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1. Free energy of the Abrikosov vortex: (50 Punkte)
In the lecture and the script we have discussed the lower critical field H
for a type II superconductor with large Ginzburg-Landau parameter, x > 1.
At this field vortices start to penetrate the bulk of the superconductor. In
order to obtain H. one needs the free energy of the vortex line per unit
length, Fiorex ~ €L. We used the following result (in the reduced GL units)
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Here we prove this result using the Ginzburg-Landau free energy functional
and the solution of the Ginzburg-Landau equations for a single Abrikosov
vortex. Consult if necessary the books by Abrikosov or Tinkham.

1) The free energy functional in the GL reduced units reads
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Integrate by parts and use the Ginsburg-Landau equation to obtain the
contribution of the kinetic energy

— 2
fkmz/dv <—i+/f>np
K

The Ginsburg-Landau equation reads
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2) Combine Fy;, with the condensation energy
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and the field energy
Fheld = / dv B* . (7)

Take into account he condensation energy without the vortex and prove that
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The condensation energy with no vortex reads
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The vortex energy is the difference of F with a vortex and F without a vortex, i.e.,
with B =0 and |V| = 1. Thus

Jrvortex == [Fcond - fcond,O] + fkin + fﬁeld . (10)

Combining all together we obtain
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3) Use the solutions obtained in the lecture (script) for ¥ and B. Distinguish
between the contribution of the vertex core r < 1/x and that from the interval
1 >r > 1/k. Estimate the vortex energy.

For 1 > r > 1/k we obtained in the lecture |¥|? = f? ~ 1 — (kr)"2. Then |¥U|* ~
1—2(kr) 2+ (kr)™ and (1/2)(1 — |¥]?) ~ (kr)~2 — (1/2)(kr)~*. The integration gives
(with logarithmic accuracy, i.e., 1 is neglected in comparison with In )
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For the magnetic field at 1 > r > 1/k we use (see script)
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It is easy to see that
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is not logarithmically diverging at » — 0. Thus the field energy contribution is sub-
leading and can be neglected with logarithmic accuracy.

Let us now estimate the core energy. For the estimate let’s take | V| =~ kr for 0 < r < 1/k.

Then
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There is no Ink, thus, this can be neglected. For the field part we can take for the
estimate B(r < 1/k) ~ B(1/k) ~ (1/k)In k. This gives
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This can definitely be neglected. Thus, the core energy in negligible with logarithmic
accuracy.

. Pearl vortex (50 Punkte)

In the lecture and the script we have considered a single vortex in a thin
superconducting film (Pearl vortex).

1) We have introduced the field &(z,y) = %6@ where ¢ is the phase of
the superconducting order parameter. For a single vortex we have: ¢(z,y) =
—p = cos~ ! (z//2? + y?). Here ¢ is the angle in the polar coordinates. Prove
the following relations
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Show that in the Fourier representation this relation reads
O(q) = —iDo|T x €] /q* . (19)

First of all we remind ourselves that
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for some function f(r, ). It follows that
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Now we remind ourselves that
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such that for r» # 0 we find
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as one would expect for ®(z,y) x V.

For r — 0 our vector field features a singularity, with its rotor displaying the J-function
behaviour. To see that, we consider
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We see that the function V x q_ﬁ(a:, y) possesses the properties:
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forcing us to conclude that
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In Fourier representation this equation reads
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whose solution is given by
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as is seen by the application of the vector identity
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2) In the lecture (script) we obtained for the current density in the Fourier

representation
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Analyse the current density in the coordinate representation .J (x,y) (or in
polar coordinates J(r, ) in two limits: a) r < A; b) r > A.

We now calculate the current distribution. In the lecture (script) we got
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Assume in polar coordinates 7 = r(cos¢,siny) and ¢ = ¢(cos#,sinf). Then ¢r =
grcos(yp — 0) and
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Further we recognise the polar integral as the Bessel function of the first kind

27
qr o ﬁ 1@ 5~ coS VY
N (2A> /0 i COSTETEY,
such that
= q)()C . o0
J(r, ) = — W(smgp, —cosgo)/o dg 1+ -J; <2A)

o oA 2A
:_AL(T(;A?(SHH'D’ —cosgo)T/O Cl+§AC (€).

For % > 1 we can write
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Exploiting the fact that

x4 (35) = =5 (55).

we find
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It figures that
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