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The Polariton Concept
In vacuum:

Light propagates as pure electromagnetic (EM) wave

In matter: 

(Strong) interaction of electromagnetic field with elementary excitations 

of the solid induces polarization P

Oscillating light field induces

polarization P in solid   

Oscillating polarization P
generates EM wave   www.tagen.tohoku.ac.jp

Examples: 

• Optical phonons (lattice vibrations) in ionic crystal 

• Excitons (optically generated electron-hole pairs) in semiconductors 

• Plasma oscillations of free electrons in metals etc.
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 Light propagation in a solid:

“Mixture” between EM wave and elementary excitation

(Quantum mechanics (QM): Diagonalization of corresponding Hamiltonian)

 Coupled states with new properties, the quanta (quasi-particles) of which 

are called polaritons 

Example: Light in a piece of glass . . . 

Photons are constantly (virtually) absorbed and reemitted 

by the atoms in the glass (depending on photon energy ħw)

 Propagation of “light” ( polaritons) in glass slower than 

the speed of light in vacuum and w-dependent

Macroscopic description:

www.physik.uni-bayreuth.de Refractive index n (w)  dispersion . . .
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Maxwell and material equations

+= ED 0

For not too strong fields, i.e., the regime of “linear optics” we have

EP 0=

( ) EED    1   00  =+= 

All optical properties of solid contained in dielectric function of polaritons !!!

But how do we calculate / model             ? ( )w

Polarization due to external EM waveP

P is generated through dipoles induced by the EM wave via

• a distortion of the atomic electron clouds 

(light couples to an electronic transition) 

• lattice deformations (light couples to an optical phonon)

• collective plasma oscillations of free electrons in metals around the nuclei  

(Taylor expansion of “true” P (E) up to linear term) 

How Do We Model Polaritons ?
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Classical models     - quantum-mechanical models

Insulators:

Lorentz model (bound electrons, ions)    - interband transitions, phonons

Metals:

Drude model (free electrons)                  - QM: intra-band transitions

Corrections due to bound electrons

Semiconductors: 

Lorentz model (interband transitions, ions), 

but often also Drude contributions (intra-band transitions)

due to free charges (doping !)
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Drude-Lorentz Model (Classical Approach)

Consider polarizable “model material” with following properties:

• Medium is a homogeneous ensemble of harmonic oscillators

• Oscillators are dipoles consisting of:

- fixed positive charges at lattice points (think, e.g., of the atom nuclei) 

- negatively charged mass m bound to it with spring constant b

(think, e.g., of the polarizable electron clouds around the nuclei)

• The incident EM wave leads to forced oscillations and 

resulting dipole moments

Without electric field

E

Dipoles induced by electric field
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Initial simplifications:

• All oscillators have identical eigenfrequency

• No coupling between different oscillators

• One oscillator per crystal unit cell

Note 1:

This simplified classical model can be justified by QM (→ later). 

Essentially, the oscillatory deformation of the electron cloud corresponds to 

a wavefunction that contains a mixture of two electronic eigenstates 

with energies E2 and E1. 

m
EE

b
w  ==− '012

w0’ (or b /m) are chosen such that

m

b
w ='0

Note 2:

Although we discussed the coupling of the light field to electronic transitions in

a solid above, the model discussed below is applicable to any kind of polariton

(taking into account the corrections discussed later)  
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Dispersion Relation of Polarization Waves in our Model Solid 

All oscillators in equilibrium

m

b

a

Lattice parameter

Spring model of solid

Limiting case 1:

All oscillators in phase

l = ∞   k = 0

Whole ensemble oscillates with w0’

Limiting case 2:

Neighboring osc. in anti-phase

l = 2a = l min  k = p /a = kmax

Whole ensemble oscillates with w0’
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Same frequency w0’ for all l (∞ ≥ l ≥ 2a)  or  k  (0  k  p / a) !

 Dispersion relation: constant !
E

k

ħw0’

p / a

Group velocity: 0==
dk

d
vg

w

 A wave packet 

(e.g., a single excited oscillator)

does not propagate, as expected for

uncoupled oscillators 

Now: Consider response of model solid to EM wave:

• Polarization along x

• Propagation along z
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Oscillator dynamics: differential equation for damped driven oscillation 
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wb −
−=++ 02

2

phase)in  are osc. all i.e., , ( 0al

Response of system when EM field is switched on at t = 0 :

Damping due to collisions 

with other quasi-particles, 

radiative damping, etc.
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Oscillation is associated with a generated (max.) dipole moment 
pex

and a polarizability
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for model solid consisting of 

uncoupled oscillators with a 

single fixed resonance frequency   
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QM Treatment of Dielectric Function and Resulting Corrections to Model 

Interaction of QM system with light field

Unperturbed system for t < 0 :

nnn EH  =0  :    ; 0H Time-indep. Hamiltonian of system

At  t = 0  the light field is switched on ( small perturbation)

( ) 0'0 += ttHHH  for

onperturbati
periodic 



Time-dependent Schrödinger equation:  

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Unperturbed states :n
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na Probability to find system in state n
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Evaluation of ( ): tan
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Perturbation operator: rE = lo c a l' eH

Let ( )titi
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Since we are solely interested in the polarization response of the system in 

the ground state, not in the excitation of higher states, we only keep terms 

containing a0 or a0* (~ 1) and skip small terms only containing other 

ak,l , ak,l* (~ 0)
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If damping (e.g., due to radiation) was included, terms with wm0 would vanish 

for long times (steady state), see discussion of classical problem above 
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Note: Transitions from m = 0 to 0 occur twice in this formula but only once above, however, they do not contribute to p anyway!
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“Trick” to include damping 

(i.e., absorption, because energy is dissipated in damped oscillation)
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If we use the complex representation
tiepp w

0= ( p0 complex amplitude)

as in the classical discussion we can rewrite this equation simply as
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Same dependence as for classical Drude-Lorentz theory but QM results

in individual transitions / oscillators weighted by oscillator strengths fm0  !!!

Summation rule for oscillator strengths:

 =
m

mf 10

• Classical oscillator strength is distributed over all transitions !

• fm0 for individual oscillator depends on transition matrix element 

of corresponding transition 0 ↔ m

• Contributions of different oscillators add up in dielectric function 

(***)
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Why do QM and  Classical Treatment yield identical results ?

• Correspondence principle of QM

• Kramers – Kronig relations 

➢ resulting from fundamental principle of causality !

➢ Connection between absorption (related to 2) and dispersion (1)  

Assume sharp ( - like) absorption resonance at  w =  w0

( ) ( )02 www −= A

Kramers – Kronig:
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    Universal relationship 

for dielectric function !
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Local Field Correction

Assumption so far:

Electric field acting on oscillators identical to external incident field

 Local field acting on oscillators consists of two parts:

• External field

• Field generated by all other dipoles

 Clausius-Mosotti or Lorenz-Lorentz equation

(for classical Drude-Lorentz model)
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(For dilute systems with N<< :  ~ 1 in denominator   old formula)

Valid for dilute systems, but solid is dense system of oscillators

 Lorentz field :

→ Hecht, Zajac

} PEE
0
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3
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
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→ Kittel
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However, for small damping (as often found in experiment) 

 can be rewritten in the previous form (***) using a shifted eigenfrequency

0
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Properties of the Dielectric Function in the Drude-Lorentz Model 

For the dielectric function in the Drude-Lorentz model we had 

(compactly written):
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In a real solid: Many different oscillators: Phonons, electronic trans., etc.

 Simplification of  (w)

• For w >> wm0 : contribution of oscillator m → 0

 Essentially, only oscillators with resonance frequency wm0 > w

contribute to  (w)

 For w >> highest resonance (i.e., hard x-rays) :   1 

(No coupling of EM field with medium, propagation as pure photon!) 

• For w << wm0 : constant contribution                    of oscillator m 2

0/' mmf w
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After D. Meschede, Gerthsen Physik

Dipole

relaxation

Ion resonance

Electronic resonances w

Polarizability

IR UV and XMicro-

waves
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 In the vicinity of a single resonance m’, far away from all other 

resonances m ≠ m’ we can approximate
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w Hopfield model

: b Background dielectric constant 

(contains constant contributions of all higher resonances)

or, using                          as oscillator strength and skipping the index m’ :
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 is complex due to the phase shift between D(t) (or P(t)) and E(t)

in ED  0=

(in full analogy to the phase shift between driving force and oscillation 

for a driven mechanical harmonic oscillator)
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Separation of the real and imaginary part yields:
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After C. Klingshirn, Semiconductor Optics

( )w1

( )w2

0w
Lw

0w
Lw

0=

LT2.0 =

LT2.0 =

0=

s
b

For vanishing damping 0→

• Pole at w0 in 1

•  distribution at w0 for 2

Finite (small) damping

• General broadening, defined by 

• Slight shift of resonance frequency

• Singularity in 1 disappears, i.e., 

smooth connection of both branches 

(possibly even 1 > 0 for all w)

• 2 broadens to Lorentzian
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For w = wL and small damping the special case 

Re{ (wL)}  ≈  (wL)  =  0 occurs :

Generally, ( ) ;   00 == ED w ( )tie w−rk
E ~

 For w ≠ wL , i.e.,  (w) ≠ 0 :    0= Ek Transverse EM waves

 For w = wL , i.e.,  (w) = 0 :    Ek  Longitudinal mode possible

 Longitudinal pure polarization mode 

     000 =+== PEED  EP 0 −=

Important: 

Since this mode is longitudinal, it can – under normal circumstances –

not be excited by incident (transverse) light !!!

)0( === HBD

arbitrary
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Connection between transverse and longitudinal eigenfrequency

We had : ( ) 

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
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2
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2
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
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(†)

(††)
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Consequences of  (†) and  (††) :

• An oscillator coupling to the EM field (i.e., with finite oscillator strength) 

implies a finite longitudinal-transverse splitting

( )TLL T ww −= 
and vice versa 

• For f > 0, we always have wL > wT

• For f > 0 we always have s > b (difference growing with f ) . 

Note, that b for a resonance w0m is (essentially) identical with 

s for the next-higher resonance w0m+1

LT

1 −
• LT grows with oscillator strength. The term “small damping”

can be quantified as

Physical reason:

Longitudinal polarization 

wave produces longitudinal 

electric field acting as 

additional restoring force
From C. Klingshirn, Semiconductor Optics
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Optical Properties of Solids in the Lorentz Model : n, k, R

Note: Still approximation of uncoupled oscillators, i.e., ( ) .0 const=kw

We had: ( )    ~
21

22
k inin +===+

Lorentz Model : 

• Electrons harmonically bound with oscillator frequency w0

• No free electrons (i.e., no metals, doped semiconductors)
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Refractive index below the resonance 

For  == n      0       : 0 and  real

w
Lw

0w

 n

n
~Re

=

After C. Klingshirn, Semiconductor Optics

( )w1

0w
Lw

0=

LT2.0 =
s
b

 Below the resonance, n(w) increases, i.e., n(l) decreases 

when the resonance is approached  “Normal dispersion”

 Qualitatively the same behavior for finite damping

Example:

In a piece of glass, n increases with w in the visible 

due to the electronic resonances (transitions) in the UV.

This explains why blue light is refracted stronger than red.
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Refractive index between w0 and wL

For    :  0  L0 = www  and

w
Lw

0w

 n

n
~Re

=

After C. Klingshirn, Semiconductor Optics

( )w1

0w Lw

0=

LT2.0 =
s
b

purely imag.     

k in ==~

• n = 0 

• k starts with singularity 

and drops towards wL

w
Lw

0w

 n~Im

=k

 real and < 0  

 No spatially oscillating propagating mode (exponent. decaying amplitude)

 For finite  : Small n but large k : Light can penetrate but is strongly damped

Yes, but where does the light end up … ???
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Reflectivity: ”Reststrahlen” band

( )
( ) 22

22

1

1

k

k

++

+−
=

n

n
R For    :  0  L0 = www  and 1      0 == Rn

• Total reflection (“Reststrahlen” band),

no transmission (“stop band”) !!!

• No absorption despite finite k !!! 

(Dissipation of energy would 

require damping, i.e.,  > 0 !!!)

• Drop in R for finite  due to 

absorption and transmission 

• R = 0 for n(w) = 1 just above wL

(for no damping)

• Large k  R → 1 !

Further properties of R : 
Arrangement to measure the

“Reststrahlen” band of a solid• For w << w0: ( ) ( )22/1

s

22/1

s 1/1 +−= R

• For w >> w0 lower refl.: 

“White” light

“Rest” spectrum( ) ( )22/1

b

22/1

b 1/1 +−= R
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Degree of reflectivity for some alkali halides in the infrared

From: D. Meschede, Gerthsen Physik

Comparison with experiment: Phononic “Restrahlen” band
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Close to 100% reflectivity at interface air – crystal

Evanescent wave penetrates into crystal

What happens for thin samples (< penetration depth) ?

Reststrahlen bands for both materials

Reflections at all interfaces

 Oscillations due to 

Fabry-Pérot interference fringes

Example: Reflection at a thin ZnSe layer on a thick GaAs substrate

„Where“ is the light 

reflected ?

What happens to the Reststrahlen band for thicknesses < penetration depth ?

ZnSe

GaAs

200 220 240 260 280 300

0.0

0.5

1.0

GaAs

 

 

 = 0

ZnSe

1mm

R
e
fl
e
c
ti
v
it
y

Wavenumber (cm
-1
)

 Simulation

Reflection at crystals of finite thickness
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Light is partly transmitted !

 Reststrahlen band breaks down, 

except for w close to w0 :

Absolute value of 1 large  

 k large   small penetration depth

 Despite „reflection at surface“ the volume 

behind is required to form the 

Reststrahlen band !

200 220 240 260 280 300

 

 

 = 1.36

ZnSe 

172.5 nm

T = 20 K

R
e
fl
e
c
ti
v
it
y 

(a
rb

. 
u
n
it
s
)

Wavenumber (cm
-1
)

 Theor. fit

 Experiment

200 220 240 260 280 300

GaAs

 

 

 = 1.43

ZnSe

3.6 µm

T = 20 K

R
e
fl
e
c
ti
v
it
y 

(a
rb

. 
u
n
it
s
)

Wavenumber (cm
-1
)

 Theor. Fit

 Experiment

w
0

 

 

k
 (

a
rb

. 
u

n
it
s
)

Wavenumber

Spectra from: K.C. Agarwal,…, and M. Hetterich, PRB 73, 045211 (2006). 

What happens to the Reststrahlen band ??? 
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Polariton Equation and Dispersion 

( )w
w

=
2

22
kc

 Polariton equation

For a single resonance w0 and uncoupled oscillators ( ) .)( 0 const=kw

Wave propagation in solid with µ ≈ 1:

( )ti
e

ttc

w −
=




=




=

rk
EE

EE
E 02

2

002

2

2

solid

   ;   
1

    2
EE k−= and E

E 2

2

2

w−=




t

with
00

2 1


=c

:

Implicit representation of polariton dispersion ( )kE












−−
+=

www


w i

fkc
22

0

b2

22

1
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Photon dispersion + 

oscillator dispersion + 

anticrossing between the two

 Polariton dispersion with 

upper (UPB) and lower (LPB) 

polariton branch

• For w far away from resonance: 

- “Photon-like” dispersion with refractive index n = b
1/2 (UPB) / n = s

1/2 (LPB) 

- Propagating modes with weak damping

• Close to resonance:

- Flat “oscillator-like” dispersion

- Splitting into UPB and LPB due to anticrossing for  = 0

- Strong damping (k complex !) and absorption for  > 0

- No coupling to light field for longitudinal branch 

LPB

UPB

w

k
c

b
w =

k
c

s
w =
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Coupled Oscillators and Polaritons with Spatial Dispersion 

Simplification so far: Uncoupled osc. with fixed resonance frequency w0 

In a real solid: Oscillators are typically coupled !!!

 Excitation can propagate through solid as a polarization wave 

with wave vector k

 Spatial dispersion w0(k) of resonance frequency, since

Example: Phonons (lattice vibrations)

0=
dk

d
vg

w
group velocity (energy transport possible !)

Simplified linear chain model:

masses M (atoms), 

coupled by springs (interaction) 
n - 1 n n + 1

DM

un-1

Equations of motion: ( ) ( ) 11 −+ −−−= nnnnn uuuuDuM 

a
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Ansatz for wave through chain:
( )tknai

nn euu w−
=

0

( ) !!!      .
2

sin
4

const
k a

M

D
k = w

From Wikipedia

Modes for different k

• vg = 0 (standing wave) at border of Brillouin zones 

• Repetition of modes / w(k) for higher k !  Physical origin ?

C. Klingshirn, Semiconductor Optics

Dispersion relation
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Wikipedia

• Shortest physical wavelength (highest k) : Neighboring atoms in antiphase

a
ka

p

l

p
l ===

min

maxmin

2
      2

• Shorter wavelength (higher k) : Identical to state shifted into 

1st Brillouin zone (BZ) by reciprocal lattice vector G

(border of 1st Brillouin zone)
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Most solids have more than one atom per unit cell. What happens then?

2n - 1 2n 2n + 1

DM

a’

→  Linear chain model with two different masses M and m per unit cell

m

 Reciprocal unit cell halves

 Fold dispersion relation outside 1st BZ back into the first zone

 Splitting at zone borders due to unequal masses

 Two phonon branches (in 1D: n for n atoms per unit cell)

Size of unit cell doubles !  

C. Klingshirn, Semiconductor Optics



41

Equations of motion: ( )122122

2

2

2 −+ +−=



nnn

n uuuD
t

u
m

( )nnn
n uuuD

t

u
M 212222

12

2

2 +−=



++

+

ansatz :   tkn aiuu nn w−= '2e x p0,22

  tkaniuu nn w−+= ++ ')12(e x p0,1212

2/1

2

2

2

2

'
sin

41111












−








+








+=

ka

MmMm
D

Mm
Dw

Two phonon branches :

Optical branch

Acoustic branch
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Which phonons couple to the electromagnetic field? 

E
Light is a transverse el. magn. wave

 Only transverse phonons couple

to the light field

Optical phonons Acoustic phonons

Low dipole moment (0 for equal masses)

 Only weak interaction with light field

High dipole moment

 Strong interaction with light field

 Mainly transverse optical (TO) phonons couple to the light field
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For crystal with  n atoms per unit cell :

• 3 n – 3 optical branches 

• 3 acoustic branches

Coupling to the light field 

if character of oscillation is transverse

opt.

acoust.

After C. Klingshirn, Semiconductor Optics

3 n branches (= number of degrees of freedom)

• Coupling to light field implies 

LO – TO splitting (see above), 

even for k → 0 !!!

(where the coupling takes place, see below)

- p/a p/a

2 x TA

LA

TO

(2 x degenerate)

LO

 

 

w

k

• Longitudinal phonons at higher energy

than transverse phonons
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- p/a p/a

2 x TA

LA

TO

(2 x degenerate)

LO

 

 

w

k

Crystals with perfectly covalent binding

Examples: Si, Ge

No dipole moment   No LO – TO splitting for k → 0 !!!

However :

Light still propagates as a polariton ! 

(electronic contributions to  )
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 (Neighboring) equal ions oscillate in phase !

 Important for optical properties:

w0 = w (k = 0) !

 Dispersionless oscillator picture 

adequate despite spatial dispersion !

Important : In the spectral range of phonon resonances usually aLightl

a

w0

opt.
acoust.

After C. Klingshirn, Semiconductor Optics

Which part of the dispersion relation is relevant? 
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Phonon polariton dispersion 

Polar crystals (NaCl, ZnSe, GaAs) Covalent crystals (Si, Ge)

• LO – TO splitting only for polar crystals

• In covalent crystals, polariton dispersion degenerates to straight line

• Longitudinal phonon does not couple to light field  No polariton formation

sc /

LT0 www ==

k

w

photon-

like

phonon-

like

photon-

like

phonon-like

Phonon dispersion ~ constant (scale !). Photon dispersion linear. 
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Optical Properties of Metals
(and Doped Semiconductors)

Free electrons (restoring force = 0) !

 Drude model : Lorentz model with w0 = 0

 Only high-energy branch of dispersion relation !

( )w1

0w Lw

0=

LT2.0 =
s
b

( ) 








−−
+=

w w


w

i

mNe
2

0

2

b

/
1   

Longitudinal mode for  = 0 :

( ) ( ) 2

P

2

L

0

2
2

L       0 ww


www =====
m

Ne

Damping for metals :

Mainly electron – electron scattering with

 ≈ 10-14 s (T = 300 K)  ħ = ħ / t ≈ 65 meV

wP : plasma frequency
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Longitudinal mode at wP: Collective plasma oscillation (electrons)

 All electrons oscillate in phase: Plasmon at k = 0

Important :

The plasma oscillation itself does NOT couple to the light field, 

not even for k = 0 (see discussion above)

Restoring force for plasma oscillation :

space charges at surfaces

Nevertheless wP important quantity for optical properties

(related to fact that difference between longitudinal / transverse oscillation 

becomes meaningless for k = 0)
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Free electron gas : Real and imaginary part of 

 > 0

 ~ 0

-10
4


2


1


b

 

 

w
P

w

( )
( )22

2

P
b22

2

P
b 1

ww

w


w

w
w

+
+









+
−= i
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Polariton dispersion for the free electron gas

( ) 








+
−==    1

2

2

P
b2

22

ww

w
w

w i

kc

w

ww
w

ww

ww
w

 i2

2

b +
−=

+
−=

2

P2P

2

2
22

i

kc

For   = 0 :
2

P

2

b

22

ww


−=
kc No lower polariton branch (LPB) !

Re (k)

 > 0

 > 0

Transmission 

for w > w
P

Plasmon

(longitudinal 

character)

Pair 

excitations

E
n
e
rg

y

Im (k)

hw
P

Plasmon excitations:

• Longitudinal exc. 

e – e interaction but 

e – photon interaction 

not influenced

• Degeneracy with 

polariton dispersion at 

k = 0 !

• Strongly damped for 

large k due to pair 

excitation continuum

(intraband excitations)

 > 0 : LPB but strongly damped !



51

Intraband pair excitations in metals

After C. Klingshirn,

Semiconductor Optics

Fermi edge

• Continuum of two-particle excitations within one band 

↔ Exciton in semiconductors (discussed later)

• High energy only for large k  Not important for optical properties

Excitation of electron above Fermi level and remaining hole 
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Optical constants of the free electron gas

0 2     ww p
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Photon energy
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Reflection coefficient

Free electron gas model describes optical properties 

of some “simple” metals reasonably well.

Example: Al (3s23p2) 

Fails for many “real” metals, e.g., Cu (3d104s) or Ag(4d105s). Why?

C. Klingshirn, Semiconductor Optics

( )
( ) 22

22

1

1

k

k

++

+−
=

n

n
R

“Plasma edge”
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Optical properties of real metals

Problem: Further contributions to the dielectric function

In particular: Direct electronic interband transitions 

e.g., d (quasi-bound states) → conduction band (E > EF), ħw < ħwp

Remarks: 

• d band relatively small

 relatively sharp 

contribution to 
(similar to single 

resonance)

• E-dep. density of states 

in target band important 

for contribution to 
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From Ibach, Lüth, Solid-State Physics

 Plasma  +  band – band models:

( ) ( ) ( )www df
+=

f : free s electrons (Drude)

d : quasi-localized d electrons (Lorentz) 

 “Effective wp” strongly shifted

due to additional contribution of

direct transitions to 

 “Screened” plasma frequency 
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• Quasi-bound d electrons are polarized by oscillating electric field

• Below resonance frequency (transition energy Ed–CB /  ħ ):

Polarization phase opposite to free electron polarization

 Effective plasma frequency (plasma edge) shifts to lower frequency

Intuitive picture

Plasma oscillation of 

free s electrons. . .
. . .

. . .



57
From Ibach, Lüth, Solid-State Physics

 Plasma  +  band – band models:

( ) ( ) ( )www df
+=

f : free s electrons (Drude)

d : quasi-localized d electrons (Lorentz) 

 “Effective wp” strongly shifted

due to additional contribution of

direct transitions to ´

 “Screened” plasma frequency 

Important example: Cu

ħwp ≈ 2 eV

 Reflectivity in yellow-green region 

lower than for red light

 Explains redish color

Further literature:    

Wooten; Ibach, Lüth; Kalt, Klingshirn
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Optical spectroscopy in the IR (phonons etc.)

Spectroscopy in the visible and NIR :

Dispersive spectroscopic techniques: Grating or prism monochromators

In the infrared (e.g. phonons): 

• Problem with conventional optics (lenses etc.) :

absorption (Reststrahlen bands !)

• Wide spectral range has to be covered  dispersion

 Use mirrors (no dispersion) and interferometric spectroscopy

 Fourier Transform Infrared (FTIR) Spectroscopy



59

Principle of FTIR spectroscopy: Michelson interferometer

Beam

splitter

White light source

(black body radiation: 

globar, halogen lamp etc.) 

0 x

Mirror (fixed)

Mirror 

(moveable)

Detector

Example : Absorption measurement

Sample

as spectral

filter

Two-beam interference at detector !

Measure resulting light intensity as a function of mirror position x

 Interferogram function I(x)

If necessary, the set-up is

operated in vacuum to 

prevent absorption in

air / water vapor
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Analysis of interferogram function

Interference between the two split components of one wavelength:

 I(x) oscillating (cos-like) : 

Constructive or destructive interference, 

depending on optical path difference

Frequency of oscillation depends on wavelength 

 Spectrum obtained by Fourier transformation of  I(x)

Mono-

chromatic

wave

Interferogram
Fourier

transform
Spectrum

x
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Waves with different wavelengths are incoherent

 Intensities sum up at detector  Constant offset / background

Total I(x) : Incoherent background  + osc. 2-beam interf. of each l with itself 

Several wavelengths simultaneously

 Spectrum can still be obtained by Fourier transformation of I(x)

„White light point“

Optical path difference = 0

 Constructive interference for arbitrary l

Two

wave-

lengths
Interfero-

gram Fourier

transform

Spectrum

Fourier

transform
Spectrum

Full

spectrum
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Where do we put the sample ? 

Beam

splitter

White light source

(black body radiation: 

globar, halogen lamp etc.) 

0 x

Mirror (fixed)

Mirror 

(moveable)

Detector

Can we put the sample here

for absorption measurements ?

Yes we can and usually do ! (Make it clear to yourself why this is possible !)

Advantages : 

• Measurement takes place outside of actual interferometer

• No disturbance of light path in interferometer due to sample
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FTIR set-up for reflectivity measurements 

Beam

splitter

White light source

(black body radiation: 

globar, halogen lamp etc.) 

0 x

Mirror (fixed)

Mirror 

(moveable)

Detector

Sample

Mirrors
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Advantages of FTIR spectroscopy

Throughput (energy) advantage : 

During the whole measurement time, the complete intensity 

falls onto the detector and is used

Multiplex advantage :

The complete spectral range is measured simultaneously, 

not wavelength by wavelength
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Raman spectroscopy

Inelastic scattering of photons (visible, NIR, UV) in a medium 

with simultaneous generation or annihilation of elementary excitations

(e.g., phonons, plasmons)  

( )ii

photonphoton , kk w

( )ss

photonphoton , kk w
( )qq w,

Mechanism :

• Spatial and temporal modulation of dielectric function 

induced by elementary excitation (e.g. phonon) leads to scattering

• QM : Virtual excitation of intermediate (electronic) state and following 

emission of photon with simultaneous generation or annihilation of a 

further elementary excitation
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Stokes and Anti-Stokes lines
Energy conservation :

Generation of elementary excitation: Stokes scattering

( ) ( ) ( )qkk www  += si

p h o to np h o to n

Photon energy of scattered light reduced by energy of created excitation

Annihilation of elementary excitation: Anti-Stokes scattering

( ) ( ) ( )qkk www  −= si

p h o to np h o to n

Photon energy of scattered light increased by energy of destroyed excitation

In addition :  Elastic Rayleigh scatteringRayleigh scattering

Problem :

Raman scattering very weak and spectrally close 

to much stronger Rayleigh peak

 Use double / triple monochromator

 Use resonant Raman scattering to increase signal

(e.g., photon energy of incident light ~ band gap) 
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For phonons :

Anti-Stokes process requires presence of phonons

 Increase with rising temperature

Practical applications

• Use intensity ratio of phononic Stokes / Antistokes lines (and their thermal shift) 

to measure T-distribution in optoelectronic devices (e.g., laser diodes). 

Even measurement of inner parts of the structures possible by selecting 

phonon lines of corresponding materials

• Measurement of longitudinal excitations (e.g., LO phonons) possible !

(Because they lead to a periodic modification of the dielectric function.)  

• Identification of excitation (e.g., LO, TO phonon) via selection rules 

(from group theory)
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Further advantages and applications

Low energy excitations (e.g., phonons) can be measured using 

visible / NIR / UV light, which is easier to handle than FIR etc.

Apart from energy also k conservation

 Dispersion relation of excitation can be measured, e.g., by variation of the 

angle q  between incident and scattered light

i

photonk

s

photonk q

q

Note : Since the k vectors for (visible) light are small, Raman spectroscopy can only 

probe the dispersion relation around the center of the Brillouin zone ! 

Phonon polariton in GaP

From Yu, Cardona
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Band-to-Band Transitions in 
Semiconductors (and Insulators)

So far: 

Optical properties induced by excitations in solid with 

discrete resonances w0
i(k) (which nevertheless possess a dispersion !)

Examples:

phonons, excitons (discussed in detail later on)

Typical situation in a semiconductor / insulator:

Optical properties (e.g. absorption) in 

visible / near infrared dominated by 

band-to-band transitions* 

(transition energies in eV regime)

* in particular at room-temperature, where excitonic

effects are less important, see discussion later-on 

ke,h

E

Eg

VB

CB
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Absorption due to electronic transitions 

from valence band (VB) to 

conduction band (CB)

Example: Optical absorption in bulk semiconductor

Photon momentum ≈ 0  

 Momentum conservation implies 

“vertical” transitions (i.e., k ~ 0)

in band diagram

Important: 

Continuum of possible electronic transitions with k ~ 0 for energies > Eg

 No absorption for EPhoton < Eg, continuous absorption for EPhoton > Eg

How do we calculate the absorption spectrum etc. for this case?

ke,h

E

Eg

VB

CB
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QM treatment using perturbation theory

Hamilton operator for electron in electromagnetic field:

m

e
i

H
2

2









−

=

A


:A Vector potential

t


−==

A
EAB    ;  

H contains terms →−    
m2

~
2

Unperturbed Hamiltonian H0

0~ = A Cancels in appropriate gauge 

→        2~ A small for weak fields,

typically negligible for linear optics

→        A~ = A
m i

e
H


perturbation

( )
t

iHH



=+


 0
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Transition matrix element in Fermi‘s Golden Rule:

 = r
3

* dHH iffi 

Electronic wavefunctions: Bloch states for VB and CB:

( )kr
kr

,
1

VB

i

i ue


= ( )kr
kr

,
1

CB

i

f ue


= : crystal volume

Vector potential:
( ) ( )














+=

−−−


emission StimulatedAbsorption

titi
eeA

ww qrqr
aA 00

2

1

q: photon wavevector (small) a0: unit vector polarization

Insert everything in H’ :

• Fermi’s Golden Rule   Energy and momentum conservation 

(→ identification of absorption and emission term)

• q ~ 0, i.e., kf = ki (“vert.” trans.)


=

→

N

n cell

dd

1

33
rr N: Number of unit cells• Lattice periodicity:



73

( ) ( ) ( ) kkakakr VBVB

cell

CB

cell

fi uiuud
mV

Aie
H +−=  00

*30

2
 



= 0 (periodic part of

Bloch functions orthogonal)

may be zero (“forbidden transition”),

e.g., for symmetry reasons: 

iHf  

Now: Assume allowed transition 

( ) ( ) ( )kpakakr fi
p

=−=
−= 00

m

eA
uud

mV

Aie
H

i
VB

cell

CB

cell

fi
22

0*30




 

 Transition rate (Fermi): 

Matrix element of

momentum operator

( ) ( )w
p

w
p







−=−= fifififi E
m

Ae
EHP

2

2

2

0

2
2

2

2
fipa0
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Total transition rate Wfi : 

→ Integrate over all possible k values (i.e., over constant energy surface)

Density of states in k space:
(counting of wavefunctions satisfying periodic boundary conditions, see, e.g., Kittel)
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Aim: Determine absorption etc. as a function of photon energy / wavelength

Problem: Formula still explicitly depends on k: Efi(k), pfi(k)

Note: There are many different k for each transition energy which we

often do not know / are not interested in

 Make specific assumptions on dispersion of CB and VB:

• Bands are parabolic 

(good approx. near band gap)

• Isotropic effective mass 

(or suitable average)

g

e

f E
m

k
EE +==

2

22
CB

h

i
m

k
EE

2

22
−== VB

ke,h

E

Eg

VB

CB

 Assume constant transition probability for all k
(mean value, good approx. near band gap)

( ) 2
2

3~ fipkpa fi0 (at least for spherical symmetry)
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( ) ( )( )
  
 w

wp
w −=  kk fi

g

fi

fi Ed
mv

pIe
W

3

222

10

22

4

3

Change to  fidE

Spherical symmetry  Use polar coordinates in k space

( )
( )

fi

fi

fi

fi dE
dE

Edk
Ekdkkd ==

223
44 ppk

k2 from  ECB – EVB using 
( )

2

2
2111


gfi

he

EE
k

mm

−
=+=





( ) 2/12

2

1 −
−= gfi

fi

EE
dE

dk



 ( )
( )

( ) 2/1

2

10

32

22/32

2

23

g

g

fi

fi E
vm

pIe
W −= w

wp


w 




→ Concept of “Joint” (contains CB and VB) Density of States (DOS), see below 

gE−w~ for parabolic bands (square root in analogy to DOS for single bands)
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Calculation of absorption coefficient

intensity incident

time and volume unit perenergy  Absorbed
=fi

velocityenergy density x energy 

transition per  energy   x volume unit per rate transition fiw
=

( )
g

fifi

fifi
vE

W

2
01

w
w





==

fiW
~

: Wfi for one photon per unit volume;

Numerator and denominator ~ number of photons / unit volume

 Restriction to one photon / unit volume:

w =
2

01 E

Assume weak absorption: 12 ;0~  =n ncvg /=and use

( )
nc

W fi

fi

~
1

w =  Connection between QM calculation and experiment
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 For band–band transitions: 

( )
( ) ( ) 2/12/1

2

0

2/32

~
4

23
gg EfE

mnc

fe
−−= ww

p


 



Since oscillator strength
wm

p
f

fi

2

2
= considered as ~ const./w :

( )
w

w


2/1

~
gE−

Lineshape of absorption spectrum essentially given by 

energy-dependence of joint density of states

for direct semiconductor (CB + VB at k = 0)

Examples: 

Absorption spectra of

p-GaAs and CdTe 

single crystals

 Reasonable agreement 

with expected behavior 

at room-temperature
From: Photo-Excited Processes, Diagnostics and Applications, ed. A. Peled, Kluwer
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Note:

- Different behavior for indirect semiconductors

- Generally strong deviation from expected behavior at low temperature 

due to excitonic effects → later

Expected

band-band

absorption
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Joint DOS and van Hove singularities in 

Now: Consider all frequencies (not only close to band gap)

( ) −= w
wp

fifi Ed
m

e
W

2
3

22
10

2

4

~
fipak 0

Total transition rate:

k
w


cnc

W fi

fi

2
~

1
== and k n22 =

( ) ( )w
wp

w −=  fiEd
m

e
2

3

22
00

2

2

2
4

fipak 0

E.g., for VB → CB:

( ) ( ) ( )kkk CBVBVBCBiffi EEEEEE −=−=−=

“Optical energy band”
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Define Joint Density of States (JDOS) to achieve  → dEd k
3

• Analogous to single band DOS but combines CB and VB properties

• Sums up all possible transitions with same transition energy Efi but at different k

( )
( )

(*)2
4

1
3

dEJdE
E

dS
dEE fi

fiE
fi

fi  =


=

= w
p




kk

Area element in constant energy surface

spin

( ) fiJ
m

e
=

2

22
00

2

2

2
fipa0

w

p
w

Pronounced features in ( )w2 and Jfi for points in k space where:

0= f iEk
since denominator in (*) = 0  Critical points, 

van Hove singularities

Intuitive explanation: Transition energy Efi hardly changes with k

 Many states contribute to given Efi within small energy interval dE

 (Integrable) singularity in JDOS
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Exploration of critical points in 2 (van Hove singularities) useful for 

band structure analysis

Example: Different types of critical points Mi in the band structure of Ge 

• Critical points of single electronic bands often at points of high symmetry 

in Brillouin zone (e.g., , X)

• For optical bands two possibilities:

( ) 0= kk E for both bands concerned (e.g., VB and CB) or

( ) ( ) 0=− kk kk if EE but gradient ≠ 0 for individual bands !

J.C. Phillips et al., Proc. ICPS (1962) D. Brust et al., PRL 9, 94 (1962)

Solid line: 

experiment

Dashed line: 

theory
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Measurement of optical functions 

For gEw : Semiconductor / insulator transparent   

Measurement of refractive index n is easy: Transmission measurements

• Measurement of refraction angle, Snell‘s law

• Fabry–Pérot interference fringes in transmission 

(or reflection) of thin films

spectrum (see above)

• …

- For
gEw : High absorption  Very thin samples required

 Use reflectivity spectrum

Potential problems that have to be taken into account:

Surface properties of sample can strongly influence spectra:

• Roughness ( scattering)

• Oxidation ( additional surface layer)

• Contamination

- Often layer on substrate (in many cases not transparent)
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Methods:

1) Reflectivity with perpendicular incidence over large spectral range

• Broad band light source: 

Tungsten halogen lamp (NIR, VIS), 

globar (IR), gas discharge (UV, e.g., 

Xe), etc.

• Spectral dispersion: 

Grating (or prism) monochromator / 

FTIR spectrometer

• Detection: 

CCD camera or 

single channel detector 

(e.g., photodiode)

Measure reflectivity R(w) 

 (w) or (w) via 

Kramers–Kronig relations 

Example: Critical points of Ge 

 and corresponding 

reflectivity spectrum R
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2) Reflectivity with arbitrary incidence angle

Polarization of incident light has to be considered!

Measure:
2

ss rR =

2

pp rR =

Electric field perpendicular (german: „senkrecht“ ) 

to plane of incidence

Electric field in plane of incidence 

 More complicated set-up than for 1) 

Advantage: More experimental data 

 Improved uniqueness of interpretation 

 Higher accuracy possible, e.g., Rp must be zero for Brewster angle qB

s
s

p

R, calculated for GaAs
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Linearly 

polarized 

light
Elliptically 

polarized light

Sample

Plane of incidence

Angle 

of incidence

Φ
s - plane 

s - plane 

p - plane 

p - plane 

E

E

Use light source with either circular or linear (neither s nor p !) polarization

3) Ellipsometry: Preferred method to evaluate diel. fu. of multilayer structures

 Measure polarization state of reflected light for 

different angles of incidence on sample

(often measurements around Brewster angle to improve sensitivity, see above)

In general, reflected light is elliptically polarized 

(different phase shifts for s and p polarization, e.g., for metals)
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( ) ;exp sss irr = ( )ppp irr exp=

Measure ellipsometric parameters Y and  : 
Y==

i

s

p

r

r
eρ tan

;tan
s

p

r

r
=Y

sp  −=

Depend on photon energy, angle of incidence F, and layer properties: 

• Layer sequence

• Layer thicknesses and dielectric functions

• Surface / interface roughness etc.

2

222

1

1
tansinsin 











+

−
+=






 Pseudodielectric function (multilayer structure as effective medium) :

Dielectric function / thicknesses of individual layers through fit procedure

based on (extended) Drude–Lorentz-type models and 

transfer matrix methods to treat multilayers   
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Experimental set-up

laser (single λ) 

lamp (Xe, Halogen)

+ monochromator

creates linearly

polarized light

measures the polarization 

state of the reflected light

photodiode

photomultiplier

diode array

CCD array

Polarizer
Light

source
Sample DetectorAnalyzerCompensator

Introduces defined phase shift 

between s and p for exact 

determination of 

(extinction after analyzer)

Light sources: 

• Single l : Simple characterization 

(e.g., thickness determination of epitaxial layer with known ) 

• Broad-band light source + monochromator: Spectroscopic Ellipsometry:

Investigation of dielectric function, complicated multilayer systems
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Experimental set-up
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Only ratios between s and p polarization measured 

• Many (insufficiently well known) instrumental quantities

(e.g., spectral intensity distribution of light source, 

spectral detector sensitivity, etc.) cancel out !

• No reference sample with known reflectivity for calibration needed

↔ conventional reflectivity 

• For simple layers of a fixed material on a substrate with known properties, 

both  and layer thicknesses can be determined simultaneously through a 

multi-sample fit with coupled parameters to the measured data.

Advantages of ellipsometry:

 High sensitivity and accuracy !
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Example: Ellipsometry versus Reflectometry for oxide layer on Si

 

Wavelength (nm)
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Si

SiO2 10 nm The thickness of SiO2 layer changes by  0.1 nm

Calculated change in: 

Sensitivity of typical 

Reflectometer  ~ 0.1%                             Ellipsometer  < 0.02°(ψ), 0.1°(Δ)

Reflection Ellipsometry parameters

 In contrast to reflectometry, even minimal changes can be detected !
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4) Modulation spectroscopy: Sensitive detection of critical points 

Consider joint density of states J / dielectric function  :  

• Spectrally broad background due to contributions of 

transitions (“oscillators”) outside the energy range of interest 

(essentially at higher energies)

 Not relevant for determination of critical points

• Sharp features due to transitions in relevant energy range, 

e.g., due to critical points / van Hove singularities in the band structure,

quantized transitions in quantum structures, etc. 

D. Brust et al., PRL 9, 94 (1962)

Ge

Idea: Measure derivative of J /  !

 Strong features at critical points etc.

 Suppression of uninteresting 

background
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Approach:

• Modulate transition energy / oscillator strength / damping periodically

• Measure change in optical function, e.g., reflectivity, phase-synchronously 

Common techniques:

• Electroreflectance (ER):

Modulation due to applied AC electric field, 

e.g., (quantum-confined) Stark and Franz–Keldysh effect

• Photoreflectance (PR):

Photo-generated charge carriers lead to screening of built-in 

electric fields (e.g., bend bending at surface due to Fermi level 

pinning)

 Results similar to ER (→ later)

• Piezoreflectance: 

Strain / pressure-induced band structure variations 

• Thermoreflectance: 

Thermally induced band structure modifications

• …

Using lock-in techniques, relative changes as low as ~10-5 can be measured!
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Example: Electroreflectance of GaAs at room-temperature

 Sharp, derivative-like 

features at different 

critical points despite 

broadening at 

room-temperature

 Much more pronounced 

features than in 

corresponding 

reflectance spectrum

Reflectance at RT

ER at RT
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Surface 

states

Photoreflectance spectroscopy: Modulation mechanism  

Laser off

Surface 

states

Laser on

Band bending due to 

Fermi level pinning at 

surface states.

 Built-in electric field

Ionized donors

CB

VB

CB

VB

Electron-hole pairs 

generated by the 

modulating laser lead 

to a screening of the 

built-in electric field.

 Electromodulation
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CB

VB

GaAs GaInNAs GaAs

e1

e2

e3

hh1

hh2
lh1

e1-hh1e3-lh1

Example 2: Electronic transitions in Ga1-xInxAs0.983N0.017 (6.2 nm) QWs

Measure transitions to investigate band alignment of quantum well etc. 



97

Photoreflectance: set-up

0.9 1.0 1.1 1.2 1.3 1.4

-300

-250

-200

-150

-100

-50

0

50

100

150


R

/
R

Energie (eV)

Laser
diode

Chopper 

controller

Lamp

Monochromator

HR 640
Det.Aperture Edge filter

Sample in
cryostat

Signal from detector

Lock-in amplifier R

R

Multimeter

Reference

frequency

Spectrum

R / R

Chopper
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1.0 1.1 1.2 1.3

x = 0

   PR measurements

   Theoretical fits

 


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x = 0.1

  

 

 

x5
x = 0.2

 

 

  

T = RT

x = 0.3

  

 

 

• Expected line shapes for different transitions well-known

• Practically no influence of broad background due to other contributions to 

M. Hetterich et al., J. Appl. Phys. 94, 1810 (2003).

• Arrows correspond to individual oscillators 

(electronic transitions)

• Even very weak (“quasi-forbidden”) 

transitions can be seen

• Good quantitative agreement between 

measurement and fit

• Band alignment and CB structure 

can be deduced from 

transition energies

 Exact transition energies from multi-oscillator fit to measured spectra



99

Optical Properties of Solids Near the Bandgap: Excitons

Initial simplifying assumptions about band structure:

• Isotropic, parabolic and non-degenerate (apart from spin) bands

• CB maximum and VB minimum at  point (k = 0)

g

e

E
m

k
E +=

2

22

CB



hm

k
E

2

22

VB


−=

Optical transition via photon absorption

• k conserved, since kPhoton << ke, kh

• spin of excited electron conserved

(s = 0 in electric dipole transition)

• Negative charge in CB, 

total charge remaining in VB positive

Excitation of electron from VB to CB

Electron picture:

Introduce hole as quasi-particle to describe (excited many-particle) VB state 

ke,h

E

Eg

VB

CB
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h and e–h pair properties:

• Hole is positively charged quasi-particle 

with positive dispersion (effective mass)

• kh = – ke  Total e–h pair K = ke + kh = 0

• spin(h) =  – spin(e) 

 Total e–h pair spin = 0  

Hole picture: Generation of electron–hole pair

k

Ee

Eg

e

h
Eh

Properties of fully occupied VB before transition:

• neutral

• total k = 0 

• total spin = 0 

• negative dispersion 

Hole is missing electron 
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Coulomb interaction between negative CB electron and positive VB hole

 Formation of excitons: bound electron–hole pair states

(similar to hydrogen atom or positronium)

Photon energies required to excite excitonic states:

2photon

1
*

B

g
n

RyEE −=

Eg : Band gap at k = 0

Ry* : Excitonic Rydberg energy 

(exciton binding energy)

nB
2 : Principal quantum number: nB = 1, 2, …

Compared to Eg, required photon energy reduced by exciton binding energy 

 Excitons are the lowest electronic excitations

in an ideal semiconductor / insulator at  T = 0

 Discrete states (nB = 1, 2, …) in spectra for excitation below band gap

 Exciton continuum (unbound electron–hole pairs) above Eg
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After: C. Klingshirn, Semiconductor Optics

Exciton dispersion

Bound e–h pair can move through solid

Total exciton mass (translation):  M = me + mh

 Kinetic energy due to center of mass movement

M
E

2

22

kin

K
=

 exciton dispersion relation

( )
Mn

RyEnE
B

gBx
2

1
*,

22

2

K
K


+−=

Important note: 

Excitons are two-particle (e + h) excitations (or even multi-particle, depending on approx. used).

Therefore, it is incorrect to draw them into a conventional (one-particle approx.) band diagram 

(CB + VB), as is often done in textbooks !!!

Ground state 

(no excitation)

Opt.

excitation

Only singlet excitons (total spin zero) with K ~ 0 couple to the light field 

 Discrete peaks below Eg in spectra (see disc. above + below for further details)
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Exciton binding energy

For hydrogen atom:
( )

eV 6.13
42

2

0

4

0 ==
p

em
Ry

In solid :

he

he

mm

mm
m

+
=→ 0

Reduced effective mass 

(can be << m0 for semiconductors 

 lowers binding energy)  

• Covalent semiconductors: ~ s

• Polar semiconductors: Polaron correction 

(1 > s) since Ry* close to phonon resonance 

 Binding energy decreases

100  → Coulomb interaction between electron and hole

partly screened due to dielectric constant 1

Typical values: 0.5 meV  Ry*  100 meV (in alkali halides several 100 meV)
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• Binding energy often lower than thermal energy at room temperature (~ 25 meV)

 Often thermal dissociation at room temperature

 Excitonic effects more pronounced at low temperatures

Exciton binding energies for different materials

Material Ry* (meV) Eg (eV)  at  T = 0 K

CdS 28 2.582

CdSe 15 1.840

GaAs 4.2 1.520

InP 4.0 1.42

InSb 0.4 0.24

• Ry* grows with Eg :

k p theory: 

Smaller interaction between CB and VB  larger masses  stronger binding 

Intuitive explanation: 

If electrons are more strongly bound to individual atoms / ions

 Larger band gap, but also

 Higher effective mass (due to lower tunneling probability) and 

smaller 1 (since polarizability is low), 

leading to increased Ry*

Importance of excitonic effects increases with bandgap of material
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Exciton Bohr radius

In analogy with the hydrogen atom for nB = 1:







p 10

2

2

10 Å 529.0
4 m

e
aB ==


 5 Å   aB  200 Å

 Two types of excitons:

Wannier excitons:

• Large Bohr radius and low binding energy

• Often found in semiconductors

• Electron and hole move over many unit cells (in GaAs ~10000)

 Effective mass approximation applicable

Frenkel excitons:

• Small Bohr radius comparable with crystal lattice constant 

and high binding energy

• Often found in insulators, e.g., alkali halides, and in organic materials

• Effective mass approximation not applicable
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Quantum mechanics: Exciton wavefunction

In general: expansion in one-particle Bloch functions for electron and hole:

( ) ( ) ( )  =Y
he

hhheeehex A
kk

krkrkk
,

,,, 

Expansion coefficients only significantly different from zero if

Bhe a/1 , kk
since electron and hole are “localized” around 

the excitonic center of mass within aB

Electron and hole wavefunctions chosen as wavepackets 

localized at certain sites r : Wannier functions 

( )
=

k

k

rk

k rueaw i

he,

Here: 

 ( ) ( ) ( )hheehe

n

x ww rrrr
K

=Y
−

,
,2/1 

The envelope function  results from the Schrödinger equation
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( ) ( )he

n
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he

h

h

e

e

E
e

mm
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KK ,',
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p
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











−
−−−



with gEEE −='

Coordinate transformation: he rrr −= Relative coordinate

he

hhee

mm

mm

+

+
=

rr
R Center of mass coordinate

Separation (product ansatz) 

( ) ( )RrRr
r

KK

Rr ,',
422

,,

10

2
2

2
2

2
nn E

e

M


p
=









−−−


Eigenfunctions: ( ) ( )rRr
RKK nin e  


=

2/1

, 1
,

he kkK +=    ;

Center of mass movement
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( )r
n is the solution of

( ) ( )rr
r

r

n

n

n
E

e


p
'

42 10

2
2

2

=








−−


with
2

1
*'

B

n
n

RyE −=

and
M

K
EE n

2
''

22
+=

( )r
n is a modified hydrogen wavefunction (m0 →  , 0 → 01)

E.g., ground state wavefunction: ( )
( )

Bar

B

e
a

/

2/13

1 1 −
=

p
 r
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Which excitonic states couple to the light field ?

Further selection rules from group theory (see later) 

Transition matrix element ≠ 0 if direct product 

with symmetry of dipole operator contains 1

Excitonic wavefunction: 
mln

hex ww ,,~ Y

Photon momentum small  

 Only excitons with K ~ 0 couple to the light field (see above)

Symmetry of total wavefunction:
en vhex =

 Only excitons with s-like envelope functions (symmetry 1) 

couple to light field
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Example: Materials with wurtzite crystal structure (C6V)

Hexagonal crystal structure with symmetry axis c, e.g., CdS, ZnO, GaN, …

A

B

C 7

7

9

7

Three 2x degenerate VBs, since derived from atomic p-states:





==

==
==

2x)

2x) x 2

(

(

            2/121

  2/1,2/323
  2/1 ,1

J

J

, M/J

, M/J
sL

Single 2x degenerate CB, derived from atomic s-states 

L = 0, s = ±1/2  J = 1/2, MJ = ±1/2 

For A exciton (9 VB) in 1s state

(i.e., nB = 1 and s-like envelope function) 

65197 ==x

 Two types of excitons: 5, 6
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Coupling to light field:

: || cE
515 = no

: cE ⊥
62155 =

5: Total spin = 0: “singlet”

yes

Couples to light field for : cE ⊥

Singlet ist “bright” exciton !

Does not couple to light field

Triplett is “dark” exciton !

6: Total spin = 1: “triplet”

616 = no

54356 = no

• Result consistent with intuitive discussion for electron–hole pairs above,

that only excitons with total spin zero can be created by light 

• The occurrence of “bright” singlet and “dark” triplet states is 

a general feature of excitons in any material 

• Singlet and triplet states are energetically split by the spin-dependent 

exchange interaction between electron and hole (~100 µeV)

• Coupling to light field for wurtzite structure: 

B and C exciton: always, A exciton: only for 

For B and C (7 VB) 1s excitons:
521177 =

TripletSinglet 

(mL= 0) 

Singlet

(mL= ±1)

cE ⊥ || cECouples for

 cE ⊥ → later



112

Oscillator strength of excitonic transitions

Strength of optical transition given by:

( )
3

2
CB-VB

dipole

2
,,

2

Photon-exc iton

1
~0~0

B

mln

n
HHf =r

Final

excitonic

state

Vacuum 

state

(no exc.)

Probability

to find electron

and hole at

same site

Dipole transition 

matrix element

between VB and CB

Bloch functions

(~ const.)

• Proportional to overlap  of electron and hole wavefunction

• Only ≠ 0 for s excitons (                             for p, d, f, etc. states)

• ( ) 3
2

,, /1~0 B

mln n=r  Strongest transition: 1s exciton

( ) 00,, ==r
mln
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Exciton polaritons

For the exciton dispersion we had: ( )
Mn

RyEnE
B

gBx
2

1
*,

22

2

K
K


+−=

 For nB = 1 (strongest transition, others analogously):  

MBn
2

2

01

K
+== ww with *0 RyEg −=w

Dielectric function for 1s exciton: ( )





















−−







+

+=

www

w

i
M

f
b

2

2
2

0
2

1,
K

K


 Excitons are oscillators with strong spatial dispersion !

(like phonon polaritons, but more important)

Approximation (neglect terms ~ k4) :
MM

0

2
2

0

2
2

0
2

w
ww

KK 
+








+
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 Exciton polariton 

dispersion
( )



















−−+

+==

ww
w

w

w
w

i
M

fc
b

20

2
2

0

2

22

1, 
K

K
K



LPB : purely real

UPB : purely real for w > wL0

LPB and UPB over whole spectral region

LPB : damped around and above resonance 

UPB: small real K for w < wL0, 

but strongly damped

After:

C. Klingshirn

exciton-

like

photon-

like

photon-

like
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Consequences of spatial dispersion:

For  = 0 : ( ) ( )
2

2

0

2

TT
2

      , 







+==

M

K
KK


www

( ) ( )
2

2

0

2

LL
2

      0, 







++==

M
f

K
KK


www

wT, wL are K - dependent! (In reality also f = f (K))

 No longer forbidden gap between wT and wL 

 Propagating mode(s) for each frequency w 

 Reflectivity strongly reduced (0.2 < Rmax< 0.6), even for  = 0. 

No strict “Reststrahlen” band

 For w > wL0 : 2 propagating modes: LPB, UPB (with damping always) 

→ Additional boundary conditions (“ABC”) required to derive 

intensity of individual modes, reflectivity, transmittivity etc. 
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Example: Low-temperature (T ~ 4 K) reflectivity of CdS (wurtzite crystal structure)

Linear spectroscopy of excitons: Reflectivity

• Resonances due to A, B and C excitons at low temperatures 

(hardly visible at room-temperature due to thermal ionization of excitons) 

• Can be modeled through Lorentz oscillators → energetic pos. of exciton transitions

• No pronounced “Reststrahlen” band

A
B

C 7

7

9

7

As expected (see discussion above):

• Strongest feature due to 1s exciton (nB = 1), 

2s and 3s excitons also visible

• Polarization dependence: 

A exciton couples only for E ⊥ c

T: transverse

L: longitudinal
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Linear spectroscopy of excitons: Absorption

Often: “Weak coupling”, i.e., polariton picture not required

Ground state 

(no excitation)

Photon

dispersion +

created exc. states

1s

2s

Absorption above Eg : 

gCBVB Ef −− w ~• One-particle model (no excitonic effects):

• With excitons: Sommerfeld / Coulomb enhancement of  above Eg

Low T : Sharp excitonic abs. peaks (1s, 2s, …) below Eg

RT : Broadened + weak: thermal exciton ionization

BEC: 

Bound exciton 

complexes 

(defects, impurities)

Reason: Despite states unbound, position of electron and hole correlated

 Higher absorption due to increased wavefunction overlap

  ~ const. near Eg (energy dependence of Sommerfeld enhancement)

Square root:

Density of 

states

Osc. strength
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•Strongest peak: 1s exciton (nB = 1)

•Higher s excitons also visible, 

but weaker, as expected

•Zincblende crystal structure

 No A and B exciton, instead 

two energetically degenerate 

(“heavy-hole” and “light-hole”)

excitons

Example: Low-temperature absorption of GaAs

Determination of exciton binding energy

Binding energy ~ 1 / nB
2 

( ) ( ) meV 15.015.3*
4

3

4

1
*

1

1
*21 ==−==−= RyRyRynEnE BxBx

meV 2.4*  = Ry

 Wannier exciton, as expected for typical semiconductor (Eg ~ 1.5 eV)

1s 2s

Eg

(onset of 

exciton

cont.)
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Influence of dimensionality on exciton binding energy

So far: Excitons in three dimensions

Now: Quantum well structures

 Electrons and holes confined in thin quantum well layer 

(formation of quantized states: “Particle in a box”) 

 Electron and hole movement restricted to two-dimensional plane

(quantum well layer)

Thin (~ nm) semiconductor layer, 

embedded in matrix material with 

larger band gap Spatial band structure

AlGaAs

AlGaAs

GaAs (~ nm)

z

z

CB

VB

AlGaAs GaAs AlGaAs
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Schrödinger equation for exciton in two dimensions

( )2

2
1

1
)3(*'

−
−=

B

n

n
DRyE Exciton binding energy:

 For 1s exciton: Binding energy enhanced by a factor of 4 !

 Excitonic effects clearly visible even at room-temperature !
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For real quantum well structures: 

Finite well thickness and finite confinement energy 

With decreasing well width:

• Increasing exciton binding energy

(transition from 3D to 2D case)

• No true 2D exciton 

 1s binding energy always < 4 Ry*(3D)

• If quantum well layer extremely narrow:

Exciton wavefunction penetrates 

into matrix material

 3D case recovered

 Exciton binding energy decreases

After: C. Klingshirn, Semiconductor Optics

Well width (nm)1
s
 h

e
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v
y
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Nonlinear optics and high-excitation effects

So far: 

Optical properties (, absorption etc.) of solid: Constant material parameters

 Response of material to light field proportional to incident intensity 

Example: Absorption

 = const.

inc identI
dtrans m itteI

in c id en t dtr an s m itte ~ II  “Linear” optics 

In reality: 

Response of material to incident light field is nonlinear! 
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In particular for polarization P induced by incident electromagnetic field: 

( )EχP w0=

is only valid for weak electric fields E

(Note that  can be a tensor 

(represented by a matrix), 

i.e., P is not necessarily 

parallel to E.)

E

In reality: P (E)  is nonlinear  Expansion in Taylor series:

Initial simplifying assumption: Scalar P and E  

( ) ( ) ( ) ( )
...

1 33221

0

+++= EEEEP 


Result of nonlinear terms: Qualitatively new effects!
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Example: Effects of (2) in a “nonlinear crystal”

( ) ( ) ( ) 221

0

1
EEEP 


+=

1w

2w

Two incident

light fields 

with different 

frequencies

???

(1) : Nothing special: 

• Optical properties independent of light intensity

• Usual linear optics for w1 and w2 independently! 

( ) ( ) titi
eettE 11~c o s~ 11

www −
+

( ) ( ) titi
eettE 22~c o s~ 22

www −
+

(2) : ( ) +    ~~
2

21

2
EEEP

For a given position:

(2)
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( ) ( ) 22 2211~~
titititi

eeeeEP
wwww −−

+++

( ) ( ) ( )( )  
),()()(

21II2I

2

1I

2
22112211 2~   

wwww

wwwwwwww

PPP

titititititititi
eeeeeeeeP

−−−−
++++++

( ) ( ) 22cos22 2,1

222

2,1I
2,12,12,12,1 +=++=+=

−−
teeeeP

titititi
ww

wwww

• Light induces constant contribution to polarization 

(i.e., a voltage drop over the crystal)

Small effect, since (2) usually small

• Frequency doubling: Generation of light with 2w1,2

 “Second-Harmonic Generation”

Application: 

Used in laser systems to convert light to shorter wavelengths, 

that are difficult to generate directly 

> 0  “Rectification”
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Example:

Nd:YAG laser:

l = 1064 nm (near IR)
(2)

Green output

l = 532 nm 

• Usually (2) is small 

 For efficient frequency up-conversion high intensities required

 Pulsed laser sources

• Third-harmonic (3w) generation etc. also possible

w w2
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( ) ( ) ( ) ( ) ( )titititi
eeeeP 21212121~, 21II

wwwwwwwwww −−−+−+
+++

( ) ( ) ( )ttP 212121II coscos~, wwwwww −++

( ) ( )( )titititi
eeeeP 2211~, 21II

wwwwww −−
++

Mixed term: Contains both w1 and w2

 Nonlinearity induces interaction between different light waves

 (w) → (w1, w2)

 Sum frequency generation (up-conversion) and 

difference frequency generation (down-conversion)

Second-harmonic generation:

 Special case for w1 = w2 (“interaction of light wave with itself”)

 Sum frequency = 2w1,2, difference frequency = 0

Application of up-conversion: 

(Time-resolved) detection of weak signals at wavelengths, where no suitable detectors exist 
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Classical view of three-wave mixing

Light field itself modulates optical properties 

(Lorentz oscillator parameters) of solid 

( )EEP 0=  Three-wave mixing: Parametric interaction 

Conclusion:

Interaction of two waves with frequencies w1, w2

in second-order nonlinear optical medium

 Generation of sum frequency w3 = w1 + w2 and diff. frequency w4 = w1 - w2

However, once generated, also interaction between, e.g., w3 and  

• w1  w2 = w3 - w1

• w2  w1 = w3 - w2

 Mutual coupling, where each pair of waves interacts 

and contributes to third wave

 “Three-wave mixing” (incoming and outgoing waves)
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Further important parametric processes

Optical parametric generation (OPG, reversed sum frequency generation):

3w
“Pump”

1w
2w

“Signal”

“Idler”

High-energy photons “split” 

into two low-energy photons

213 www  +=

Optical parametric amplifier (OPA): Like OPG but amplification of existing w1

3w
“Pump”

1w

2w

“Signal”

Auxiliary “idler”

1w Amplified “signal”

provides energy

to amplify w1

Rest: “idler”

Restrictions due to 

phase matching (see below)

Attenuated “pump”
3w
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With proper feedback (resonator): Optical Parametric Oscillator (OPO)

• Only pump wave supplied

• Initial signal by OPG

Applications of OPAs and OPOs:

• Coherent light amplification

• Tunable light sources at frequencies, where no suitable 

lasers are available (e.g, in the UV)
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( ) ( ) ( ) +=  jijn
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,,
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,,
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General formalism

• P and E are vectors with components Pm and En

• The (i) are tensors of rank i+1 with components (i)
mn…

• P and (i) are written as complex quantities, as in linear optics 

Real part of (i) : Passive processes 

(“linear” dispersion due to (1), sum / difference frequency generation, 

four-wave mixing, intensity-dependent refractive index etc.)

Imaginary part of (i) : Active processes 

(“linear” absorption due to (1), nonlinear absorption, e.g., two photon absorption

and saturable absorption, see below)
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When can nonlinear processes occur ???

• Frequency matching (often = energy conservation, but not always!)

• Typically, nonlinear effects are small 

 Use materials with high (n), n = 2, 3, … (see below for examples)

 P ~ En (n = 2, 3, …)   Use high intensities such as (pulsed) lasers

E.g., for three-wave mixing (see above): 213 )()()( www  +=

 Factor 
..., ++ kji www in general formula for Pm(wi) 







=
=

ji

ji

ji ww

ww
 ww for 0

for 1
,

Can often be interpreted as (photon) energy conservation

But:
,...,kjw can also be negative!

E.g., for frequency doubling: ) why! youto clear it (make    22 ~~ inout IIEP 
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Example: Generation of photons with difference frequency: w3 = w1 - w2

How about energy conservation in the photon picture … ???

2w

1w
213 www  −=

22 w

For each photon generated at frequency w3, one photon at frequency w1

is destroyed but one additional photon at w2 is created !!!

 Parametric amplification process (see above)  

Note: This is an example where frequency matching is not identical 

to energy conservation!



134

When can nonlinear processes occur ???

• Phase matching / conservation of photon momentum

Discussion so far: Fields at given position r)cos(~)( ttE ii w

But actually: Waves )c o s(~),( rkr −ttE ii w

Light generated by nonlinear effects at different positions must contribute 

to corresponding total wave field with correct phase

in order to generate a macroscopic wave! 

For three-wave mixing we must have (higher orders analogously):

213 kkk +=

Can (but does not have to) be interpreted as 

conservation of total photon momentum

(→ Calculation above with full wave)
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Example: Second-harmonic generation (SHG)

www == 21

If all three waves travel in the same direction: Scalar equations for momenta

ww 23 =

kkk == 21 kk 23 =

w2w (2)

( ) ( )       2,1

0

2,1

3

0

3 2 w
w

w
ww

n
c

n
cc

k ==

 for non-dispersive media (n = const.):

 Would be trivially fulfilled due to frequency matching
2,13 2ww =

Real crystals: Dispersion, i.e., refractive index frequency-dependent !

 Waves with w and 2w travel with different phase velocities

 Photons with 2w generated at different positions 

are generally not in phase  No efficient SHG ! (Make that clear to you!)
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( ) ( ) ( ) ( )w
w

w
w

w
w

w
w

n
c

n
c

n
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n
c 00

2,1

0

2,1

3

0

3 22
2

2 ==       

To achieve phase matching we must have:

( ) ( )ww nn = 2   

• Can be achieved using different polarization directions for w and 2w
in a birefringent crystal

• Fine-tuning of refractive indices often via crystal temperature 

• Suitable materials with strong nonlinearities and 

low absorption at all involved frequencies

www.alphalas.com

• b-BaB2O4 (BBO)

• KTiOPO3 (KTP) 

• LiB3O5 (LBO)

• …
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When can nonlinear processes occur ???

• Selection rules due to crystal symmetries

Example: For crystals with inversion symmetry:

 Non-centrosymmetric crystals required for (2) processes (SHG etc.)

( ) ( )EPEP −=−

( ) ( ) ( ) ( )
...

1 321

0

+−+−=− EEEχEEχEχEP


( ) ( ) ( ) ( )
...

1 321

0

−−−−=− EEEχEEχEχEP


=

( ) ( )
EEχEEχ

22   −= ( ) 0   2 = χ

Question: Is glass (amorphous) a possible candidate ???
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Active processes (imaginary part of susceptibility)

Example: Two-photon absorption (TPA)

First: Linear (one-photon) absorption ((1)) from state(s) i to f 

with energy difference Efi

Probability for absorption process: 

( )w
p




−







= fiiffi E

m

eA
P

2

0

2

0

2
pa

Interaction with electromagnetic field: ( ) ( )tieAt w−
=

rk
arA 00,

Fermi´s Golden Rule 

polarization

I
cn

A
2

0

2

0

8

w

p
= I : Light intensity

( )
 =

VBCB,
3

3

... fifi P
d

W
p2

k

Absorption from total transition probability at relevant wavelength

Summation over all bands and integration over k-space
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Absorption coefficient:
fiW

dz

dI
I w ==−

  ~~ and 
2

0 IAWP fifi

.  c o n s t= 

Absorption probability proportional to

probability to find one photon at certain position

Now: Degenerate two-photon absorption: Second-order perturbation theory

( )w
w

p



2

2
  

2

00
4

0 −−
−−










=  if

t it

ittf

fi EE
EEm

eA
P

papa

• Pfi ~ I2  Nonlinear absorption, grows with intensity !!!

• Absorption probability proportional to 

probability to find two photons at certain position

• Nondegenerate TPA also exists: 2 photons with different frequencies  
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• Absorption via virtual intermediate (transitional) state t 

• In general transition energy i → t ≠  w !

(Excitation of virtual intermediate state at “wrong” energy:

Intuitive picture: Possible within limits of Heisenberg uncertainty relation!) 

• Summation over all t to get total transition probability

• Strong resonant enhancement of TPA, if  w corresponds to 

“correct” energy of t (e.g., for biexcitons, see below)

i

t

f
TPA in typical

III-V semiconductor

with zincblende

crystal structure

(GaAs, InSb, …)

TPA: principle

2ħw

Et = 

Ef or Ei

Et = Eso

CB

hh VB

lh VB

so VB
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 Coefficient for TPA: fiW
I

II
dz

dI
2

2 2
    

w
bb


=+=−

b in semiconductors: 10-3 … 10 cm-1/MW

Solution of differential equation: ( )
( ) b

/1
1

1

0

zz
ee

I

zI

−−

=

• b = 0  (linear absorption)   ( ) zeIzI −= 0
Beer’s law

•  = 0, b ≠ 0  (pure TPA, e.g., for ħw below and 2 ħw above band gap)  

( )
z

I

zI

b+

=

0

1

1
For  I0 → ∞ : .

1
)( const

z
zI ==

b

Optical limiting: Max. intensity transmitted through slab of thickness z

is independent of I0 !
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How strong is TPA? An estimation …

b ~ 10-7 cm/W  for  I = 106 W/cm2

( ) IIII
dz

dI



absorption
 ef f ectiv e

bb +=+=−
2

Compare bI ~ 10-1 cm-1 with  ~ 104 – 105 cm-1 close to Eg in semiconductor

 b only important in transparent region ( ~ 0) !
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Important application of TPA: Two-photon fluorescence microscopy

www.photonics.ac.uk

Single-photon absorption

Spatially resolved fluorescence image of sample (often biological) obtained by

scanning microscope objective with laser excitation / detection (confocal) 

Absorption and fluorescence 

in whole irradiated region

 Bad spatial resolution,

in particular along z

 Inner parts of samples hidden

Two-photon absorption

Absorption and fluorescence only in focus, 

where laser intensity is high !

 High 3D resolution !

 Inner parts of sample accessible !

z

sample sample

Two-photon image of a carious tooth. 

Carious area shown in green 

http://www.photonics.ac.uk/research/application-files/figure1.jpg
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High excitation effects in semiconductors

Optical excitation of semiconductors generates electron–hole pairs

Low 

Independent 

excitons (low T) / 

free e–h pairs 

(high T)

Medium

Excitation / e–h pair density

High

X–X

X–e

biexciton

Linear optics Nonlinear optics

electron–hole

plasma
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At low densities: 

Distance of excitons large compared to exciton Bohr radius 

• PL due to independent excitons 

(free (FE) and / or bound to (neutral) donors (D0X), acceptors (A0X), etc.)

• Phonon “replica” if opt. recombination with simultaneous generation 

of LO phonon(s) 

• PL due to donor–acceptor (D–A) pair transitions, deep impurities etc.

Photoluminescence (PL)

Spectrum of emitted photons due to optically excited e–h pairs, 

typically measured at low temperatures

Low-temperature PL

(T ~ 4 K) of CdS in

low-density regime

FE

D0X

A0X

D-A

LO 

phonon 

replica

deep

impuritiesP
L
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

EPhoton
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At medium densities:

Distance of excitons no longer large compared to exciton Bohr radius 

 Interaction, excitons no longer independent

• Formation of biexcitons:

- Excitonic molecule, i.e., two excitons bound to each other

(similar to hydrogen molecule)

- Dispersion: ( ) ( )
M

EnEE Bx
4

0,12
22

K
KK


+−===

b ind
b iexc.b iexciton

M : single exciton mass

 New emission band below

free exciton due to 

biexcitons: M band

 Grows superlinearly 

with excitation intensity 

C. Klingshirn, Semiconductor Optics
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Resonant two-photon absorption for biexcitons

Ground state

X

2X

Biexciton
w

w

 Single exciton state X serves as nearly resonant intermediate state t 

close to Ebiexciton / 2 

 Example for very efficient two-photon absorption !
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• Exciton–exciton (X–X) scattering:

- Optical recombination of exciton with simultaneous excitation 

of existing second exciton to state nB  PnB
bands 

- Same with excitation to exciton continuum  P∞ band

• Exciton–electron/hole (X–e/h) scattering:

- Same as X–X but excitation of 

free electron/hole (if present)

• LO phonon replica
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At high densities:

• Screening of Coulomb interaction between electron and hole!

Consider exciton in sea of free carriers (electrons and holes) with density nP

Stability of exciton?

Screening of Coulomb potential   Yukawa potential

( ) 











 −
−

−
→

− l

e

n

e he

hePhe
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rrrr
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4
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4

1
2

0

2

0 pp

Influence of plasmons /

plasmon–phonon 

mixed states

l (nB) : Screening length

• Reduced e–h interaction  Exciton binding energy decreases with growing nP

• If nP > nc (Mott density): l < lc = aB / 1.19 (critical screening length)

 No longer bound state for Yukawa potential (at least in 3D)

 Mott transition: Formation of electron–hole plasma (EHP),

i.e., high-density plasma consisting of free electrons and holes 

(common in, e.g., the optically active layer of laser diodes)
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• Band-gap renormalization due to exchange and correlation effects 

 Band-gap decreases monotonically with increasing nP 

Exchange interaction:

For random distribution of electrons and holes:

Sum of all Coulomb energies for given electron (hole) would cancel out

In reality:

Pauli principle / exchange interaction between 

identical charge carriers with parallel spin 

 Larger average distance for electrons (holes) with parallel spin 

 Reduction of repulsive, i.e., positive Coulomb energy contributions

 Lower total energy of considered electron (hole)

Correlation:

Despite EHP, electrons and holes are not randomly distributed:

Higher probability to find electron close to a hole due to Coulomb interaction

(→ discussion of Sommerfeld enhancement in absorption above)

 Increase of attractive, i.e., negative Coulomb energy contributions

 Lower total energy of electron / hole
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• Burstein–Moss shift 

Electrons and holes are fermions (spin ½) 

 Each conduction / valence band state can only be occupied once (Pauli principle)

 High carrier densities lead to band filling

 Absorption close to band edge blocked due to already filled CB / empty VB 

(i.e., filled by holes) states

 Burstein–Moss shift: 

Blue-shift of absorption edge for highly excited semiconductors 

(similar effect for high doping levels)

Due to band filling, 

absorption is blocked for

-MB
P h o to n gEE ke,h

E

Eg

VB

CB

-MB
gE

Note: Burstein–Moss shift and band-gap renormalization partly cancel each other!
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Application:

Burstein–Moss shift: Absorption near band-gap drops with light intensity

 Saturable absorber

 Used to realize (ps-) pulsed lasers based on “passive mode-locking” 

Saturable

absorber

Pumped laser

medium

Saturable absorber: Lower absorption for higher intensity 

 Temporally peaked intensity fluctuations are amplified

 Continuous operation instable

 Pulse circulating in cavity generated

 Pulsed output
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G. Vysniauskas, M. Hetterich et al., Proc. CLEO 2001, Baltimore, paper CWA3 (2001).

D. Burns, M. Hetterich et al., J. Opt. Soc. Am. B 17, 919 (2000).

• 40-ps pulses, rep. rate: 133 MHz

• Output power: 3.8 W

• l = 1342 nm 

SESAM : SEmiconductor Saturable Absorber Mirror  

Pump:  = 808 nml

2 x 20 W

GaInNAs-

VCSEL

Nd:

YVO4R = 90%

GaInNAs

SESAM

With optimized GaInAs/GaAsP SESAM:

• 21-ps pulses, rep. rate: 90 MHz

• 20 W (diffraction-limited beam)

• l = 1064 nm

Time

In
te

n
s
it
y

Example: Mode-locked Nd:YVO4 laser with GaInNAs SESAM


