Motivation

Interaction of matter with incident wave (represented by a perturbation H:
transition matrix element for, e.g., absorption from state m — n:

(0= [ 4 OR A0 = (i)

Using symmetry considerations, we can determine if matrix element vanishes
or not (transition forbidden / allowed) — selection rules

] | - =0 |If FjeFS®Fi<:>FleFj®FS®Fi <«— Note:
<J|H ||>: . In this case
i =0 othemnwise (for symmetry reasons) the matrix

/ \ element
I

could still be
I J
J

1—; 1—; ,coincidentally”
=0

.e., initial state | with symmetry /;, final state j with symmetry /;

perturbation H " has symmetry /.

= group theory!

N
ﬁ/

Further applications (see later):
» band structure (degeneracy of electronic states)

* matrix elements in general




Group theory — general remarks
Consider Noether’'s theorem again:

From the invariance of the Hamiltonian towards a transformation follows a conserved quantity,
e.g..
a) H invariant for infinitesimal shifts in time: H(t) = H(t + dt)

— total energy is conserved: E, ., = const.
b) H invariant for infinitesimal shifts in space: H(X) = H(X + dx)
= momentum is conserved: p, = CONSt.
c¢) H invariant for infinitesimal rotations around some axis: H(f) = H(f + df)
— angular momentum is conserved: |_ = const.
In a crystal:

a) still satisfied

b) H is only invariant for translation about a lattice vector
= KK is only conserved for shifts about a reciprocal lattice vector 7G

c) H is at most invariant for specific rotation angles = L is not conserved

— Bands cannot be characterized by angular momentum quantum numbers

= Replacement for charact. of bands / derivation of selection rules etc.. symm. prop.



Group theory — basics

Definition: group (G, “e”):
Set of elements {x;} and operations with the following properties:
1) Closure: V X,y € Gfollows xy=z € G
2) Associativity: ¥V x, Yy, z € G follows x-(y-z) = (X-y)-z
3) Identity / neutral element E € G, V x € G follows E-x = X-E = X
4) Inverse element: VX, Ee GIx1 e G .. xIx=xx1=E

* Number of elements x; € G is called order g of the group
» There are finite and infinite groups

Definition: Abelian group G:
V X,y € G follows x-y = y-X

Examples:

1) {0, £1, £2, ..., “+"}: infinite, Abelian group of integer numbers (Z, +)

2) Rational numbers (Q, -): infinite Abelian group with E = 1, inverse: (p/q)* = (a/p)
3) {{1, -1, i, -1}, -): finite Abelian group, g =4

4) All symmetry operations that convert a equilateral triangle back to itself



Group theory — example: Group D,

D, is finite and not abelian

T
Schonflies notation, 3 denotes 3-fold symmetry axis

Operations:
a a

E.+0° A —> A
C b C b

Rotations: J: + 120° around z :)

K: -120° around z D

Reflections: L: + 180° about a-axis
M: + 180° about b-axis

N: + 180° about c-axis




Group theory — example: D,

Why not abelian?

Jel. A 5 A 5 A
c b b ¢ a b

(First L, then J)

but L e J: A L) AX L> A

= JeL # LelJ



Group theory — example: D,
Multiplication table (group table):

E!J K{L M N
E|E!J KiL M N
J|J K EiIM N L. Read
K K E J ! N L M | First column, then row
-------------------------- 1 ! e.g.,Jel =
L|L N M E K J:
M|M L N J E K:
NN M L K J E:

In every row and column, each element exists only once!
(otherwise, e.g., K-L=K-M ; multiplypy K" = L=M)

= For groups of order 6 exist only two tables:
C,: 6-fold axis, only rotations
D,: rotations and reflections

All other groups are isomorphic to C, or Dy



Group theory — some definitions
Definition: isomorphism

Bijective transformation of elements x; € G to elements x' € G' while keeping the
multiplication table

= g=4g
Xi = X = X' = X;
Xi = X
Xpi—=> X' with xex=x, = Xi ® X' =Xy
X = Xy
Example: IS isomorphic to D,
\J \J \ \ \
E K N L M

C; is not isomorphic to D, !



Group theory — some definitions

Definition: homomorphism

Similar to isomorphism, however g > @’, i.e., not bijective
(no one-to-one correspondence)

eg.E—>1,J->1,K>1,L>-1,M—>-1,N—>-1

Definition: sub-group

Subset of G, which is itself a group | 1 K i i
Examples: ) K|
o {G}: trivial sub group J J K E M
e {E}: trivial sub group K]k B J N
R L= A ) el I s |
MM L N J
([ ]
M L K

m X  Z2 Z|Z
m X o < - 2|2



Group theory — some definitions

Definition: adjoint

The elements A and B € G are adjoint, if there exists at least one element X € G .-.

B = X1 e A e X (similarity transformation)
e.g., in D;, L and M are adjoint: M =N-1eL ¢ Nwith N1=N
Definition: self-adjoint
An element A € G is called self-adjoint, if V X € G follows: X1 e Ae X =A

e.g., E: XleEeX=E

Definition: class

All elements of a group, that are adjoint, form a class.

e.g., for D;: three classes
C,={E}, C,={L, M, N} (reflections), C;={J, K} (120° rotations)



Group theory — some definitions

Definition: outer / direct product of two groups
G" =G ® G'is a group of all ordered pairs (x;, X) with x; € G and x;' € G’

Product;

(X, X;') @ (X X) = (X @ Xy, X" @ X/)

Orderof G": g"=gegd

e.g.
H, ={E, J, K} and H,={E, L}

= H; ® H, = {{E, E}, {E, L}, {J, E}, {J, L}, {K, E}, {K, L}
= CG

not isomorphic to Dy

10



Group theory —representations

Definition: representation /7,

- I, is (in the narrower sense) a set of matrices that fulfills the multiplication table
of the group

- I ,(R) is a matrix out of 7, that represents the group element R
. I,(R);is the ij-element (i"" row, j" column) of the matrix 7 ,(R)

. n_ is the dimension of the (n, x n,) matrices of the
representation 7, (same for all matrices)

Matrix multiplication: ZFQ(K)HFQ(L)I] :FQ(K-L)U- eg. E=1or =1
| J =1 =1
K=1 =1
The number of representations for each group is infinite! L =1 =-1
M=1 =-1
N =1 =-1

H_/

If I, is a representation of a group G and X a trivial representation

non-singular matrix (i.e., det X = 0)
=>{Xtr,X}(e, XTI (R)-X VR e G)is also arepresentation

11



Group theory — example: D,

Example: one representation of the group Dj: 73

ICE N EREIOS

0 1 -1 -

pw-(% %) =[]

3@ fulfills the multiplication table of Dj:

e.g., 13- ION) =30 o N) =150()

12



Group theory —representations

Definition: reducible representation

Given is a set of matrices 7. If one can find one non-singular matrix X, such that all
matrices from 7, obtain block-diagonal format under the transformation X*- " (R) -X,
then the representation is called reducible.

r,(R) o0 0
o IR 0 |=nR)@R)®ry(R) WR
0 0 TI4(R)

« During matrix multiplication the blocks are multiplied with each other without
mixing into other blocks. This means each set of blocks is again a
representation.

» The reducible matrix is equivalent to a direct sum of several matrices:

I(R)e FZ(R):(Fl(R) 0 j

0 I,(R)
Definition: Irreducible Representation

If a representation cannot be reduced further through the transformation
above, it is called irreducible.



Example: Representations of the group D,

E J K L M N
r 1 1 1 1 1 1
L 1 1 1 1 1 1
1 0 1(-1 -1 1(-1 -3 1(1 3 1(1 3 -1 0
13® 0 1 213 -1] 201 -1) 21 -1] 2l-1 21 0 1
b . . - 1 1
;® is equivalent to 73 with X = -
reducible 1:0 0 11 0 0 1100
represent. |0 1 0 0 -1/2 -1/2 |0 -1 0
Len® loo1 0 3/2 -1/2 0 0 1
Definition:

Two irreducible representations 77, and 7 are called equivalent, if 3 matrix X .-
X1 T (R)-X=T4R)VREeG.

14



Group theory — Orthogonality relations

There is an orthogonality relation for irreducible representations. It follows from the
lemmas of Schur:

1. Lemma of Schur

A representation 7, is irreducible < the only matrices M, that commutes
with 77, (R) V R (i.e.,, M- I"'=I"- M), are scalar matrices M; = MyJ;.

2. Lemma of Schur

Given are 7, and 7 as irreducible representations and a matrix M with
M- 7I,(R)=171%R)-MVR e G, then it follows:

a) If n, # ng then M = 0 (matrices not square-shaped)

b)ifn, = Ny, then M =0 or

M is not singular, i.e., I, and 7 are
equivalent.

15



Group theory — Orthogonality relations

= Orthogonality relation for irreducible representations:

1Ry 75 Ry =-6,6,6, . ReG

R o
0 iIf ", and I, are not equivalent
with 6,5 =1 1 if I, and I", are identical
\undefined if I", and I'; are equivalent

16



Group theory - Characters

For each representation exists a set of characteristic values y,(R) with

Xa (R): Zra (R); = Trace(R)

Definition: Character

{r,(R)} is called the character of the representation 7,

Two representations 7, and 7 are equivalent <> they have the same character
since Trace 7, (R) = Trace X*- I",(R) -X = Trace 74(R) .

The character value of E indicates the dimension n, of the representation

Elements of the same class have the same trace, since the elements of a
class are adjoint to each other.

Characters make our life easier, see below ...

17



Group theory — Characters: Example

Example: Dy
E J K L M N
I 1 1 1 1 1
I, 1 1 1 -1 -1 -1
o (1 oj 3[—1 —1j 1(—1 —3j 3[1 3} 3(1 3j (—1 0
01 2(3 -1/ 2(1 -1 21 -1 2(-1 -1 0 1
E J K L M N
7 1 1 1 1 1 1
I 1 -1 -1

2 @ (-1 -1) C-o 0 o)
— N —

classes

Different character values show that group elements belong to different classes
(in this case, identity, rotations, reflections)

18



Group theory — Characters: Example

It is sufficient to list the character values of the classes (same values within one class):

C,={E}L C,={J, K}, Cs={L, M, N}

— Character table of D,

number of elements

/

cC, 2C, 3¢,

7 1 1 1
P 1 1 -1

h; : number of elements in class C;

I : number of classes in G

19



Group theory — Characters: Orthogonality relations etc.

Z hxy, (Ci );(; (Ci ) = g5aﬂ Different representations
i=1

Z h .z, (Ci );(a (Cj ) = g9y Different classes
=1

« Criterion for irreducibility: 7, irreducible < ZV“ (R)|2 =0
R

» Number of irreducible representations of a group equal to number of classes, and

r

Zn§=g

o=

20



Group theory — Reduction of a representation

Given: Reducible representation / of a group G

= Transformation in block form and reduction into direct sum of given
(non-equivalent) irreducible representations /, possible, but how?

Easy to accomplish with character y(R) of 7

1 «
"= p1F1 D-.-D pnrn with P, :EZZ(R)ZOC(R) (*)

Example: 4-dimensional reducible representation / of group D5 given as

1 6
C, 2C, 3G, pl=€(4-1+2(1-1)+3(0-1)):€:1
A p,=1  Ps=L
= ['=11D1,DI],
1/0 0 O 110 0 O
0f[1]0 0 ol1l o o Block-diagonal representation
“=looma] “TlooFr = eqduivgtl;lentto original
0 0l0 1 00l1 o reducible representation

21



Group theory — Direct product

Definition: direct product of two representations

Fa(R)ll 'Fﬂ(R)

I R)w T4(R)

r(E)® 1,(E)= 1£(1’ (ﬂ OG (D

£

Remarks:

1 0
0 1

o o o -

o O +— O

o r O O

R O O O

dimension: N, - N,

» Direct product of irreducible representations 7, and 7 is commutative:

[,®I1,;=1,®1I,

 Direct product of two representations yields another representation.

* Resulting representation can be written as direct sum of

irreducible representations.

22



Group theory — Character of a direct product representation

For the character of the direct product follows:  x({o ® Ip)=o" X5 (w)

= [, Q1= Z Oup L, with 7~ irreducible representation
4

1 Z
and gaﬂy :E Za(R)Z,B(R)Zy(R)

R
(combine formula (*), page 21 with (**) above)

Example: multiplication table for irreducible representations of D,

® I, L r
N & r
L, o, oL r

B . . Lenern

Remark: Worked out tables in literature

23



(Non-trivial) example:

1
I, ®13=05511 DYl D Qpa3l 9es :EZZa(R)‘Zﬁ(R)'Zy(R)
R

Resulting representation must be 2-dimensional, since n,=1, n;= 2,
l.e., result must either be (equivalent to) 73, 77 + I, 217, or 275,
The last 3 possibilities are obviously wrong. Formal proof:

E J K L M N
y4) 1 1 1 1 1
X2 1 1 1 -1 -1 -1
X3 2 -1 -1 0 0 0
U2 = % 1-2:1+1:(-1)-1+1-(-1)-1+0+0+0]=0
025 = % 1-2:1+1:(-1)-1+1-(-1)-1+0+0+0]=0
0233 =%:1-2-2+1-(—1)-(—1)+1-(—1)-(—1)+0+0+o]=1

How can that be although L, M, N are negated through direct product?
= Fz (039 Fg = FS No problem due to special arrangement of results of multiplication table
= Additional sign always cancels out or does not matter ! 24



Connection to physics: Hamiltonian and group theory

Consider wavefunction w(Xl, e X, ) = l//(r) (eigenstate, no spin!)

n
and coordinate transformation X;'= E RijX; or r'=R-r (R~ exists)
j=1

New wavefunction in new coordinate system will be different from v,
in general a linear combination of ,old” eigenfunctions with same energy
(and other quantum numbers that remain)

Examples from atomic physics:

* |p,> will be transformed into [p,> for a 90° rotation
« States with same energy and given angular momentum | but different m
will mix for general rotations (states with different | or E will NOT mix!)

— Define operator P(R) transforming ,0ld* into ,new* wavefunction,
when transformation R is applied:

v'(r)=v(R-r)= PRy (r)r)

25



If Hamiltonian H is invariant with respect to R (i.e., R is a symmetry operation):

H'(F)=H(R - r)=H(r)

= P(R) commutates with H: P(R) H=H P(R)
= Eigenfunctions of Schrodinger equation can be chosen
to be simultaneously eigenfunctions of P(R) !

= Solutions of Schrodinger equation can be classified according to eigenvalues
of P(R) (symmetry properties) !

Holds for all types of symmetry operations
(rotations, reflections, translations by lattice vector)

All symmetry operations leaving A invariant form a group:
Group of the Schrddinger equation

26



Eigenfunctions and representations

Consider n-fold degenerate solutions of Schrédinger equation y;, 1 =1,..., N(Q)
with energy E  :

Hy, =Ew,
Then we have: H [P(R)w]: P(R)[H w]z P(R)[E ',V]Z E[P(R)W]

i.e., P(R)y, is again eigenfunction of H with the same eigenvalue E,

= P(R)y,; can be written as linear combination of v

P(R)‘//aj = Zn: I, (R)ij Y i

For all ] = Matrix 7 (R): Transformation matrix written in basis
For all R = Set of matrices {Fa (R)}

{Fa (R)} IS a representation of the group of the Schrodinger equation !

Generally, {Fa (R)} IS irreducible

(apart from coincidental, i.e., non-symmetry related degenerate states) ”7



Labeling of eigenfunctions

 Eigenstates are labeled according to their corresponding (irreduc.) representations:
State (wave function) is said to “transform according to 7" or “have symmetry 7"

« Dimension of 7, corresponds to degree of degeneracy

Example: E N
multiple occurrence of irreducible representations

Es —— 1,

E, I, + I; accidental degeneracy: two eigenvalues that
have coincidentally
the same value

E, —— I,

E, —— I}

ground state E; I

28



Construction of basis functions with def. symmetry

Take a random function f(r) and apply projection:

n

0 === " I,R),,PR)

g

The resulting set of basis functions with fixed q transforms according to 7,

Example: group of order 2: inversion

C. E J
I 1 1

n,=1
1_'2 1 -1 g:2

Find functions with symmetry 77 and 75!

29



| evenpar

: odd part

> of function f(r)

30



Transformation of wavefunction including spin

Eigenfunctions of z-component of (spatial) angular momentum operator:

h O -
Ly=——vyw=Ly = w~e"; L=mh (-l<m<+l)
| Op
Scalar wavefunction, reproduces after rotation of 27
h
Spin operator for spin ¥z particle given by Pauli matrices: S = Eo-

S R I N T A

Eigenfunctions of z-component of spin:

1 1 .
= - S . =+—"h INu
Wspln (Oj y Z 2 (Sp p)

Sl//Spin:E 1 O l//lsp_n :Sl//spin —
Z 2\0 —1hy," Z (O] s 22ty (spin down)
Wspin - 1 ’ z 2
Two-component spinor wavefunction, reproduces only after rotation of 47 /

Transformation according to Dy, 31



Transformation of full wavefunction (including spin):
For eigenstates of s, : p(r)=glr)-y*"

Product of spatial and spin wavefunction
w (r) transforms as point group &® D,/
“Double group”

Double group has additional elements and classes compared to point group!

Example: group C,, (symmetry of materials like GaN, ZnO, etc.
with hexagonal (wurtzite) crystal structure)

32



Symmetry of eigenfunctions of the Hamiltonian

Example: C,, (group of a pointy hexagonal pencil)

for instance: CdS, ZnO, CdSe, GaN @

Cev: E
2 C4i +60°
2 C,i+120°

C,: +180°
3o, reflection about diagonal §Z

3oy: reflection about area normal <>

No reflection on plane perpendicular to pen X
since no inversion symmetry!
(double layers of, e.g., Ga and N along axis)

with spin:  E: rotation about 2 (changes sign of wavefunction, different from E)

2C,, 2C,, C,, T, Oy

33



Applications of group theory — selection rules

Using group theory, we can determine if a matrix element vanishes or not

= selection rules !

(J[H[i)=
/ST

Lonon

#0 |f FjeFS®Fi<:>FleFj®FS®Fi
=0 else

Intuitive explanation (mathematical proof possible):

Integrand can be written as integral value / volume (constant average) that

transforms according to the trivial representation /; plus positive / negative
deviations with more complicated symmetries that cancel out in the integration

= Integral does not vanish if there is a finite contribution to the integrand
that transforms like 7 (the average value) !

34



Applications of group theory — selection rules
Example: Electrical dipole transitions
For full rotational symmetry (atomic physics):

« angular momenta good quantum numbers
» selectionrules: Al=+1 : Am=+1

In crystal: group theory

A Symmetry of perturbation (dipole) operator in wurtzite materials (Cg,):
Depends on polarization of light field (see, e.g., tables in Cho)

Ellc 1}
Elc :[7:

Symmetry of wavefunctions at /" point : from literature
(derivation: start from symmetry of atomic states,

symmetry reduction through crystal structure, see below)

Selection rules for optical transitions in materials with wurtzite crystal structure:

Evaluation of transition matrix elements by group theory! e



Optical transitions in materials with wurtzite structure

CB r,

VBs

Band structure including labeling of CB and VBs
according to their irreducible representations at

the 7/ point

Allowed transitions:

 Direct product of representation initial state (VB)
with representation of dipole operator must
contain representation of final state (CB)

» Use multiplication tables to evaluate direct products

E L c: symmetry of dipoleoperator: I’.

I'y®I.=1,®1; = TrandtionVB A to CB allowed
I, =1,®Iy = TrandtionVBsB & C to CB allowed

E ||c: symmetry of dipoleoperator: I,
I'y®1I =1y, = Trangtion VB A to CB forbidden

I,®I =1, = TrandgtionVBsB & C to CB allowed

36



Wurtzite materials: Coupling of light field to excitons

Product wavefunctions transform according to direct product of individual symmetries
(see, e.g., spin states discussed above)

Excitons: ¢exciton = ¢e (re ) ¢h (I"h ) ¢nrl1\r/nelope ( Iy )

J

H I|ke

Symmetry of total wavefunction: [, ..., =1, & [, &

envelope

Which excitonic transitions are allowed in emission/absorption?

Transitions from/to ground state (symmetry 7;) allowed
(matrix element # 0), if direct product of 7o

with symmetry of dipole operator contains 7;

For 1s excitons: [ ypeiope = 11

= EXxciton does not alter selection rules in this case

37



Excitons in wurtzite materials: Exciton types

T

For A exciton (I'y VB) in 1s state
(.e., Ng = 1 and s-like envelope function)

/\F Deciton =17 QL3 @11 =15 D[
.

B
/\ = Two types of excitons: /¢, 75
c I

38



I'c: Total spin = O: “singlet” ['s: Total spin = 1: “triplet”

Coupling to light field:

E”C: F5®F1 :F5 no FG®F1:F6 no
Elc: I, =[O, Bl yes [ QI =I,DPI, DI, no
Couples to light field for E L cC: Does not couple to light field
Singlet ist “bright” exciton ! Triplett is “dark” exciton !

For B and C (I'; VB) 1s excitons: [, ®I, &I, =1, @I, DI,

Singlet Triplet Singlet
(m.=0) (m.= 1)

Couples for E||c Elc

» Result consistent with intuitive discussion for electron — hole pairs above,
that only excitons with total spin zero can be created by light

» The occurrence of “bright” singlet and “dark” triplet states is
a general feature of excitons in any material

» Coupling to light field for wurtzite structure:
B and C exciton: always, A exciton: only for E | ¢

39



Recap: Linear spectroscopy of excitons: Reflectivity

Example: Low-temperature (T ~ 4 K) reflectivity of CdS (wurtzite crystal structure)

« Resonances due to A, B and C excitons at low temperatures
(hardly visible at room-temperature due to thermal ionization of excitons)

As expected (see discussion above):

 Polarization dependence:
A exciton couples only for E L C

T: transverse
L: longitudinal (eV)

2.55 2.56 2.57 2.58 2.59

40



Applications of group theory — Perturbation theory

Unperturbed Hamiltonian H°, assume E_° is not degenerate

H %y = Eqw,
With perturbation: H =H%+H?®
Ho|wr)

From evaluation of matrix element with group theory:

= E, =Er?+<l//r?

» Does perturbation shift eigenvalue or not ?
* No statement concerning magnitude of shift !

Mixing with other states due to perturbation

(k|H*]n)

Wy
- E, - E;

0
o=V, +
k=
From evaluation of matrix elements with group theory:
« Which states do mix in ?
= Change in selection rules (forbidden transitions may become allowed)
* No statement concerning strength of mixing !



Degenerate perturbation theory

H OW r?i = EnWr(\)i

With perturbation: H =H®+ H?®

= New eigenfunctions (0th order, “right linear combinations™)

an = Z Uy Wr?l

i
New energies from characteristic equation: det‘ |H | ‘ 0

Coefficients from resulting system of equations for these energies

Group theory:

* |s degeneracy lifted, and to which degree?
(accidental degeneracy despite / due to perturbation possible!)

» No statement concerning magnitude of splitting !

How do we get the /;, e.g., for bands in a solid ?

— Properties of atomic orbitals that form bands + compatibility tables

42



Compatibility tables

Hamiltonian invariant with respect to certain symmetry operations

Symmetry reduction (application of a field, strain, ...)

= Less symmetry operations than before, subgroup of previous symmetry group

= Representation of subgroup may be reducible
(although same representation for full group is not)

point group w===mp  subgroup
I; — [, DI, D...

« If arepresentation is mapped onto an irreducible representation

— Energy level E; does not split
(since a symmetry operation always exists that maps one state onto the other)

43



If a representation is mapped onto a reducible representation

Energy level E; splits (apart from accidental degeneracies),
since only some states are connected to each other via symmetry operations
(because the representation is block-diagonal)

E
E; 4 Ez

— Compatibility table:

When a given group representation becomes reducible due to the
reduction of number of symmetry elements, what are the resulting
irreducible representations of the remaining subgroup?

a4



Example: Group D5, symmetry reduction through applied field

Rotations and 2 reflections no longer symmetry operations
when field is applied !

Ds I I I3
Cs 1y 1y I+ 1y
C, 1y I, I+ 1

Application of field = D; — C,

= [ 5 splits into two energy levels (/] + 1)

field

T

45



Group theory in solid-state physics

Starting point: Atomic orbitals, radially symmetric potential V(r)

Wavefunction: ¢(r) = gy(r)-Y,m(H, (0)

Angular part of separated Schrédinger equation: Spherical harmonics Y,

{ 1 8(Sin9£j+ 1 622}Y|m(6’,(0)=—l(|+1)Y|m(9,¢)

sin®@ 00 00 ) sin®0 o

Y,m(é?, gp) . Ortho-normal system, basis for full rotation group

For spherical symmetry: Symmetry group is full rotation group

 All rotations with the same angle (but around different axes) belong to one class
« Rotations with arbitrary angles are symmetry elements = Continuous group !

- Different representations /|, according to different angular momenta |

» [, has degeneracy of 2| + 1 (different m values)

46



Character table of spherical rotation group

E
0 < 1) > 27
I 1
15
Lol @+1) S|n(l+1/2)¢
singp/ 2

47



Example: Band structure for materials with C,, symmetry
Symmetry of bands at k = 0 for ZnO, GaN, CdS, ...?

E.g., for ZnO: 2 outer 4s electrons of Zn are transferred to two empty 2p states of O

= Valence band (highest occupied band) essentially formed by filled p states of O
= Conduction band (lowest empty band) essentially formed by empty s states of Zn

What happens with 4s state in a crystal with C,, symmetry?

Representation of rotation group for | = 0 and positive parity:

Compatibility table: Dy — I

What happens with 2p state in a crystal with C,, symmetry?
Representation of rotation group for | = 1 and negative parity:

Compatibility table: D; — I, ® [,

48



= Band structure of C, materials at k = 0 (still without spin):

I  Splitting of valence band into two subbands
due to interaction of p-like states with
crystal field (— symmetry reduction) !

R * Further symmetry reduction for K # 0
— Band structure / labeling only correct for K =0!

/\ 15 * Only labeling of bands with /s correct.
I Labeling of bands using angular momenta is

sometimes possible, but only an approximation !

=0 D, >} =2 D, > ®I . DI
m=20 m=0m=x1 m=1x2

=1 D ->1,DI 1=3 D, >11®I,8], O DI
m=0 m=z%1 no identification possible !
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Band structure of Cg, materials at K =0 including spin

Transformation of full wavefunction l//(l’)= (p(r).wspin

according to symmetry of point group ® D, ,,

Compatibility table for Cg,,: D,,, = I

= Symmetries of conduction band (CB) and valence bands (VB):
CB: Fl ®F7 = F7
ve: (I ®7,), =T, &I, &I,

« /¢ VB (single band without spin) splits into /5 and 7
(both two-fold degenerate) when spin is included.
Reason: spin-orbit interaction !
F7 (p-like VB states can interact with spin)

* No splitting for CB but two-fold degenerate due to spin
(s-like CB states cannot interact with spin)

A/\

B/—\ 11:9 - Additional crystal field splitting between (7, /4)
/\ ! (I without spin) and 7}

C r7 * No direct information on order of bands

from group theory ! 50



