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1. Free energy of the Abrikosov vortex: (50 Punkte)

In the lecture and the script we have discussed the lower critical field H.; for a type II
superconductor with large Ginzburg-Landau parameter, x > 1. At this field vortices
start to penetrate the bulk of the superconductor. In order to obtain H,.; one needs the
free energy of the vortex line per unit length, Fioex ~ €L. We used the following result

(in the reduced GL units)
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Here we prove this result using the Ginzburg-Landau free energy functional and the
solution of the Ginzburg-Landau equations for a single Abrikosov vortex. Consult if
necessary the books by Abrikosov or Tinkham.

1) The free energy functional in the GL reduced units reads
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Integrate by parts and use the Ginsburg-Landau equation to obtain the contribution of

the kinetic energy
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2) Combine Fi, with the condensation energy
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and the field energy
Fuaa = [V B (5)

Take into account he condensation energy without the vortex and prove that
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3) Use the solutions obtained in the lecture (script) for ¥ and B. Distinguish between
the contribution of the vertex core r < 1/k and that from the interval 1 > r > 1/k.
Estimate the vortex energy.



2. Pearl vortex (50 Punkte)

In the lecture and the script we have considered a single vortex in a thin superconducting
film (Pearl vortex).

1) We have introduced the field <I;(x, y) = g—zﬁqﬁ, where ¢ is the phase of the supercon-

ducting order parameter. For a single vortex we have: ¢(x,y) = —p = cos™(z/+y/2% + y2).
Here ¢ is the angle in the polar coordinates. Prove the following relations
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Show that in the Fourier representation this relation reads
B(q) = —iPo[7 x &.]/q" . (9)

2) In the lecture (script) we obtained for the current density in the Fourier representation
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Analyse the current density in the coordinate representation J(z,y) (or in polar coor-
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dinates J(r, ) in two limits: a) r < A; b) 7> A.



