2, …, “+”}: infinite, Abelian group of integer numbers (Z, +)

2) Rational numbers (Q, ): infinite Abelian group with E = 1, inverse: (p/q)-1 = (q/p)

3) {{1, -1, i, -i}, ): finite Abelian group, g = 4

4) All symmetry operations that convert a equilateral triangle back to itself
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Group theory – example: Group D3

Operations:

D3 is finite and not abelian



Schönflies notation, 3 denotes 3-fold symmetry axis

a

bc

z

E:  0°

a

bc

→

a

bc

Rotations: J: + 120° around z

K: - 120° around z

a

bc

→

c

ab

a

bc

→

b

ca

Reflections: L:  180° about a-axis

M:  180° about b-axis

N:  180° about c-axis

a

bc

→

a

cb

a

bc

→

c

ba

a

bc

→

b

ac
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Group theory – example: D3

Why not abelian?

⎯→

a

bc

J • L:

(First L, then J)

⎯→

c

ba

L J
a

cb

=  M

but  L • J:

 J • L  L • J

⎯→ ⎯→

b

ac

J L
b

ca

=  N
a

bc
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E J K L M N

E

J

K

L

M

N

Group theory – example: D3

In every row and column, each element exists only once!

Multiplication table (group table):

E J K L M N

E E

J

K

L

M

N

Read:

First column

e.g. • E =

 For groups of order 6 exist only two tables:

C6: 6-fold axis, only rotations

D3: rotations and reflections 

All other groups are isomorphic to C6 or D3

E J K L M N

E E

J

K

L

M

N

E J K L M N

E E

J

K

L

M

N

E J K L M N

E E

J J

K

L

M

N

Read:

First column, then row

e.g. J • E =

Read:

First column, then row

e.g. J • E = J

E J K L M N

E E J K L M N

J J

K K

L L

M M

N N

Read:

First column

e.g. • L =

E J K L M N

E E J K L M N

J J

K K

L L

M M

N N

E J K L M N

E E J K L M N

J J

K K

L L

M M

N N

E J K L M N

E E J K L M N

J J M

K K

L L

M M

N N

Read:

First column, then row

e.g. J • L =

Read:

First column, then row

e.g., J • L = M

E J K L M N

E E J K L M N

J J K E M N L

K K E J N L M

L L N M E K J

M M L N J E K

N N M L K J E

(otherwise, e.g., ); MLKMKLK 1 == −    by multiply      
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Group theory – some definitions

Definition: isomorphism

Bijective transformation of elements xi  G to elements xi'  G' while keeping the 

multiplication table

 g = g'

xi → xi'  xi' → xi

xi → xi'

xj → xj' with    xi • xj = xk  xi' • xj' = xk'

xk → xk'

Example: the group of permutations of three elements

(abc), (cab), (bac), (acb), (cba), (bca)

     

E K N L M J

is isomorphic to D3

C6 is not isomorphic to D3 !
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E J K L M N

E E J K L M N

J J K E M N L

K K E J N L M

L L N M E K J

M M L N J E K

N N M L K J E

Group theory – some definitions

Definition: homomorphism

Similar to isomorphism, however g  g’‚ i.e., not bijective 

(no one-to-one correspondence)

e.g.: E → 1, J → 1, K → 1, L → -1, M → -1, N → -1

Definition: sub-group

Subset of G, which is itself a group

Examples:

E J K L M N

E E J K L M N

J J K E M N L

K K E J N L M

L L N M E K J

M M L N J E K

N N M L K J E

• {E, L}

• {E, J, K}

• {E}: trivial sub group

• {G}: trivial sub group

E J K L M N

E E J K L M N

J J K E M N L

K K E J N L M

L L N M E K J

M M L N J E K

N N M L K J E

E J K L M N

E E J K L M N

J J K E M N L

K K E J N L M

L L N M E K J

M M L N J E K

N N M L K J E
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Group theory – some definitions

Definition: adjoint

The elements A and B  G are adjoint, if there exists at least one element X  G 

B = X-1 • A • X (similarity transformation)

e.g., in D3, L and M are adjoint:  M = N-1 • L • N with N-1 = N

Definition: self-adjoint

An element A  G is called self-adjoint, if  X  G follows: X-1 • A • X = A

e.g.,  E:   X-1 • E • X = E

Definition: class

All elements of a group, that are adjoint, form a class. 

e.g., for D3: three classes

C1 = {E},    C2 = {L, M, N} (reflections),    C3 = {J, K} (120° rotations)
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Group theory – some definitions

Definition: outer / direct product of two groups

G'' = G  G' is a group of all ordered pairs (xi, xj') with xi  G and xj'  G' 

Product:

(xi, xj') • (xk, xl') = (xi • xk, xj' • xl') 

Order of G'':    g'' = g • g'

e.g. 

H1 = {E, J, K}  and  H2 = {E, L}

 H1  H2 = {{E, E}, {E, L}, {J, E}, {J, L}, {K, E}, {K, L}}

= C6

not isomorphic to D3
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Group theory – representations

Definition: representation Ga

• Ga is (in the narrower sense) a set of matrices that fulfills the multiplication table

of the group

• Ga(R) is a matrix out of Ga, that represents the group element R

• Ga(R)ij is the ij-element (ith row, jth column) of the matrix Ga(R)

• na is the dimension of the (na  na) matrices of the

representation Ga (same for all matrices)

Matrix multiplication:

The number of representations for each group is infinite!

If Ga is a representation of a group G and X a

non-singular matrix (i.e., det X  0)

 {X-1 Ga  X} (i.e., X-1 Ga(R)  X  R  G ) is also a representation

e.g. E = 1 or = 1

J = 1 = 1

K = 1 = 1

L = 1 = -1

M =  1 = -1

N = 1 = -1

trivial representation

( ) ( ) ( ) =

l

ijljil LKΓLΓKΓ aaa
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Group theory – example: D3

Example: one representation of the group D3: G3
(1)

G3
(1) fulfills the multiplication table of D3:

e.g.,   G3
(1)(J)  G3

(1)(N) =G3
(1)(J • N) =G3

(1)(L)

( ) 









=

10

01)1(
3 EΓ ( ) 











−−
=

11

10)1(
3 JΓ ( ) 









 −−
=

01

11)1(
3 KΓ

( ) 










−−
=

11

01)1(
3 LΓ ( ) 









 −−
=

10

11)1(
3 MΓ ( ) 










=

01

10)1(
3 NΓ
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Group theory – representations

Definition: reducible representation

Given is a set of matrices Ga. If one can find one non-singular matrix X, such that all

matrices from Ga obtain block-diagonal format under the transformation X-1 Ga(R) X,

then the representation is called reducible.

• During matrix multiplication the blocks are multiplied with each other without 

mixing into other blocks. This means each set of blocks is again a 

representation.

• The reducible matrix is equivalent to a direct sum of several matrices:

Definition: Irreducible Representation

If a representation cannot be reduced further through the transformation 

above, it is called irreducible.

( )
( )

( )
( ) ( ) ( ) RRΓRΓRΓ

RΓ

RΓ

RΓ

=
















       321

3

2

1

00

00

00

( ) ( )
( )

( )









=

RΓ

RΓ
RΓRΓ

2

1

21
0

0
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Example: Representations of the group D3

E                  J                   K                   L                  M                  N

G1 1                   1                   1                   1                  1                   1

1                   1                   1                  -1                 -1                  -1G2

G3
(a)

reducible

represent.

G1  G3
(a)

G3
(b)

…

Definition:

Two irreducible representations Ga and Gb are called equivalent, if  matrix X 

X-1  Ga(R)  X = Gb(R)  R  G.

is equivalent to G3
(1) with X = 

















100

010

001












−

−−

13

11

2

1











−

−−

11

31

2

1











−11

31

2

1











−− 11

31

2

1









−

10

01











10

01












− 11

11

















−

100

010

001

















−

−−

2/12/30

2/12/10

001
…
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Group theory – Orthogonality relations

There is an orthogonality relation for irreducible representations. It follows from the

lemmas of Schur:

1. Lemma of Schur

A representation Ga is irreducible    the only matrices M, that commutes

with Ga (R)  R (i.e., M  G = G  M), are scalar matrices Mij = M0dij.

2. Lemma of Schur

Given are Ga and Gb as irreducible representations and a matrix M with

M  Ga (R) = Gb (R)  M  R  G, then it follows:

a) if na  nb, then M = 0 (matrices not square-shaped)

b) if na = nb, then M = 0 or 

M is not singular, i.e., Ga and Gb are 

equivalent.
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Group theory – Orthogonality relations

 Orthogonality relation for irreducible representations:

( ) ( ) GR
n

g
RΓRΓ pqijqj

R

ip = −   ,   dddab

a

ba
1

equivalent are  and  if

identical are  and  if

equivalent not are  and  if

  undefined

   with

ba

ba

ba

abd

ΓΓ

ΓΓ

ΓΓ









= 1

0
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Group theory - Characters

For each representation exists a set of characteristic values ca (R) with

Definition: Character

{ca (R)} is called the character of the representation Ga

• Two representations Ga  and Gb  are equivalent    they have the same character

since Trace Ga (R) = Trace X-1 Ga(R) X = Trace Gb (R) .

• Elements of the same class have the same trace, since the elements of a

class are adjoint to each other.

• Characters make our life easier, see below …

( ) ( ) ( )RRΓR

i

ii Trace  == aac

• The character value of  E indicates the dimension na of the representation
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Group theory – Characters: Example 

E J K L M N

c1

c2

c3

Example: D3

E                  J                   K                   L                  M                  N

G1 1                   1                   1                   1                  1                   1

1                   1                   1                  -1                 -1                  -1G2

G3
(1)

classes

1            1            1           1            1            1

1            1            1           -1           -1          -1

2           -1           -1           0           0            0












−

−−

13

11

2

1











−

−−

11

31

2

1











−11

31

2

1











−− 11

31

2

1









−

10

01











10

01

Different character values show that group elements belong to different classes 

(in this case, identity, rotations, reflections)
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Group theory – Characters: Example 

It is sufficient to list the character values of the classes (same values within one class):

C1 = {E},    C2 = {J, K},   C3 = {L, M, N}

 Character table of D3

C1 2 C2 3 C3

c1 1 1 1

c2 1 1 -1

c3 2 -1 0

number of elements

hi : number of elements in class Ci

r : number of classes in G
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Group theory – Characters: Orthogonality relations etc.

• Criterion for irreducibility: Ga irreducible    

• Number of irreducible representations of a group equal to number of classes, and 

( ) ( )
=

=

r

i

iii gCCh

1

*
abba dcc

( ) ( )
=

=

r

ijjii gCCh

1a

aa dcc

Different representations

Different classes

( ) =

R

gR
2

ac


=

=

r

gn

1

2

a

a
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Group theory – Reduction of a representation

 Transformation in block form and reduction into direct sum of given 

(non-equivalent) irreducible representations Ga possible, but how?

Given: Reducible representation G of a group G

Easy to accomplish with character c(R) of G :

nnΓpΓpΓ = 11 with ( ) ( )   =

R

RR
g

p *1
aa cc

Example: 4-dimensional reducible representation G of group D3 given as

C1 2 C2 3 C3

c 4 1 0

( ) ( )( ) 1
6

6
10311214

6

1
1 ==++=p

12 =p 13 =p

321 ΓΓΓΓ =   

Block-diagonal representation 

equivalent to original 

reducible representation



















=

1000

0100

0010

0001

E     





















−−
=

0100

1100

0010

0001

K

(*)
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Group theory – Direct product

Definition: direct product of two representations

dimension: na  nb

Remarks:

• Direct product of irreducible representations Ga and Gb is commutative:

Ga  Gb = Gb  Ga

• Direct product of two representations yields another representation.

• Resulting representation can be written as direct sum of 

irreducible representations.

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )



















=

RΓRΓRΓRΓ

RΓRΓRΓRΓ

RΓRΓ

mmm

m

baba

baba

ba







1

111

( ) ( )





















=



































































=

1000

0100

0010

0001

10

01
1

10

01
0

10

01
0

10

01
1

33 EΓEΓ
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Group theory – Character of a direct product representation 

For the character of the direct product follows: c(Ga  Gb) = ca  cb

Example: multiplication table for irreducible representations of D3

 G1 G2 G3

G1 G1 G2 G3

G2 G2 G1 G3

G3 G3 G3 G1  G2  G3

=



abba ΓgΓΓ    with G irreducible representation

and ( ) ( ) ( )RRR
g

g

R

baab ccc = 
1

Remark: Worked out tables in literature

(combine formula (*), page 21 with (**) above) 

(**)
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32332232123132 ΓgΓgΓgΓΓ =

( ) ( )  0000111111121
6

1
231 =+++−+−+=g

( ) ( )  0000111111121
6

1
232 =+++−+−+=g

( ) ( ) ( ) ( )  1000111111221
6

1
233 =+++−−+−−+=g


332 ΓΓΓ =

(Non-trivial) example:

E J K L M N

c1

c2

c3

1            1            1           1            1            1

1            1            1           -1           -1          -1

2           -1           -1           0           0            0

( ) ( ) ( )RRR
g

g

R

baab ccc = 
1

Resulting representation must be 2-dimensional, since n2 = 1, n3 = 2, 

i.e., result must either be (equivalent to) G3, G1 + G2, 2G1, or 2G2. 

The last 3 possibilities are obviously wrong. Formal proof:

How can that be although L, M, N are negated through direct product?

No problem due to special arrangement of results of multiplication table

 Additional sign always cancels out or does not matter !
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Connection to physics: Hamiltonian and group theory

Consider wavefunction ( ) ( )r =nxx ,,1  (eigenstate, no spin!) 

and coordinate transformation 
=

=

n

j

jiji xRx

1

' or rRr =' exists) 1( −R

New wavefunction in new coordinate system will be different from , 

in general a linear combination of „old“ eigenfunctions with same energy 

(and other quantum numbers that remain) 

Examples from atomic physics:

• |px> will be transformed into |py> for a 90° rotation

• States with same energy and given angular momentum l  but different m

will mix for general rotations (states with different l or E will NOT mix!)

 Define operator P(R) transforming „old“ into „new“ wavefunction, 

when transformation R is applied:  

( ) ( ) ( ) ( ) ( )':''' 1 rrrRr  RP== −
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If Hamiltonian H is invariant with respect to R (i.e., R is a symmetry operation):

( ) ( ) ( )'''' 1 rrRr HHH == −

 P(R) commutates with H:    P(R) H = H P(R)

 Eigenfunctions of Schrödinger equation can be chosen 

to be simultaneously eigenfunctions of P(R) !

 Solutions of Schrödinger equation can be classified according to eigenvalues

of P(R) (symmetry properties) !

Holds for all types of symmetry operations 

(rotations, reflections, translations by lattice vector)

All symmetry operations leaving H invariant form a group:

Group of the Schrödinger equation



Dr. Daniel M. Schaadt 27

27

Eigenfunctions and representations

Consider n-fold degenerate solutions of Schrödinger equation ai, i = 1,…, n(a)

with energy Ea :

ii EH aaa  =

( )  ( )  ( )  ( )  RPEERPHRPRPH ===Then we have:

i.e., P(R)ai is again eigenfunction of H with the same eigenvalue Ea

 P(R)ai can be written as linear combination of ai

( ) ( )
=

=

n

i

iijj RΓRP

1

aaa 

For all  j  Matrix Ga(R): Transformation matrix written in basis ai

( ) RΓaFor all R  Set of matrices

( ) RΓa is a representation of the group of the Schrödinger equation ! 

Generally, ( ) RΓa
is irreducible

(apart from coincidental, i.e., non-symmetry related degenerate states)



Dr. Daniel M. Schaadt 28

28

Labeling of eigenfunctions

• Eigenstates are labeled according to their corresponding (irreduc.) representations:
State (wave function) is said to “transform  according to Ga” or “have symmetry Ga ”

• Dimension of Ga corresponds to degree of degeneracy

E

E1

E2

E3

E4

E5

E6

G1

G2

G4

G2 + G3

G4

G2

Example:

ground state

multiple occurrence of irreducible representations

accidental degeneracy: two eigenvalues that

have coincidentally

the same value
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Construction of basis functions with def. symmetry

Example: group of order 2: inversion

Ci E J

G1 1 1

G2 1 -1

na = 1

g = 2

Find functions with symmetry G1 and G2 !

Take a random function f(r) and apply projection:

( ) ( )=

R

pq

pq RPRΓ
g

n
O

*

a
a

a

The resulting set of basis functions with fixed q transforms according to Ga
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of function f(r)

( ) ( ) ( ) ( ) ( ) ( ) ( ) rrr fJPJΓfEPEΓfO
*

111

*

111
11
1

2

1
+=

( ) ( ) ( ) ( ) ( ) ( ) ( ) rrr fJPJΓfEPEΓfO
*

112

*

112
11
2

2

1
+=

With ( ) ( ) ( ) ( ) 1,1 2211 −==== JΓEΓJΓEΓ  

and ( ) ( ) ( ) ( ) ( ) ( )    ;   rrrr −== ffJPffEP

we get:

( ) ( ) ( ) 

( ) ( ) ( ) 









−−=

−+=

part odd

part even

rrr

rrr

fffO

fffO

2

1
2

1

11
2

11
1
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Transformation of wavefunction including spin

Eigenfunctions of z-component of (spatial) angular momentum operator:

)(;~ lmlmlel
i

L z
im

zz +−==



=           
 




Scalar wavefunction, reproduces after rotation of 2p

Spin operator for spin ½ particle given by Pauli matrices:

;   









=

01

10
x ;   









 −
=

0

0

i

i
y 











−
=

10

01
 z

σs
2


=

Eigenfunctions of z-component of spin:

=

























−
=     spin

zspin

spin
spin

z sS 





2

1

10

01

2


;   










=

0

1
spin up) (spin   

2

1
+=zs

;   









=

1

0
spin down) (spin   

2

1
−=zs

Two-component spinor wavefunction, reproduces only after rotation of 4p !

Transformation according to D1/2
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For eigenstates of sz :

Transformation of full wavefunction (including spin):

( ) ( ) spin = rr

Product of spatial and spin wavefunction

 (r) transforms as point group
2/1D

“Double group”

Double group has additional elements and classes compared to point group!

Example: group C6v (symmetry of materials like GaN, ZnO, etc. 

with hexagonal (wurtzite) crystal structure)
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Symmetry of eigenfunctions of the Hamiltonian

Example: C6v (group of a pointy hexagonal pencil)

C6v: E

2 C6: ± 60°

2 C3: ± 120°

C2: ± 180°

3v: reflection about diagonal

3d: reflection about area normal

with spin:

No reflection on plane perpendicular to pen

since no inversion symmetry!

(double layers of, e.g., Ga and N along axis)

E: rotation about 2p (changes sign of wavefunction, different from E)

2C3, 2C6, C2, v, d

for instance: CdS, ZnO, CdSe, GaN
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Applications of group theory – selection rules

Using group theory, we can determine if a matrix element vanishes or not

 selection rules !

Gj Gs Gi

Intuitive explanation (mathematical proof possible):

Integrand can be written as integral value / volume (constant average) that

transforms according to the trivial representation G1 plus positive / negative 

deviations with more complicated symmetries that cancel out in the integration

 Integral does not vanish if there is a finite contribution to the integrand 

that transforms like G1 (the average value) ! 





=


=

else

  if

0

0
'

1 isjisj ΓΓΓΓΓΓΓ
iHj
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Applications of group theory – selection rules

Example: Electrical dipole transitions

For full rotational symmetry (atomic physics):

• angular momenta good quantum numbers

• selection rules: 1;1 == ml       

Symmetry of perturbation (dipole) operator in wurtzite materials (C6v):

5

1

:

:||

Γ

Γ

  

  

cE

cE

⊥

Depends on polarization of light field (see, e.g., tables in Cho)

Selection rules for optical transitions in materials with wurtzite crystal structure: 

Evaluation of transition matrix elements by group theory!

In crystal: group theory

Symmetry of wavefunctions at G point : from literature 

(derivation: start from symmetry of atomic states, 

symmetry reduction through crystal structure, see below)
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A

B

C G7

G7

G9

G7

Optical transitions in materials with wurtzite structure

Band structure including labeling of CB and VBs

according to their irreducible representations at 

the G point

Allowed transitions: 

• Direct product of representation initial state (VB) 

with representation of dipole operator must 

contain representation of final state (CB)

• Use multiplication tables to evaluate direct products

5: ΓcE   :operator dipole ofsymmetry   ⊥

allowed CB to A  VBTransition   = 8759 ΓΓΓΓ

CB

VBs

allowed CB to C & B  VBsTransition   = 9757 ΓΓΓΓ

1:|| ΓcE   :operator dipole ofsymmetry   

forbidden CB to A  VBTransition   = 919 ΓΓΓ

allowed CB to C & B  VBsTransition   = 717 ΓΓΓ
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Wurtzite materials: Coupling of light field to excitons

Product wavefunctions transform according to direct product of individual symmetries 

(see, e.g., spin states discussed above)

Excitons: ( ) ( ) ( )
  

likeH

nlm
envelopeheexciton

−

−= hehe rrrr 

Symmetry of total wavefunction: en velo p eheexcito n ΓΓΓΓ =

Transitions from/to ground state (symmetry G1) allowed 

(matrix element ≠ 0), if direct product of Gexciton

with symmetry of dipole operator contains G1

Which excitonic transitions are allowed in emission/absorption?

For 1s excitons: 1ΓΓenvelope =

 Exciton does not alter selection rules in this case
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A

B

C G7

G7

G9

G7

For A exciton (G9 VB) in 1s state

(i.e., nB = 1 and s-like envelope function) 

65197 ΓΓΓΓΓΓexciton ==

 Two types of excitons: G5, G6

Excitons in wurtzite materials: Exciton types
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Coupling to light field:

: || cE
515 G=GG no

: cE ⊥
62155 GGG=GG

G5: Total spin = 0: “singlet”

yes

Couples to light field for : cE ⊥

Singlet ist “bright” exciton !

Does not couple to light field

Triplett is “dark” exciton !

G6: Total spin = 1: “triplet”

616 G=GG no

54356 GGG=GG no

• Result consistent with intuitive discussion for electron – hole pairs above,

that only excitons with total spin zero can be created by light 

• The occurrence of “bright” singlet and “dark” triplet states is 

a general feature of excitons in any material 

• Coupling to light field for wurtzite structure: 

B and C exciton: always, A exciton: only for 

For B and C (G7 VB) 1s excitons:
521177 GGG=GGG

TripletSinglet 

(mL= 0) 

Singlet

(mL= ±1)

cE ⊥ || cECouples for

 cE ⊥
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Example: Low-temperature (T ~ 4 K) reflectivity of CdS (wurtzite crystal structure)

Recap: Linear spectroscopy of excitons: Reflectivity

• Resonances due to A, B and C excitons at low temperatures 

(hardly visible at room-temperature due to thermal ionization of excitons) 

A
B

C G7

G7

G9

G7

As expected (see discussion above):

• Polarization dependence: 

A exciton couples only for E ⊥ c

T: transverse

L: longitudinal
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Applications of group theory – Perturbation theory

Unperturbed Hamiltonian H0, assume En
0 is not degenerate 

0000
nnn EH  =

With perturbation:
sHHH += 0

000
n

s
nnn HEE +=   

From evaluation of matrix element with group theory:

• Does perturbation shift eigenvalue or not ?

• No statement concerning magnitude of shift !

Mixing with other states due to perturbation




−
+=

nk

k

kn

s

nn
EE

nHk


00

0

From evaluation of matrix elements with group theory:

• Which states do mix in ?   

 Change in selection rules (forbidden transitions may become allowed)

• No statement concerning strength of mixing !
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Degenerate perturbation theory

000
ninni EH  =

With perturbation:
sHHH += 0

 New eigenfunctions (0th order, “right linear combinations”) 

=

i

nininj
0a

New energies from characteristic equation: 0det =− ij
s EjHi d

Group theory:

• Is degeneracy lifted, and to which degree? 

(accidental degeneracy despite / due to perturbation possible!)

• No statement concerning magnitude of splitting !

→ Properties of atomic orbitals that form bands + compatibility tables

How do we get the Gi , e.g., for bands in a solid ?

Coefficients from resulting system of equations for these energies
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Compatibility tables

Hamiltonian invariant with respect to certain symmetry operations

Symmetry reduction (application of a field, strain, …) 

 Less symmetry operations than before, subgroup of previous symmetry group

 Representation of subgroup may be reducible 

(although same representation for full group is not)

point group subgroup

Gi ...
21

 ff ΓΓ

• If a representation is mapped onto an irreducible representation

 Energy level Ei does not split 

(since a symmetry operation always exists that maps one state onto the other)
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• If a representation is mapped onto a reducible representation

 Energy level Ei splits (apart from accidental degeneracies),

since only some states are connected to each other via symmetry operations

(because the representation is block-diagonal)

Ei

Ef1

Ef2
…

→ Compatibility table:

When a given group representation becomes reducible due to the 

reduction of number of symmetry elements, what are the resulting 

irreducible representations of the remaining subgroup?
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Example: Group D3, symmetry reduction through applied field

Rotations and 2 reflections no longer symmetry operations 

when field is applied !

D3 G1 G2 G3

C3 G1 G1 G2 + G3

C2 G1 G2 G1 + G2

a

bc

z

field

Application of field   D3 → C2

 G3 splits into two energy levels (G1 + G2)
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Group theory in solid-state physics

Starting point: Atomic orbitals, radially symmetric potential V(r)

Wavefunction: ( ) ( ) ( ) ,lmYr =r

Angular part of separated Schrödinger equation: Spherical harmonics Ylm

( ) ( ) ( )





,1,
sin

1
sin

sin

1
2

2

22 lmlm YllY +−=















+

















( ) ,lmY : Ortho-normal system, basis for full rotation group

For spherical symmetry: Symmetry group is full rotation group

• All rotations with the same angle (but around different axes) belong to one class

• Rotations with arbitrary angles are symmetry elements    Continuous group !

• Different representations Gl+1 according to different angular momenta l

• Gl+1 has degeneracy of 2l + 1 (different m values) 
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Character table of spherical rotation group

Gl+1

G1

G2

(2l + 1)
( )

2/sin

2/1sin



+l



E

1

0 2p
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Example: Band structure for materials with C6v symmetry

Symmetry of bands at k = 0 for ZnO, GaN, CdS, …?

E.g., for ZnO: 2 outer 4s electrons of Zn are transferred to two empty 2p states of O 

 Valence band (highest occupied band) essentially formed by filled p states of O

 Conduction band (lowest empty band) essentially formed by empty s states of Zn

What happens with 4s state in a crystal with C6v symmetry?

Representation of rotation group for l = 0 and positive parity:

10 ΓD →+
Compatibility table:

What happens with 2p state in a crystal with C6v symmetry?

Representation of rotation group for l = 1 and negative parity:

511 ΓΓD →−
Compatibility table:
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 Band structure of C6v materials at k = 0  (still without spin):

E

k

G1

G1

G5

• Splitting of valence band into two subbands 

due to interaction of p-like states with 

crystal field (→ symmetry reduction) !

• Further symmetry reduction for k ≠ 0

 Band structure / labeling only correct for k = 0 !

• Only labeling of bands with G ‘s correct.

Labeling of bands using angular momenta is 

sometimes possible, but only an approximation !  

10 ΓD →+

511 ΓΓD →−

l = 0

m = 0

l = 1

m = 0 m = ±1

l = 2 6512 ΓΓΓD →+

m = 0 m = ±1 m = ±2

l = 3 654313 ΓΓΓΓΓD →−

no identification possible !
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Transformation of full wavefunction ( ) ( ) spin = rr

2/1D

Band structure of C6v materials at k = 0  including spin

according to symmetry of point group

Compatibility table for C6v : 72/1 ΓD →

 Symmetries of conduction band (CB) and valence bands (VB): 

CB: 771 ΓΓΓ =

VB: ( ) 977751 ΓΓΓΓΓΓ =

A
B

C G7

G7

G9

G7

• G5 VB (single band without spin) splits into G7 and G9

(both two-fold degenerate) when spin is included. 

Reason: spin-orbit interaction !

(p-like VB states can interact with spin)

• No splitting for CB but two-fold degenerate due to spin 

(s-like CB states cannot interact with spin) 

• Additional crystal field splitting between (G7 , G9 ) 

(G5 without spin) and G7

• No direct information on order of bands 

from group theory ! 


