Spintransport in Nanostrukturen SS 2023 Lösungsblatt 4

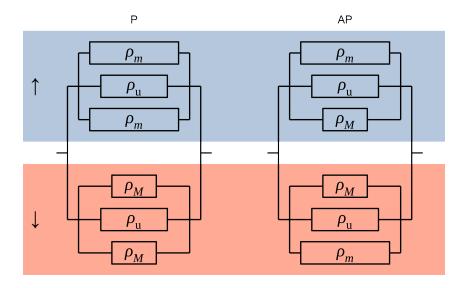
Besprechung 21.6.2023 8:00, Raum 2/17

Aufgabe 1. CIP GMR

Zeigen Sie, dass es keinen CIP-GMR gibt, wenn sie die Schichten als diskretes Widerstandsnetzwerk darstellen.

Lösung

Ersatzschaltung (drei Schichten parallel geschaltet)



Der einzige Unterschied ist die Anordnung der Widerstände in der Parallelschaltung \rightarrow gleicher Gesamtwiderstand.

Aufgabe 2. Valet-Fert-Modell

- a) Leiten Sie mit Hilfe des Valet-Fert-Modells den Zusatzwiderstand einer Ferromagnet-Normalleiter-Grenzfläche her, sowie die Aufspaltung des chemischen Potenzials und die Spinpolarisation des Stroms an der Grenzfläche.
- b) Skizzieren Sie chemisches Potenzial, Ladungsträgerdichte und Stromdichte für beide Spins als Funktion des Abstands von der Grenzfläche.

Lösung

Im Valet-Fert-Modell gelten in einer Dimension die Gleichungen

$$\frac{\partial^2}{\partial x^2} \left(\sigma_+ \mu_+ + \sigma_- \mu_- \right) = 0 \tag{1}$$

$$\frac{\partial^2}{\partial x^2}(\mu_+ - \mu_-) = \frac{\mu_+ - \mu_-}{\lambda_{\rm sf}^2} \tag{2}$$

Hier steht + für den Majoritätsspin und – für den Minoritätsspin. Im Zweistrommodell ist

$$\begin{split} \sigma_{\pm} &= \frac{\sigma}{2} \left(1 \pm p \right) \\ j_{\pm} &= \frac{\sigma_{\pm}}{e} \frac{\partial \mu_{\pm}}{\partial x} = \frac{\sigma}{2e} \left(1 \pm p \right) \frac{\partial \mu_{\pm}}{\partial x} \end{split}$$

Wir definieren

$$\begin{split} \bar{\mu} &= \frac{1}{2} \left((1+p) \; \mu_+ + (1-p) \; \mu_- \right) \\ \Delta \mu &= \frac{1}{2} \left(\mu_+ - \mu_- \right) \\ \text{bzw.} \; \mu_\pm &= \bar{\mu} \pm (1 \mp p) \; \Delta \mu \end{split}$$

und erhalten

$$\frac{\partial^2}{\partial x^2}\bar{\mu} = 0 \tag{3}$$

$$\frac{\partial^2}{\partial x^2} \bar{\mu} = 0 \tag{3}$$

$$\frac{\partial^2}{\partial x^2} \Delta \mu = \frac{\Delta \mu}{\lambda^2}$$

Wir machen den Ansatz

$$\bar{\mu} = \alpha + \beta x$$

$$\Delta \mu = \gamma e^{x/\lambda} + \delta e^{-x/\lambda}$$

und erhalten

$$\begin{array}{rcl} \mu_{\pm} &=& \alpha+\beta x\pm (1\mp p)\,\gamma e^{x/\lambda}\pm (1\mp p)\,\delta e^{-x/\lambda}\\ \frac{\partial\,\mu_{\pm}}{\partial x} &=& \beta\pm \frac{(1\mp p)\,\gamma}{\lambda}e^{x/\lambda}\mp \frac{(1\mp p)\,\delta}{\lambda}e^{-x/\lambda}\\ 2ej_{\pm} &=& \sigma\left(1\pm p\right)\frac{\partial\,\mu_{\pm}}{\partial x} &=& \sigma\left[\left(1\pm p\right)\,\beta\pm \frac{\left(1-p^2\right)\gamma}{\lambda}e^{x/\lambda}\mp \frac{\left(1-p^2\right)\delta}{\lambda}e^{-x/\lambda}\right] \end{array}$$

Aus

$$j = j_+ + j_- = \frac{\sigma}{e}\beta$$

folgt $\beta = ej/\sigma = ej\rho$.

a) Jetzt betrachten wir die F/N-Grenzfläche bei x = 0

Ferromagnet mit $\lambda = \lambda_F$, $p \neq 0$, $\sigma = 1/\rho_F$ für x < 0:

$$\mu_{\pm}(x < 0) = \alpha_{\rm F} + ej\rho_{\rm F}x \pm \gamma_{\rm F} (1 \mp p) e^{x/\lambda_{\rm F}}$$

$$2ej_{\pm}(x < 0) = ej(1 \pm p) \pm \frac{\gamma_{\rm F} (1 - p^2)}{\rho_{\rm F}\lambda_{\rm F}} e^{x/\lambda_{\rm F}}$$

Normales Metall mit $\lambda = \lambda_N$, p = 0, $\sigma = 1/\rho_N$ für x > 0:

$$\begin{array}{lcl} \mu_{\pm}(x>0) & = & ej\rho_{\rm N}x\pm\delta_{\rm N}e^{-x/\lambda_{\rm N}}\\ 2ej_{\pm}(x>0) & = & ej\mp\frac{\delta_{\rm N}}{\rho_{\rm N}\lambda_{\rm N}}e^{-x/\lambda_{\rm N}} \end{array}$$

Hier haben wir benutzt, dass die Spinakkumulation im Unendlichen verschwindet ($\gamma_{\rm N}=\delta_{\rm F}=0$) und dass der Nullpunkt von μ frei wählbar ist ($\alpha_{\rm N}=0$).

Randbedingungen (je zwei Gleichungen für + und –):

$$\begin{split} \mu_{\pm}(0-) &= \mu_{\pm}(0+) &\quad (\mathrm{I}_{\pm}) \\ j_{\pm}(0-) &= j_{\pm}(0+) &\quad (\mathrm{II}_{\pm}) \end{split}$$

Ansatz einsetzen:

$$\begin{array}{rcl} \alpha_{\rm F} \pm \gamma_{\rm F} \left(1 \mp p \right) & = & \pm \delta_{\rm N} \\ \pm p e j \pm \frac{\gamma_{\rm F} \left(1 - p^2 \right)}{\rho_{\rm F} \lambda_{\rm F}} & = & \mp \frac{\delta_{\rm N}}{\rho_{\rm N} \lambda_{\rm N}} \end{array}$$

$$(I_{\perp}) + (I_{\perp})$$
:

$$\alpha_{\rm F}/p = \gamma_{\rm F}$$

$$(I_+) \times (1+p) + (I_-) \times (1-p)$$
:

$$\alpha_{\rm F}/p = \delta_{\rm N}$$

 (Π_+) und (Π_-) sind identisch. Einsetzen von γ_F und δ_N in (Π) :

$$\begin{array}{rcl} ejp + \frac{\alpha_{\rm F}\left(1-p^2\right)}{p\rho_{\rm F}\lambda_{\rm F}} & = & \frac{-\alpha_{\rm F}}{p\rho_{\rm N}\lambda_{\rm N}} \\ \\ ejp^2 & = & -\alpha_{\rm F}\left(\frac{1}{\rho_{\rm N}\lambda_{\rm N}} + (1-p^2)\frac{1}{\rho_{\rm F}\lambda_{\rm F}}\right) \\ \\ \alpha_{\rm F} & = & -ejp^2\left(\frac{1}{\rho_{\rm N}\lambda_{\rm N}} + (1-p^2)\frac{1}{\rho_{\rm F}\lambda_{\rm F}}\right)^{-1} \end{array}$$

Mit I = jA und $V = -\alpha_F/e$ erhalten wir

$$R_{\rm G} = \frac{V}{I} = \frac{-\alpha_{\rm F}}{jAe} = p^2 \left(\frac{A}{\rho_{\rm N}\lambda_{\rm N}} + (1-p^2)\frac{A}{\rho_{\rm F}\lambda_{\rm F}}\right)^{-1}$$

Wir definieren die charakteristischen Widerstände

$$\mathcal{R}_{N} = \frac{\rho_{N}\lambda_{N}}{A} \text{ und } \mathcal{R}_{F} = \frac{\rho_{F}\lambda_{F}}{A}$$

und schreiben

$$R_{\rm G} = \frac{p^2 \mathcal{R}_{\rm N} \mathcal{R}_F}{(1 - p^2) \mathcal{R}_{\rm N} + \mathcal{R}_{\rm F}} = \frac{p^2 \mathcal{R}_{\rm N}}{M + 1}$$

mit

$$M = (1 - p^2) \frac{\mathcal{R}_{\rm N}}{\mathcal{R}_{\rm F}}$$

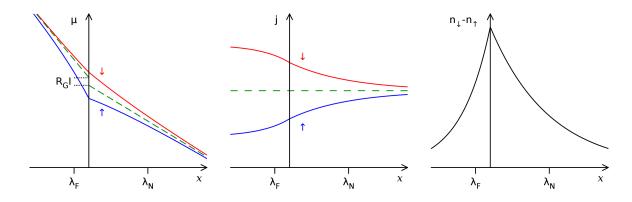
Die Aufspaltung des chemischen Potenzials ist

$$\Delta \mu = 2\delta_{\rm N} = \frac{2\alpha_{\rm F}}{p} = \frac{2IR_{\rm G}e}{p}$$

Die Spinpolarisation des Stroms an der Grenzfläche ist

$$\begin{split} p_j &= \frac{j_+ - j_-}{j_+ + j_-} = -\frac{\delta_{\mathrm{N}}}{\rho_{\mathrm{N}} \lambda_{\mathrm{N}} e j} = -\frac{\alpha_{\mathrm{F}}}{\rho_{\mathrm{N}} \lambda_{\mathrm{N}} e j p} \\ &= \frac{R_{\mathrm{G}} j e A}{\rho_{\mathrm{N}} \lambda_{\mathrm{N}} e j p} = \frac{R_{\mathrm{G}}}{p \mathcal{R}_{\mathrm{N}}} = \frac{p}{M+1} \end{split}$$

b) Skizzen



Aufgabe 3. Spinakkumulation

a) Berechnen Sie den Grenzflächenwiderstand und die Spinpolarisation des Stroms an der Grenzfläche für einen F/N-Kontaktes mit folgenden Parametern:

Querschnittsfläche: $A = (100 \text{ nm})^2$

Ferromagnet: $\rho_{\rm F} = 10 \, \mu \Omega \, {\rm cm}$, $\lambda_{\rm F} = 10 \, {\rm nm}$, p = 0.5

Normales Metall: $\rho_{\rm N}$ = 1 $\mu\Omega$ cm, $\lambda_{\rm N}$ = 1000 nm

b) Durch die Grenzfläche aus (a) fließt ein Strom von 10 μ A. Wie groß ist die Spinaufspaltung $\Delta\mu$, die induzierte Magnetisierung und das induzierte Magnetfeld im normalen Metall (Zustandsdichte $N\left(\epsilon_F\right)=2.4\times10^{28}/\text{m}^3\text{eV}$)?

4

Lösung

a)

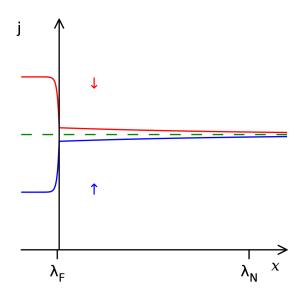
$$\mathcal{R}_{F} = \frac{\rho_{F}\lambda_{F}}{A} = 100 \text{ m}\Omega$$

$$\mathcal{R}_{N} = \frac{\rho_{N}\lambda_{N}}{A} = 1 \Omega$$

$$M = (1 - p^{2})\frac{\mathcal{R}_{N}}{\mathcal{R}_{F}} = 7.5$$

$$R_{G} = \frac{p^{2}\mathcal{R}_{N}}{M+1} = \frac{0.25 \Omega}{8.5} = 29 \text{ m}\Omega$$

$$p_{j} = \frac{50\%}{8.5} = 5.9\%$$



b)

Der Spannungsabfall über $R_{\rm G}$ ist

$$V = R_{\rm G}I = 294 \text{ nV}$$

Die Aufspaltung des chemischen Potenzials ist

$$\Delta\mu = \frac{2IR_{\rm G}e}{p} = 1.18 \,\mu\text{eV}$$

Die Magnetisierung ist

$$M = \mu_{\rm B} \Delta n = \mu_{\rm B} N \left(\epsilon_{\rm F} \right) \Delta \mu = 0.263 \, \frac{\rm A}{\rm m}$$

Das Magnetfeld ist

$$B = \mu_0 M = 330 \text{ nT}$$