Motivation

Interaction of matter with incident wave (represented by a perturbation H'): transition matrix element for, e.g., absorption from state $m \rightarrow n$:

$$H'_{ji}(t) = \int_{V} \phi_{j}^{*}(\mathbf{r}) H' \phi_{i}(\mathbf{r}) d^{3}\mathbf{r} = \langle j | H' | i \rangle$$

Using symmetry considerations, we can determine if matrix element vanishes or not (transition forbidden / allowed) \Rightarrow selection rules

$$\langle j | H' | i \rangle = \begin{cases} \neq 0 & \text{if } \Gamma_j \in \Gamma_s \otimes \Gamma_i \Leftrightarrow \Gamma_1 \in \Gamma_j \otimes \Gamma_s \otimes \Gamma_i \\ = 0 & \text{otherwise (for symmetry reasons)} \end{cases}$$
Note:
In this case the matrix element could still be
 $\Gamma_j = \Gamma_s = \Gamma_i$
i.e., initial state *i* with symmetry Γ_i , final state *j* with symmetry Γ_i

1

i.e., initial state *i* with symmetry T_i , final state *j* with symmetry T perturbation H' has symmetry Γ_s

 \Rightarrow group theory!

k

- Further applications (see later):
- band structure (degeneracy of electronic states)
- matrix elements in general

Group theory – general remarks

Consider Noether's theorem again:

From the invariance of the Hamiltonian towards a transformation follows a conserved quantity, e.g.:

a) H invariant for infinitesimal shifts in time: H(t) = H(t + dt) \Rightarrow total energy is conserved: $E_{total} = \text{const.}$

- *b) H* invariant for infinitesimal shifts in space: H(x) = H(x + dx) \Rightarrow momentum is conserved: $p_x = \text{const.}$
- c) H invariant for infinitesimal rotations around some axis: H(f) = H(f + df)

 \Rightarrow angular momentum is conserved: L = const.

In a crystal:

- a) still satisfied
- b) H is only invariant for translation about a lattice vector
 - $\Rightarrow \hbar k$ is only conserved for shifts about a reciprocal lattice vector $\hbar G$
- c) *H* is at most invariant for specific rotation angles \Rightarrow *L* is not conserved
- \Rightarrow Bands cannot be characterized by angular momentum quantum numbers
- \Rightarrow Replacement for charact. of bands / derivation of selection rules etc.: symm. prop.

Group theory – basics

Definition: group (G, "•"):

Set of elements $\{x_i\}$ and operations with the following properties:

1) Closure: $\forall x, y \in G$ follows $x \cdot y = z \in G$

2) Associativity: $\forall x, y, z \in G$ follows $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

3) Identity / neutral element $E \in G$, $\forall x \in G$ follows $E \cdot x = x \cdot E = x$

4) Inverse element: $\forall x, E \in G \exists x^1 \in G \therefore x^1 \cdot x = x \cdot x^1 = E$

- Number of elements $x_i \in G$ is called order g of the group
- There are finite and infinite groups

Definition: Abelian group G:

 $\forall x, y \in G \text{ follows } x \cdot y = y \cdot x$

Examples:

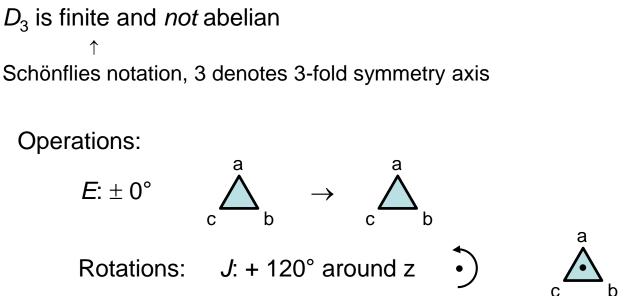
1) {0, \pm 1, \pm 2, ..., "+"}: infinite, Abelian group of integer numbers (Z, +)

2) Rational numbers (Q, \cdot) : infinite Abelian group with E = 1, inverse: $(p/q)^{-1} = (q/p)$

3) {{1, -1, i, -i}, ·): finite Abelian group, g = 4

4) All symmetry operations that convert a equilateral triangle back to itself

Group theory – example: Group D_3

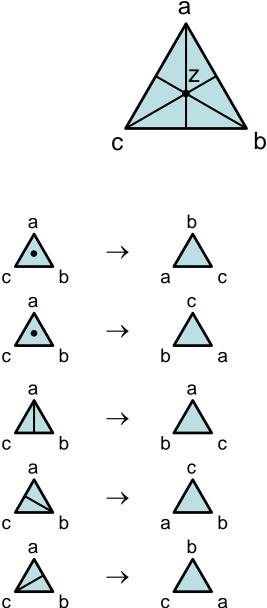


K: - 120° around z

Reflections: $L: \pm 180^{\circ}$ about a-axis

M: \pm 180° about b-axis

N: ± 180° about c-axis

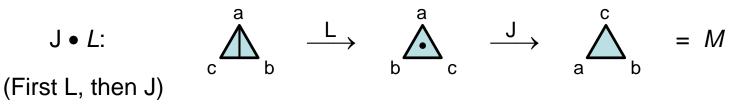


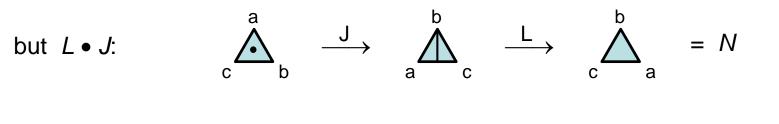
С

С

Group theory – example: D₃

Why not abelian?

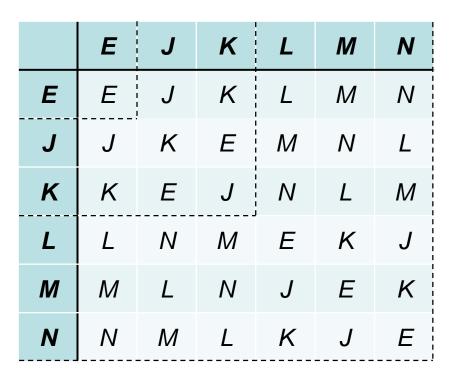




 $\Rightarrow J \bullet L \neq L \bullet J$

Group theory – example: D₃

Multiplication table (group table):



Read: First column, then row e.g., $J \bullet L = M$

In every row and column, each element exists only once! (otherwise, e.g., $K \cdot L = K \cdot M$; multiplyby $K^{-1} \implies L = M$)

 \Rightarrow For groups of order 6 exist only two tables:

 C_6 : 6-fold axis, only rotations

 D_3 : rotations and reflections

All other groups are isomorphic to C_6 or D_3

Definition: isomorphism

Bijective transformation of elements $x_i \in G$ to elements $x'_i \in G'$ while keeping the multiplication table

$$\Rightarrow \qquad g = g'$$

$$x_i \to x_i' \qquad \Rightarrow \qquad x_i' \to x_i$$

$$x_i \to x_i' \qquad x_i \to x_i'$$

$$x_j \to x_j' \qquad \text{with} \qquad x_i \bullet x_j = x_k \qquad \Rightarrow \qquad x_i' \bullet x_j' = x_k'$$

$$x_k \to x_k'$$

Example: the group of permutations of three elements is isomorphic to D_3

(abc), (cab), (bac), (acb), (cba), (bca)

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

E K N L M J

 C_6 is not isomorphic to D_3 !

Definition: homomorphism

Similar to isomorphism, however $g \ge g'$, i.e., not bijective (no one-to-one correspondence)

e.g.: $E \rightarrow 1, J \rightarrow 1, K \rightarrow 1, L \rightarrow -1, M \rightarrow -1, N \rightarrow -1$

Definition: sub-group

Subset of G, which is itself a group

Examples:

- {*G*}: trivial sub group
- {*E*}: trivial sub group
- {*E*, *J*, *K*}

• {*E*, *L*}

	Ε	J	K	L	М	N
Ε	Ε	J	K	L	М	Ν
J	J	K	Е	М	Ν	L
κ	K	Е	J	Ν	L	М
L	L	Ν	М	Ε	K	J
М	М	L	N	J	Е	K
N	Ν	М	L	K	J	Е

Definition: adjoint

The elements A and $B \in G$ are adjoint, if there exists at least one element $X \in G$.

 $B = X^{-1} \bullet A \bullet X$ (similarity transformation)

e.g., in D₃, L and M are adjoint: $M = N^{-1} \bullet L \bullet N$ with $N^{-1} = N$

Definition: self-adjoint

An element $A \in G$ is called self-adjoint, if $\forall X \in G$ follows: $X^{-1} \bullet A \bullet X = A$

e.g., E: $X^{-1} \bullet E \bullet X = E$

Definition: class

All elements of a group, that are adjoint, form a class.

e.g., for D_3 : three classes

 $C_1 = \{E\}, C_2 = \{L, M, N\}$ (reflections), $C_3 = \{J, K\}$ (120° rotations)

Definition: outer / direct product of two groups

 $G'' = G \otimes G'$ is a group of all ordered pairs (x_i, x_i') with $x_i \in G$ and $x_i' \in G'$

Product:

$$(\mathbf{x}_i, \mathbf{x}_j') \bullet (\mathbf{x}_k, \mathbf{x}_l') = (\mathbf{x}_i \bullet \mathbf{x}_k, \mathbf{x}_j' \bullet \mathbf{x}_l')$$

Order of G'': $g'' = g \bullet g'$

e.g.

$$H_1 = \{E, J, K\}$$
 and $H_2 = \{E, L\}$
 $\Rightarrow H_1 \otimes H_2 = \{\{E, E\}, \{E, L\}, \{J, E\}, \{J, L\}, \{K, E\}, \{K, L\}\}$
 $= C_6$
not isomorphic to D_3

Group theory – representations

Definition: representation Γ_{α}

- \varGamma_{α} is (in the narrower sense) a set of matrices that fulfills the multiplication table of the group
- $\Gamma_{\alpha}(R)$ is a matrix out of Γ_{α} , that represents the group element R
- $\Gamma_{\alpha}(R)_{ij}$ is the *ij*-element (*i*th row, *j*th column) of the matrix $\Gamma_{\alpha}(R)$
- n_{α} is the dimension of the $(n_{\alpha} \times n_{\alpha})$ matrices of the representation Γ_{α} (same for all matrices)

Matrix multiplication:

$$\sum_{l} \Gamma_{\alpha} (K)_{il} \Gamma_{\alpha} (L)_{lj} = \Gamma_{\alpha} (K \cdot L)_{ij}$$

The number of representations for each group is infinite!

e.g. E = 1 or = 1 J = 1 = 1 K = 1 = 1 L = 1 = -1 M = 1 = -1N = 1 = -1

If Γ_{α} is a representation of a group *G* and *X* a non-singular matrix (i.e., det $X \neq 0$) $\Rightarrow \{X^{-1} \cdot \Gamma_{\alpha} \cdot X\}$ (i.e., $X^{-1} \cdot \Gamma_{\alpha}(R) \cdot X \forall R \in G$) is also a representation

Group theory – example: D₃

Example: one representation of the group D_3 : $\Gamma_3^{(1)}$

$$\Gamma_{3}^{(1)}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Gamma_{3}^{(1)}(J) = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \qquad \Gamma_{3}^{(1)}(K) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\Gamma_{3}^{(1)}(L) = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \qquad \Gamma_{3}^{(1)}(M) = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \qquad \Gamma_{3}^{(1)}(N) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\Gamma_3^{(1)}$ fulfills the multiplication table of D_3 :

e.g.,
$$\Gamma_3^{(1)}(J) \cdot \Gamma_3^{(1)}(N) = \Gamma_3^{(1)}(J \bullet N) = \Gamma_3^{(1)}(L)$$

Group theory – representations

Definition: reducible representation

Given is a set of matrices Γ_{α} . If one can find one non-singular matrix X, such that *all* matrices from Γ_{α} obtain block-diagonal format under the transformation $X^{-1} \cdot \Gamma_{\alpha}(R) \cdot X$, then the representation is called *reducible*.

$$\begin{pmatrix} \Gamma_1(R) & 0 & 0 \\ 0 & \Gamma_2(R) & 0 \\ 0 & 0 & \Gamma_3(R) \end{pmatrix} = \Gamma_1(R) \oplus \Gamma_2(R) \oplus \Gamma_3(R) \quad \forall R$$

- During matrix multiplication the blocks are multiplied with each other without mixing into other blocks. This means each set of blocks is again a representation.
- The reducible matrix is equivalent to a *direct sum* of several matrices:

$$\Gamma_1(R) \oplus \Gamma_2(R) = \begin{pmatrix} \Gamma_1(R) & 0 \\ 0 & \Gamma_2(R) \end{pmatrix}$$

Definition: Irreducible Representation

If a representation cannot be reduced further through the transformation above, it is called *irreducible*.

Example: Representations of the group D₃

Definition:

Two irreducible representations Γ_{α} and Γ_{β} are called *equivalent*, if \exists matrix $X \therefore X^{-1} \cdot \Gamma_{\alpha}(R) \cdot X = \Gamma_{\beta}(R) \forall R \in G$.

Group theory – Orthogonality relations

There is an orthogonality relation for irreducible representations. It follows from the lemmas of Schur:

1. Lemma of Schur

A representation Γ_{α} is irreducible \Leftrightarrow the only matrices M, that commutes with $\Gamma_{\alpha}(R) \forall R$ (i.e., $M \cdot \Gamma = \Gamma \cdot M$), are scalar matrices $M_{ij} = M_0 \delta_{ij}$.

2. Lemma of Schur

Given are Γ_{α} and Γ_{β} as irreducible representations and a matrix *M* with $M \cdot \Gamma_{\alpha}(R) = \Gamma_{\beta}(R) \cdot M \forall R \in G$, then it follows:

a) if $n_{\alpha} \neq n_{\beta}$, then M = 0 (matrices not square-shaped)

b) if $n_{\alpha} = n_{\beta}$, then M = 0 or M is not singular, i.e., Γ_{α} and Γ_{β} are equivalent.

Group theory – Orthogonality relations

 \Rightarrow Orthogonality relation for irreducible representations:

$$\sum_{R} \Gamma_{\alpha}(R)_{ip} \cdot \Gamma_{\beta}(R^{-1})_{qj} = \frac{g}{n_{\alpha}} \delta_{\alpha\beta} \delta_{ij} \delta_{pq} \quad , \ R \in G$$

with $\delta_{\alpha\beta} = \begin{cases} 0 & \text{if } \Gamma_{\alpha} \text{ and } \Gamma_{\beta} \text{ are not equivalent} \\ 1 & \text{if } \Gamma_{\alpha} \text{ and } \Gamma_{\beta} \text{ are identical} \\ \text{undefined if } \Gamma_{\alpha} \text{ and } \Gamma_{\beta} \text{ are equivalent} \end{cases}$

Group theory - Characters

For each representation exists a set of characteristic values $\chi_{\alpha}(R)$ with

$$\chi_{\alpha}(R) = \sum_{i} \Gamma_{\alpha}(R)_{ii} = \operatorname{Trace}(R)$$

Definition: Character

 $\{\chi_{\alpha}(R)\}$ is called the character of the representation Γ_{α}

- Two representations Γ_{α} and Γ_{β} are equivalent \Leftrightarrow they have the same character since Trace $\Gamma_{\alpha}(R) = \text{Trace } X^{-1} \cdot \Gamma_{\alpha}(R) \cdot X = \text{Trace } \Gamma_{\beta}(R)$.
- The character value of E indicates the dimension n_{α} of the representation
- Elements of the same class have the same trace, since the elements of a class are adjoint to each other.
- Characters make our life easier, see below ...

Group theory – Characters: Example

Example: D_3

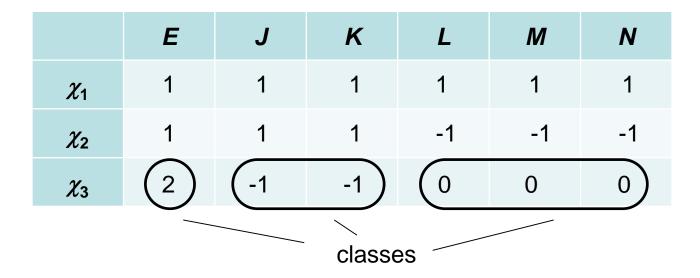
E
 J
 K
 L
 M
 N

$$\Gamma_1$$
 1
 1
 1
 1
 1
 1

 Γ_2
 1
 1
 1
 -1
 -1
 -1

 Γ_2
 1
 1
 1
 -1
 -1
 -1

 $\Gamma_2^{(1)}$
 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\frac{1}{2} \begin{pmatrix} -1 & -1 \\ 3 & -1 \end{pmatrix}$
 $\frac{1}{2} \begin{pmatrix} -1 & -3 \\ 1 & -1 \end{pmatrix}$
 $\frac{1}{2} \begin{pmatrix} 1 & 3 \\ -1 & -1 \end{pmatrix}$
 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$



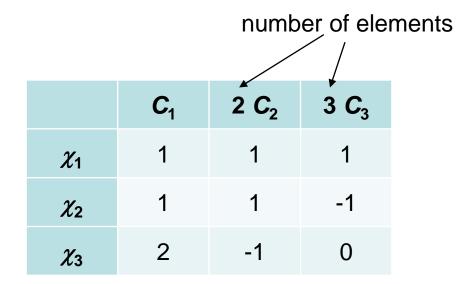
Different character values show that group elements belong to different classes (in this case, identity, rotations, reflections)

Group theory – Characters: Example

It is sufficient to list the character values of the classes (same values within one class):

 $C_1 = \{E\}, \quad C_2 = \{J, K\}, \quad C_3 = \{L, M, N\}$

 \Rightarrow Character table of D_3



 h_i : number of elements in class C_i

r : number of classes in G

Group theory – Characters: Orthogonality relations etc.

$$\sum_{i=1}^{r} h_{i} \chi_{\alpha}(C_{i}) \chi_{\beta}^{*}(C_{i}) = g \delta_{\alpha\beta}$$
 Different representations
$$\sum_{\alpha=1}^{r} h_{i} \chi_{\alpha}(C_{i}) \chi_{\alpha}(C_{j}) = g \delta_{ij}$$
 Different classes

• Criterion for irreducibility: Γ_{α} irreducible \Leftrightarrow

$$\sum_{R} \left| \chi_{\alpha}(R) \right|^{2} = g$$

• Number of irreducible representations of a group equal to number of classes, and

$$\sum_{\alpha=1}^r n_\alpha^2 = g$$

Group theory – Reduction of a representation

Given: Reducible representation Γ of a group G

 \Rightarrow Transformation in block form and reduction into direct sum of given (non-equivalent) irreducible representations Γ_{α} possible, but how?

Easy to accomplish with character $\chi(R)$ of Γ :

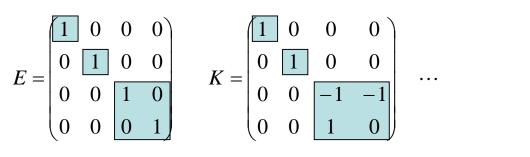
$$\Gamma = p_1 \Gamma_1 \oplus \dots \oplus p_n \Gamma_n$$
 with $p_\alpha = \frac{1}{g} \sum_R \chi(R) \chi_\alpha^*(R)$ (*)

Example: 4-dimensional reducible representation Γ of group D₃ given as

	C ₁	2 C ₂	3 C ₃
X	4	1	0

$$p_1 = \frac{1}{6} (4 \cdot 1 + 2(1 \cdot 1) + 3(0 \cdot 1)) = \frac{6}{6} = 1$$
$$p_2 = 1 \qquad p_3 = 1$$

$$\Rightarrow \Gamma = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3$$



Block-diagonal representation equivalent to original reducible representation

Group theory – Direct product

Definition: direct product of two representations

$$\Gamma_{\alpha}(R) \otimes \Gamma_{\beta}(R) = \begin{pmatrix} \Gamma_{\alpha}(R)_{11} \cdot \Gamma_{\beta}(R) & \cdots & \Gamma_{\alpha}(R)_{m1} \cdot \Gamma_{\beta}(R) \\ \vdots & & \vdots \\ \Gamma_{\alpha}(R)_{1m} \cdot \Gamma_{\beta}(R) & \cdots & \Gamma_{\alpha}(R)_{mm} \cdot \Gamma_{\beta}(R) \end{pmatrix} \text{ dimension: } n_{\alpha} \cdot n_{\beta}$$
$$\Gamma_{3}(E) \otimes \Gamma_{3}(E) = \begin{pmatrix} 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Remarks:

- Direct product of irreducible representations Γ_{α} and Γ_{β} is commutative: $\Gamma_{\alpha} \otimes \Gamma_{\beta} = \Gamma_{\beta} \otimes \Gamma_{\alpha}$
- Direct product of two representations yields another representation.
- Resulting representation can be written as direct sum of irreducible representations.

Group theory – Character of a direct product representation

For the character of the direct product follows:

$$\chi(\Gamma_{\alpha} \otimes \Gamma_{\beta}) = \chi_{\alpha} \cdot \chi_{\beta} \quad (**)$$

 $\Rightarrow \Gamma_{\alpha} \otimes \Gamma_{\beta} = \sum g_{\alpha\beta\gamma} \Gamma_{\gamma} \qquad \text{with } \Gamma_{\gamma} \text{ irreducible representation}$

and
$$g_{\alpha\beta\gamma} = \frac{1}{g} \sum_{R} \chi_{\alpha}(R) \cdot \chi_{\beta}(R) \cdot \chi_{\gamma}(R)$$

(combine formula (*), page 21 with (**) above)

Example: multiplication table for irreducible representations of D_3

\otimes	Γ_1	Γ_2	Γ_3
Γ_1	Γ_1	Γ_2	Γ_3
Γ_2	Γ_2	Γ_1	Γ_3
Γ_3	Γ_3	Γ_3	$\Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3$

Remark: Worked out tables in literature

(Non-trivial) example:

$$\Gamma_2 \otimes \Gamma_3 = g_{231} \Gamma_1 \oplus g_{232} \Gamma_2 \oplus g_{233} \Gamma_3 \qquad g_{\alpha\beta\gamma} = \frac{1}{g} \sum_R \chi_\alpha(R) \cdot \chi_\beta(R) \cdot \chi_\gamma(R)$$

Resulting representation must be 2-dimensional, since $n_2 = 1$, $n_3 = 2$, i.e., result must either be (equivalent to) Γ_3 , $\Gamma_1 + \Gamma_2$, $2\Gamma_1$, or $2\Gamma_2$. The last 3 possibilities are obviously wrong. Formal proof:

	E	J	K	L	М	N
X1	1	1	1	1	1	1
X2	1	1	1	-1	-1	-1
X3	2	-1	-1	0	0	0

$$g_{231} = \frac{1}{6} \left[1 \cdot 2 \cdot 1 + 1 \cdot (-1) \cdot 1 + 1 \cdot (-1) \cdot 1 + 0 + 0 + 0 \right] = 0$$

$$g_{232} = \frac{1}{6} \left[1 \cdot 2 \cdot 1 + 1 \cdot (-1) \cdot 1 + 1 \cdot (-1) \cdot 1 + 0 + 0 + 0 \right] = 0$$

$$g_{233} = \frac{1}{6} \left[1 \cdot 2 \cdot 2 + 1 \cdot (-1) \cdot (-1) + 1 \cdot (-1) \cdot (-1) + 0 + 0 + 0 \right] = 1$$

 $\Rightarrow \Gamma_2 \otimes \Gamma_3 = \Gamma_3$

How can that be although L, M, N are negated through direct product? No problem due to special arrangement of results of multiplication table \Rightarrow Additional sign always cancels out or does not matter !

Connection to physics: Hamiltonian and group theory

Consider wavefunction $\psi(x_1, \dots, x_n) = \psi(\mathbf{r})$ (eigenstate, no spin!)

and coordinate transformation $x_i' = \sum_{j=1}^{n} R_{ij} x_j$ or $r' = R \cdot r$ (R^{-1} exists)

$$\varphi(\mathbf{r})$$
 (eigenstate, no spin:)

New wavefunction in new coordinate system will be different from ψ , in general a linear combination of "old" eigenfunctions with same energy (and other quantum numbers that remain)

Examples from atomic physics:

- p_x will be transformed into p_y for a 90° rotation
- States with same energy and given angular momentum l but different m will mix for general rotations (states with different l or E will NOT mix!)
- \Rightarrow Define operator P(R) transforming "old" into "new" wavefunction, when transformation R is applied:

$$\psi'(\mathbf{r}') = \psi(\mathbf{R}^{-1} \cdot \mathbf{r}') \Rightarrow P(\mathbf{R})[\psi(\mathbf{r})](\mathbf{r}')$$

If Hamiltonian H is invariant with respect to R (i.e., R is a symmetry operation):

$$H'(\boldsymbol{r}') = H(\boldsymbol{R}^{-1} \cdot \boldsymbol{r}') = H(\boldsymbol{r}')$$

- $\Rightarrow P(R)$ commutates with *H*: P(R) H = H P(R)
- \Rightarrow Eigenfunctions of Schrödinger equation can be chosen to be simultaneously eigenfunctions of P(R) !
- \Rightarrow Solutions of Schrödinger equation can be classified according to eigenvalues of P(R) (symmetry properties) !

Holds for all types of symmetry operations (rotations, reflections, translations by lattice vector)

All symmetry operations leaving H invariant form a group: Group of the Schrödinger equation

Eigenfunctions and representations

Consider *n*-fold degenerate solutions of Schrödinger equation $\psi_{\alpha i}$, *i* = 1,..., *n*(α) with energy E_{α} :

 $H\psi_{\alpha i} = E_{\alpha}\psi_{\alpha i}$

Then we have: $H[P(R)\psi] = P(R)[H\psi] = P(R)[E\psi] = E[P(R)\psi]$

i.e., $P(R)\psi_{\alpha i}$ is again eigenfunction of H with the same eigenvalue E_{α} $\Rightarrow P(R)\psi_{\alpha i}$ can be written as *linear combination* of $\psi_{\alpha i}$

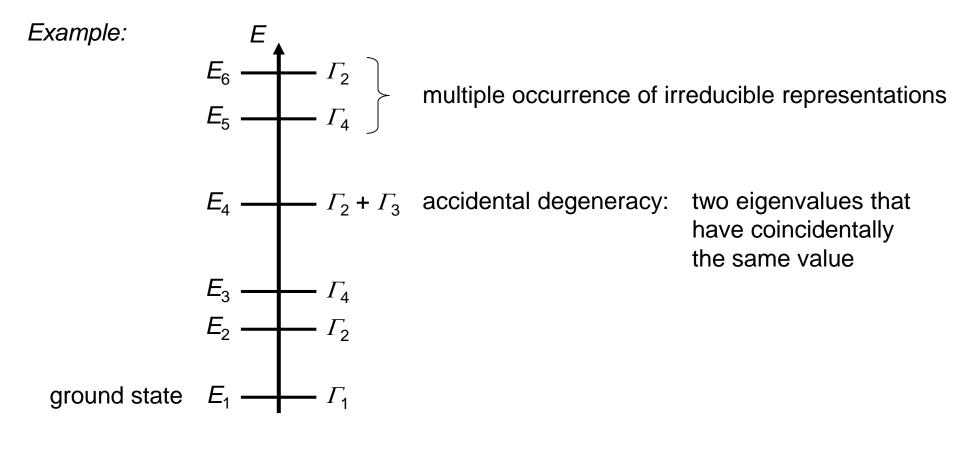
$$P(R)\psi_{\alpha j} = \sum_{i=1}^{n} \Gamma_{\alpha}(R)_{ij}\psi_{\alpha i}$$

For all $j \Rightarrow \text{Matrix } \Gamma_{\alpha}(R)$: Transformation matrix written in basis $\psi_{\alpha i}$ For all $R \Rightarrow \text{Set of matrices } \{\Gamma_{\alpha}(R)\}$

 $\{\Gamma_{\alpha}(R)\}\$ is a representation of the group of the Schrödinger equation ! Generally, $\{\Gamma_{\alpha}(R)\}\$ is irreducible (apart from coincidental, i.e., non-symmetry related degenerate states)

Labeling of eigenfunctions

- Eigenstates are labeled according to their corresponding (irreduc.) representations: State (wave function) is said to "transform according to Γ_{α} " or "have symmetry Γ_{α} "
- Dimension of Γ_{α} corresponds to degree of degeneracy



Construction of basis functions with def. symmetry

Take a random function $f(\mathbf{r})$ and apply projection:

$$O_{\alpha}^{pq} = \frac{n_{\alpha}}{g} \sum_{R} \Gamma_{\alpha} (R)_{pq}^{*} P(R)$$

The resulting set of basis functions with fixed q transforms according to Γ_{α}

Example: group of order 2: inversion

$$C_i$$
 E
 J
 Γ_1
 1
 1

 Γ_2
 1
 -1
 $n_{\alpha} = 1$
 $g = 2$
 $g = 2$
 $g = 2$

Find functions with symmetry Γ_1 and Γ_2 !

$$O_{1}^{11}f(\mathbf{r}) = \frac{1}{2} \Big[\Gamma_{1}(E)_{11}^{*} P(E)f(\mathbf{r}) + \Gamma_{1}(J)_{11}^{*} P(J)f(\mathbf{r}) \Big]$$
$$O_{2}^{11}f(\mathbf{r}) = \frac{1}{2} \Big[\Gamma_{2}(E)_{11}^{*} P(E)f(\mathbf{r}) + \Gamma_{2}(J)_{11}^{*} P(J)f(\mathbf{r}) \Big]$$

With
$$\Gamma_1(E) = \Gamma_1(J) = \Gamma_2(E) = 1$$
, $\Gamma_2(J) = -1$
and $P(E)f(\mathbf{r}) = f(\mathbf{r})$; $P(J)f(\mathbf{r}) = f(-\mathbf{r})$
we get:

$$O_{1}^{11}f(\mathbf{r}) = \frac{1}{2}[f(\mathbf{r}) + f(-\mathbf{r})] \text{ even part} \\ O_{2}^{11}f(\mathbf{r}) = \frac{1}{2}[f(\mathbf{r}) - f(-\mathbf{r})] \text{ odd part} \end{cases} \text{ of function } f(\mathbf{r})$$

Transformation of wavefunction including spin

Eigenfunctions of z-component of (spatial) angular momentum operator:

$$L_z \psi = \frac{\hbar}{i} \frac{\partial}{\partial \varphi} \psi = l_z \psi \implies \psi \sim e^{im\varphi}; \quad l_z = m\hbar \quad (-l \le m \le +l)$$

Scalar wavefunction, reproduces after rotation of 2π

Spin operator for spin ½ particle given by Pauli matrices: $s = \frac{h}{2}\sigma$

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \quad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Eigenfunctions of z-component of spin:

$$\psi_{spin} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $s_z = +\frac{1}{2}\hbar$ (spin up)
 $\psi_{spin} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; $s_z = -\frac{1}{2}\hbar$ (spin down)

Two-component spinor wavefunction, reproduces only after rotation of 4π ! Transformation according to $D_{1/2}$ Transformation of full wavefunction (including spin):

For eigenstates of s_z : $\psi(\mathbf{r}) = \varphi(\mathbf{r}) \cdot \psi^{spin}$

Product of spatial and spin wavefunction

```
\psi (r) transforms as point group \otimes D_{1/2}
```

"Double group"

Double group has additional elements and classes compared to point group!

Example: group C_{6v} (symmetry of materials like GaN, ZnO, etc. with hexagonal (wurtzite) crystal structure)

Symmetry of eigenfunctions of the Hamiltonian

Example: C_{6v} (group of a pointy hexagonal pencil)

for instance: CdS, ZnO, CdSe, GaN

 C_{6v} :

 $2 C_6: \pm 60^\circ$

F

2 C_3 : ± 120°

*C*₂: ± 180°

 $3\sigma_v$: reflection about diagonal

 $3\sigma_d$: reflection about area normal

No reflection on plane perpendicular to pen since no inversion symmetry! (double layers of, e.g., Ga and N along axis)

with spin: \overline{E} : rotation about 2π (changes sign of wavefunction, different from E) $2\overline{C}_3$, $2\overline{C}_6$, \overline{C}_2 , $\overline{\sigma}_v$, $\overline{\sigma}_d$

Applications of group theory – selection rules

Using group theory, we can determine if a matrix element vanishes or not ⇒ selection rules !

$$\begin{array}{ccc} \left\langle j \left| H' \right| i \right\rangle = \begin{cases} \neq 0 & \text{if } \Gamma_j \in \Gamma_s \otimes \Gamma_i \Leftrightarrow \Gamma_1 \in \Gamma_j \otimes \Gamma_s \otimes \Gamma_i \\ \neq 0 & \text{else} \end{cases} \\ \Gamma_j & \Gamma_s & \Gamma_i \end{cases}$$

Intuitive explanation (mathematical proof possible):

Integrand can be written as integral value / volume (constant average) that transforms according to the trivial representation Γ_1 plus positive / negative deviations with more complicated symmetries that cancel out in the integration

⇒ Integral does not vanish if there is a finite contribution to the integrand that transforms like Γ_1 (the average value) !

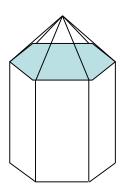
Applications of group theory – selection rules

Example: Electrical dipole transitions

For full rotational symmetry (atomic physics):

- angular momenta good quantum numbers
- selection rules: $\Delta l = \pm 1$; $\Delta m = \pm 1$

In crystal: group theory

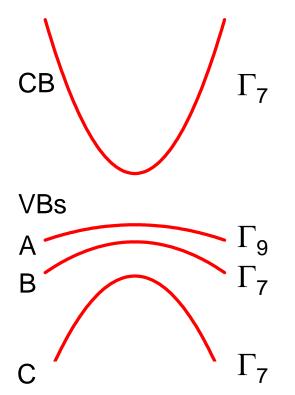


Symmetry of perturbation (dipole) operator in wurtzite materials (C_{6v}): Depends on polarization of light field (see, e.g., tables in Cho) $E \mid \mid c \quad : \Gamma_1$ $E \perp c \quad : \Gamma_5$

Symmetry of wavefunctions at Γ point : from literature (derivation: start from symmetry of atomic states, symmetry reduction through crystal structure, see below)

Selection rules for optical transitions in materials with wurtzite crystal structure: Evaluation of transition matrix elements by group theory!

Optical transitions in materials with wurtzite structure



Band structure including labeling of CB and VBs according to their irreducible representations at the Γ point

Allowed transitions:

- Direct product of representation initial state (VB) with representation of dipole operator must contain representation of final state (CB)
- Use multiplication tables to evaluate direct products

 $E \perp c$: symmetry of dipoleoperator: Γ_5

 $\Gamma_9 \otimes \Gamma_5 = \Gamma_7 \oplus \Gamma_8 \Rightarrow \text{Transition VB A to CB allowed}$ $\Gamma_7 \otimes \Gamma_5 = \Gamma_7 \oplus \Gamma_9 \Rightarrow \text{Transition VBs B \& C to CB allowed}$

 $E \mid \mid c:$ symmetry of dipoleoperator: Γ_1

 $\Gamma_9 \otimes \Gamma_1 = \Gamma_9 \Rightarrow \text{Transition VB A to CB forbidden}$ $\Gamma_7 \otimes \Gamma_1 = \Gamma_7 \Rightarrow \text{Transition VBs B \& C to CB allowed}$

Wurtzite materials: Coupling of light field to excitons

Product wavefunctions transform according to direct product of individual symmetries (see, e.g., spin states discussed above)

Excitons:
$$\phi_{exciton} = \phi_e(\mathbf{r}_e) \cdot \phi_h(\mathbf{r}_h) \cdot \underbrace{\phi_{envelope}^{nlm}(\mathbf{r}_e - \mathbf{r}_h)}_{H-like}$$

Symmetry of total wavefunction: $\Gamma_{exciton} = \Gamma_e \otimes \Gamma_h \otimes \Gamma_{envelope}$

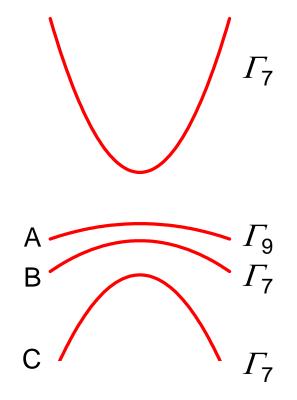
Which excitonic transitions are allowed in emission/absorption?

Transitions from/to ground state (symmetry Γ_1) allowed (matrix element \neq 0), if direct product of $\Gamma_{exciton}$ with symmetry of dipole operator contains Γ_1

For 1s excitons: $\Gamma_{envelope} = \Gamma_1$

 \Rightarrow Exciton does not alter selection rules in this case

Excitons in wurtzite materials: Exciton types



For A exciton (Γ_9 VB) in 1s state (i.e., $n_B = 1$ and s-like envelope function)

$$\Gamma_{exciton} = \Gamma_7 \otimes \Gamma_9 \otimes \Gamma_1 = \Gamma_5 \oplus \Gamma_6$$

 \Rightarrow Two types of excitons: $\varGamma_5, \, \varGamma_6$

 Γ_5 : Total spin = 0: "singlet"

 Γ_6 : Total spin = 1: "triplet"

Coupling to light field: $E \parallel c$: $\Gamma_5 \otimes \Gamma_1 = \Gamma_5$ $\Gamma_6 \otimes \Gamma_1 = \Gamma_6$ no no $\boldsymbol{E} \perp \boldsymbol{c}: \ \Gamma_5 \otimes \Gamma_5 = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_6$ $\Gamma_6 \otimes \Gamma_5 = \Gamma_3 \oplus \Gamma_4 \oplus \Gamma_5$ yes no Couples to light field for $E \perp c$: Does not couple to light field Singlet ist "bright" exciton ! Triplett is "dark" exciton ! For B and C (Γ_7 VB) 1s excitons: $\Gamma_7 \otimes \Gamma_7 \otimes \Gamma_1 = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_5$ Singlet Triplet Singlet $(m_{I}=0)$ $(m_{I}=\pm 1)$ $E \perp c$ Couples for $E \parallel c$

- Result consistent with intuitive discussion for electron hole pairs above, that only excitons with total spin zero can be created by light
- The occurrence of "bright" singlet and "dark" triplet states is a general feature of excitons in any material
- Coupling to light field for wurtzite structure: B and C exciton: *always*, A exciton: *only for* $E \perp c$

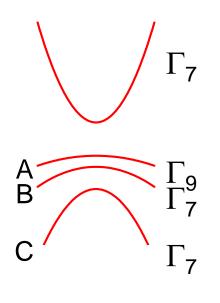
Recap: Linear spectroscopy of excitons: Reflectivity

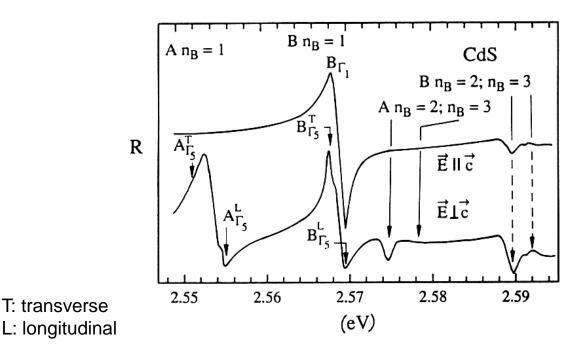
Example: Low-temperature (*T* ~ 4 K) reflectivity of CdS (wurtzite crystal structure)

 Resonances due to A, B and C excitons at low temperatures (hardly visible at room-temperature due to thermal ionization of excitons)

As expected (see discussion above):

• Polarization dependence: A exciton couples only for $E \perp c$





Applications of group theory – Perturbation theory

Unperturbed Hamiltonian H^0 , assume E_n^{0} is *not* degenerate

 $H^0 \psi_n^0 = E_n^0 \psi_n^0$

With perturbation: $H = H^0 + H^s$

$$\implies E_n = E_n^0 + \left\langle \psi_n^0 \left| H^s \right| \psi_n^0 \right\rangle$$

From evaluation of matrix element with group theory:

- Does perturbation shift eigenvalue or not ?
- No statement concerning magnitude of shift !

Mixing with other states due to perturbation

$$\psi_n = \psi_n^0 + \sum_{k \neq n} \frac{\left\langle k \left| H^s \right| n \right\rangle}{E_n^0 - E_k^0} \psi_k$$

From evaluation of matrix elements with group theory:

• Which states do mix in ?

 \Rightarrow Change in selection rules (forbidden transitions may become allowed)

• No statement concerning strength of mixing !

Degenerate perturbation theory

 $H^0 \psi_{ni}^0 = E_n \psi_{ni}^0$

With perturbation: $H = H^0 + H^s$

 \Rightarrow New eigenfunctions (0th order, "right linear combinations")

$$\psi_{nj} = \sum_{i} \alpha_{ni} \psi_{ni}^{0}$$

New energies from characteristic equation: $det \left| \left\langle i \left| H^s \right| j \right\rangle - E \delta_{ij} \right| = 0$ Coefficients from resulting system of equations for these energies

Group theory:

- Is degeneracy lifted, and to which degree? (accidental degeneracy despite / due to perturbation possible!)
- No statement concerning magnitude of splitting !

How do we get the Γ_i , e.g., for bands in a solid ?

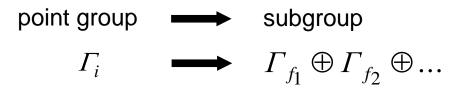
 \rightarrow Properties of atomic orbitals that form bands + compatibility tables

Compatibility tables

Hamiltonian invariant with respect to certain symmetry operations

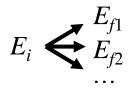
Symmetry reduction (application of a field, strain, ...)

- \Rightarrow Less symmetry operations than before, subgroup of previous symmetry group
- ⇒ Representation of subgroup may be reducible (although same representation for full group is not)



- If a representation is mapped onto an *irreducible* representation
- \Rightarrow Energy level E_i does not split (since a symmetry operation always exists that maps one state onto the other)

- If a representation is mapped onto a *reducible* representation
- ⇒ Energy level E_i splits (apart from accidental degeneracies), since only some states are connected to each other via symmetry operations (because the representation is block-diagonal)

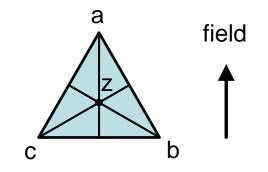


 \rightarrow Compatibility table:

When a given group representation becomes reducible due to the reduction of number of symmetry elements, what are the resulting irreducible representations of the remaining subgroup?

Example: Group D_3 , symmetry reduction through applied field

Rotations and 2 reflections no longer symmetry operations when field is applied !



D ₃	$arGamma_1$	Γ_2	Γ_3
C ₃	Γ_1	Γ_1	$\Gamma_2 + \Gamma_3$
C ₂	Γ_1	Γ_2	$\Gamma_1 + \Gamma_2$

Application of field $\Rightarrow D_3 \rightarrow C_2$

 $\Rightarrow \Gamma_3$ splits into two energy levels ($\Gamma_1 + \Gamma_2$)

Group theory in solid-state physics

Starting point: Atomic orbitals, radially symmetric potential V(r)

Wavefunction: $\phi(\mathbf{r}) = \psi(r) \cdot Y_{lm}(\theta, \varphi)$

Angular part of separated Schrödinger equation: Spherical harmonics Y_{lm}

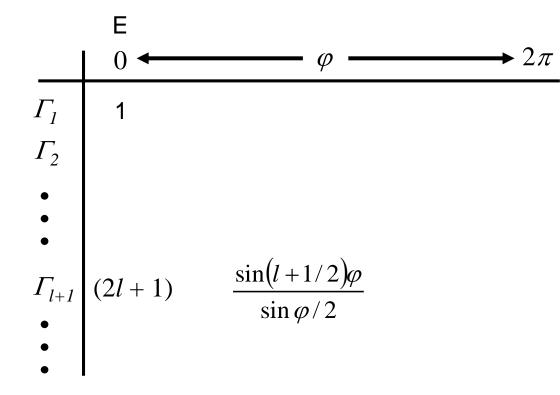
$$\left[\frac{1}{\sin^2\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right]Y_{lm}(\theta,\varphi) = -l(l+1)Y_{lm}(\theta,\varphi)$$

 $Y_{lm}(\theta, \varphi)$: Ortho-normal system, basis for full rotation group

For spherical symmetry: Symmetry group is full rotation group

- All rotations with the same angle (but around different axes) belong to one class
- Rotations with arbitrary angles are symmetry elements \Rightarrow Continuous group !
- Different representations Γ_{l+1} according to different angular momenta l
- Γ_{l+1} has degeneracy of 2l + 1 (different *m* values)

Character table of spherical rotation group



Example: Band structure for materials with C_{6v} symmetry

Symmetry of bands at k = 0 for ZnO, GaN, CdS, ...?

E.g., for ZnO: 2 outer 4s electrons of Zn are transferred to two empty 2p states of O

 \Rightarrow Valence band (highest occupied band) essentially formed by filled p states of O

 \Rightarrow Conduction band (lowest empty band) essentially formed by empty s states of Zn

What happens with 4s state in a crystal with C_{6v} symmetry?

Representation of rotation group for l = 0 and positive parity:

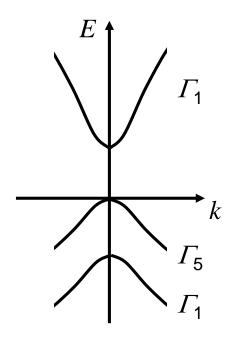
Compatibility table: $D_0^+ \rightarrow \Gamma_1$

What happens with 2p state in a crystal with C_{6v} symmetry?

Representation of rotation group for l = 1 and negative parity:

Compatibility table: $D_1^- \rightarrow \Gamma_1 \oplus \Gamma_5$

 \Rightarrow Band structure of C_{6v} materials at k = 0 (still <u>without spin</u>):



- Splitting of valence band into two subbands due to interaction of p-like states with crystal field (→ symmetry reduction) !
- Further symmetry reduction for $k \neq 0$ \Rightarrow Band structure / labeling only correct for k = 0 !
- Only labeling of bands with Γ's correct. Labeling of bands using angular momenta is sometimes possible, but only an *approximation* !

 $l = 0 \quad D_0^+ \to \Gamma_1$ m = 0

 $l = 1 \quad D_1^- \to \Gamma_1 \oplus \Gamma_5$ $m = 0 \quad m = \pm 1$

$$= 2 \qquad D_2^+ \to \Gamma_1 \oplus \Gamma_5 \oplus \Gamma_6$$
$$m = 0 \quad m = \pm 1 \quad m = \pm 2$$

l

$$l = 3 \qquad D_3^- \to \Gamma_1 \oplus \Gamma_3 \oplus \Gamma_4 \oplus \Gamma_5 \oplus \Gamma_6$$

no identification possible !

Band structure of C_{6v} materials at k = 0 including spin

Transformation of full wavefunction $\psi(\mathbf{r}) = \varphi(\mathbf{r}) \cdot \psi^{spin}$

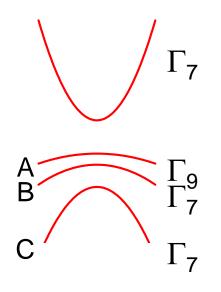
according to symmetry of point group $\otimes D_{1/2}$

Compatibility table for C_{6v} : $D_{1/2} \rightarrow \Gamma_7$

 \Rightarrow Symmetries of conduction band (CB) and valence bands (VB):

CB:
$$\Gamma_1 \otimes \Gamma_7 = \Gamma_7$$

VB: $(\Gamma_1 \oplus \Gamma_5) \otimes \Gamma_7 = \Gamma_7 \oplus \Gamma_7 \oplus \Gamma_9$



- Γ_5 VB (single band without spin) splits into Γ_7 and Γ_9 (both two-fold degenerate) when spin is included. Reason: spin-orbit interaction ! (p-like VB states can interact with spin)
- No splitting for CB but two-fold degenerate due to spin (s-like CB states cannot interact with spin)
- Additional crystal field splitting between (Γ_7 , Γ_9) (Γ_5 without spin) and Γ_7
- No direct information on order of bands from group theory !