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1. Expectation value of operators in the BCS ground state: (30 Points)

Following the dream team of Bardeen, Cooper, and Schrieffer, in the class
we considered the following family of states as our variational ansatz for the
ground state of the BCS Hamiltonian:

|BCS〉 =
∏
k

(
uk + vkc

†
k, ↑c

†
−k, ↓

)
|0〉 . (1)

Here |0〉 is the Fermionic vacuum state ck,σ |0〉 = 0, c†k,σ and ck,σ are the Fer-
mionic creation and annihilation operators obeying the standard canonical
commutation relations

{ck,σ, ck′,σ′} = {c†k,σ, c
†
k′,σ′} = 0, {ck,σ, c†k′,σ′} = δk,k′δσ,σ′ . (2)

Prove the following result〈
BCS

∣∣∣ c†k′,↑c†−k′,↓c−k,↓ck,↑ ∣∣∣BCS
〉

= ukvkuk′vk′ . (3)

One has 〈
BCS

∣∣∣ c†k′,↑c†−k′,↓c−k,↓ck,↑ ∣∣∣BCS
〉

= 〈0|
∏
k2 6=k

(uk2 + vk2ck2, ↑c−k2, ↓)

× (uk + vkck, ↑c−k, ↓) c
†
k′,↑c

†
−k′,↓c−k,↓ck,↑

(
uk + vkc

†
k, ↑c

†
−k, ↓

)
×
∏
k1 6=k

(
uk1 + vk1c

†
k1, ↑c

†
−k1, ↓

)
|0〉

=vk 〈0|
∏
k2 6=k

(uk2 + vk2ck2, ↑c−k2, ↓)
(
ukc
†
k′,↑c

†
−k′,↓ + vkck, ↑c−k, ↓c

†
k′,↑c

†
−k′,↓

)
×
∏
k1 6=k

(
uk1 + vk1c

†
k1, ↑c

†
−k1, ↓

)
|0〉

=vkuk 〈0|
∏

k2 6=k,k′
(uk2 + vk2ck2, ↑c−k2, ↓) (uk′ + vk′ck′, ↑c−k′, ↓) c

†
k′,↑c

†
−k′,↓

×
(
uk′ + vk′c

†
k′, ↑c

†
−k′, ↓

) ∏
k1 6=k

(
uk1 + vk1c

†
k1, ↑c

†
−k1, ↓

)
|0〉



=vkukuk′vk′ 〈0|
∏

k2 6=k,k′
(uk2 + vk2ck2, ↑c−k2, ↓) ck′, ↑c−k′, ↓c

†
k′,↑c

†
−k′,↓

×
∏

k1 6=k,k′

(
uk1 + vk1c

†
k1, ↑c

†
−k1, ↓

)
|0〉

=vkukuk′vk′ 〈0|
∏

k2 6=k,k′
(uk2 + vk2ck2, ↑c−k2, ↓)

∏
k1 6=k,k′

(
uk1 + vk1c

†
k1, ↑c

†
−k1, ↓

)
|0〉

=vkukuk′vk′ 〈0|
∏

k1 6=k,k′
(u2k1 + v2k1) |0〉 = vkukuk′vk′ . (4)

2. Generalized Cooper problem: (35 Points)

In the lecture we have considered the Cooper problem, in which two elec-
trons are created on top of the full Fermi sea. Consider now a generalized
Cooper problem. In this case the excited state is assumed to be a superposi-
tion of either of two electrons slightly above the Fermi level or of two holes
slightly below the Fermi level (the total number of particles is, thus, not
sharply defined). Note that in the grand-canonical description the energies
of both electrons and holes are positive. Find the bound state wave functi-
on and the binding energy per particle ∆. Compare with ∆ of the Cooper
problem and with ∆ of the BCS theory.

Analogously to script we assume the following Ansatz for the wave function

|Ψ〉 =
∑

−~ωD<ξk<0

α(k)χ(σ1, σ2)c−k,σ2ck,σ1 |Ψ0〉+
∑

0<ξk<~ωD

α(k)χ(σ1, σ2)c
†
k,σ1

c†−k,σ2 |Ψ0〉 ,

(5)
where |Ψ0〉 =

∏
k≤kF c

†
k,σ |0〉 stands for the fully occupied Fermi sea, and ξk ≡ εk − µ.

In contrast to the script the wave function (5) includes the hole-like (ξk < 0) excitation
as well as the electron-like (ξk > 0) ones.

The (BCS) Hamiltonian reads

HBCS =
∑
k,σ

εkc
†
k,σ ck,σ −

1

2

g

V

∑
k,k′,σ

c†k′,σ c
†
−k′,−σ c−k,−σ ck,σ. (6)

Substituting the Ansatz (5) into the Schrödinger equation (E + EFS) |Ψ〉 = HBCS |Ψ〉1
we obtain:

(2sign(ξk)εk − E)α(k) =
g

V

∑
−~ωD<ξk1<~ωD

α(k1) . (7)

Here α(k) for ξk < 0 describes hole-like excitations und for ξk > 0 it describes the
particle-like excitations. We introduce again

C =
1

V

∑
−~ωD<ξk1<~ωD

α(k) , (8)

1The energy of particles is measured relative to the filled Fermi sphere EFS = 2
∑

k≤kF
εk.



substitute it self-consistently and obtain the equation for E

1 =
g

2

∫ EF+~ωD

EF

dω
ρ(ω)

ω − E/2
− g

2

∫ EF

EF−~ωD
dω

ρ(ω)

ω + E/2

=
gρF

2
log

(
EF + (~ωD − E/2)

EF − E/2

)
+
gρF

2
log

(
EF − (~ωD − E/2)

EF + E/2

)
. (9)

Here we have used 1/V
∑

k →
∫
ρ(ω)dω. The density of states in the vicinity of the

Fermi surface can be replaced by a constant one ρ(ω) ≈ ρF .

it follows that
2

gρF
= log

(
E2
F − (~ωD − E/2)2

E2
F − E2/4

)
(10)

Thus for weak coupling gρF � 1, under the usual condition EF � ~ωD, we obtain

E ' 2EF − 2~ωDe
− 1
gρF (11)

The binding energy per electron is then found from E = 2EF − 2∆

∆ = ~ωDe
− 1
gρF (12)

(In the script is was ∆ = ~ωDe
− 2
gρF )

3. Better intuition behind the Bogulubov buisness: (35 Points)

Part1: Constructive transformation of the field operators
Consider the following toy Hamiltonian

H = ε(c†↑c↑ + c†↓c↓) + V (c†↑c
†
↓ + c↓c↑), (13)

with the single mode Fermionic field operators

{cσ, cσ′} = {c†σ, c
†
σ′} = 0, {cσ, c†σ′} = δσ,σ′ . (14)

Defining the following objects

J+ = c†↑c
†
↓, J− = c↓c↑, Jz =

1

2
(N − 1) , N = n↑ + n↓, nσ = c†σcσ, (15)

demonstrate the following relations hold:

[J+, J−] = 2Jz, [J±, Jz] = ∓J±. (16)

One has

[J+, J−] =c†↑c
†
↓c↓c↑ − c↓c↑c

†
↑c
†
↓

=n↑n↓ − (1− n↑)(1− n↓)
=n↑ + n↓ − 1 = N − 1 ≡ 2Jz. (17)



Next

[J+, Jz] =
1

2
c†↑c
†
↓(c
†
↑c↑ + c†↓c↓)−

1

2
(c†↑c↑ + c†↓c↓)c

†
↑c
†
↓

=− 1

2
(c†↑c

†
↓ + c†↑c

†
↓) = −J+. (18)

Using J+ = J†− we naturally obtain

[J−, Jz] =J−.

In other words, we may assert that the operators Jx = 1
2
(J+ + J−), Jy =

1
2i

(J+ − J−), and Jz form a representation of the su(2) Lie algebra (note that
the representation is reducible since the parity operator eiπN is conserved).

Using our definitions (15) we write the Hamiltonian in the language of Js:

H =2(εJz + V Jx) + ε = 2
√
ε2 + V 2(cosϑJz + sinϑJx) + ε, (19)

cosϑ =
ε√

ε2 + V 2
, sinϑ =

V√
ε2 + V 2

. (20)

Show that the Hamiltonian (19) is diagonalised by the following unitary
transformation U = eiϑJy , that is

Hd = UHU † = 2
√
ε2 + V 2Jz + ε. (21)

Let us check the inverse transformation

U †JzU = cosϑJz + sinϑJx (22)

with the help of Baker-Campbell-Hausdor (BCH) formula

e−iϑJyJze
iϑJy =

∞∑
n=0

(−iϑ)n
[(Jy)

n, Jz]

n!
(23)

where the notation is such that

[(Jy)
n, Jz] =

[
Jy,

[
(Jy)

n−1, Jz
]]

(24)

and evaluate [
(Jy)

2m, Jz
]

=
[
Jy,

[
(Jy)

2m−1, Jz
]]

= Jz, (25)[
(Jy)

2m+1, Jz
]

=
[
Jy,

[
(Jy)

2m, Jz
]]

= iJx. (26)

So that:

e−iϑJyJze
iϑJy = Jz

∞∑
n=0

(−1)nϑ2n

(2n)!
+ Jx

∞∑
n=0

(−1)nϑ2n+1

(2n+ 1)!
= cosϑJz + sinϑJx. (27)

Next we define the Bogolubov operators

γσ = U †cσU, γ†σ = U †c†σU ≡ (γσ)†. (28)



These guys are helpful since by virtue of Eq. (21) we have

H = U †HdU = 2
√
ε2 + V 2U †JzU + ε =

√
ε2 + V 2(γ†↑γ↑ + γ†↓γ↓) + ε−

√
ε2 + V 2. (29)

Using BCH formula, or otherwise, show that

γ↑ = cos
ϑ

2
c↑ + sin

ϑ

2
c†↓, γ↓ = cos

ϑ

2
c↓ − sin

ϑ

2
c†↑. (30)

In the same notations as before we have

γσ = U †cσU =
∞∑
n=0

(
−θ

2

)n
[(2iJy)

n, cσ]

n!
. (31)

First we establish

[2iJy, c↑] =− c†↓, [2iJy, c↓] = c†↑, (32)[
2iJy, c

†
↑

]
=− c↓,

[
2iJy, c

†
↓

]
= c↑. (33)

Or, introducing the secular notation, σ =↑≡ + and σ =↓≡ −, we compactly write

[2iJy, cσ] =− σc†−σ,
[
2iJy, c

†
σ

]
= −σc−σ. (34)

It follows that [
(2iJy)

2m, cσ
]

=
[
2iJy,

[
(2iJy)

2m−1, cσ
]]

= (−1)mcσ, (35)[
(2iJy)

2m+1, cσ
]

=
[
2iJy,

[
(2iJy)

2m, cσ
]]

= −(−1)mσc†−σ, (36)

and hence

γσ =cσ

∞∑
m=0

(
ϑ

2

)2m
(−1)m

(2m)!
+ σc†−σ

∞∑
m=0

(
ϑ

2

)2m+1
(−1)m

(2m+ 1)!
(37)

=cσ cos
ϑ

2
+ σc†−σ cos

ϑ

2
, (38)

exactly what we wanted to show.
Part2: BCS ground state
The ground state is defined via the following condition

γσ |0〉γ = 0. (39)

Show that this implies the following relation

U |0〉γ = |0〉 , (40)

where

cσ |0〉 = 0, (41)

is the vacuum state of original Fermions.



Consider the following representation

U † = e−iϑJy = ea+J+eazJzea−J− , (42)

where a±, az are functions of the angle ϑ. By differentiating the Eq. (42)
with respect to ϑ, establish the following system of non-linear differential
equations

d

dϑ
a+ =− 1

2
eaz ,

d

dϑ
az = a−,

d

dϑ
a− =

1

2
(1 + a2−), (43)

a+(0) =a−(0) = az(0) = 0. (44)

Applying the derivative we find

d

dϑ
U † =− iU †Jy = ea+J+eazJzea−J− ȧ−J− + ea+J+eazJz ȧzJze

a−J− + ea+J+ ȧ+J+e
azJzea−J−

=U †J−ȧ− + U †e−a−J−Jze
a−J− ȧz + U †e−a−J−e−azJzJ+e

azJzea−J− ȧ+. (45)

It follows that

−iJy =J−ȧ− + e−a−J−Jze
a−J− ȧz + e−a−J−e−azJzJ+e

azJzea−J− ȧ+. (46)

Now we consider

e−a−J−Jze
a−J− =Jz − a−[J−, Jz] = Jz − a−J−, (47)

e−azJzJ+e
azJz =J+e

−az , (48)

e−a−J−J+e
a−J− =J+ + 2a−Jz − a2−J−. (49)

The equality (46) is now

−1

2
[J+ − J−] = J−ȧ− + (Jz − a−J−)ȧz + (J+ + 2a−Jz − a2−J−)e−az ȧ+. (50)

Which yields the following system of ODEs

d

dϑ
a+ =− 1

2
eaz ,

d

dϑ
az = a−,

d

dϑ
a− =

1

2
(1 + a2−), (51)

a+(0) =a−(0) = az(0) = 0, (52)

with the initial conditions deduced from the requirement

U †
∣∣∣
ϑ=0

= 1. (53)

Show that these are solved by

a±(ϑ) = ∓ tan
ϑ

2
, az(ϑ) = −2 log cos

ϑ

2
. (54)

Equation (49) is solved by direct integration

da−
dϑ

=
1

2
(1 + a2−) =⇒

∫ a− dy

1 + y2
=

1

2
(ϑ− ϑ0) (55)

=⇒ arctan (a−) =
1

2
(ϑ− ϑ0) =⇒ a−(ϑ) = tan

(
ϑ

2

)
, (56)



where the integration constant is fixed by the initial conditions. Other equations yield

az(ϑ) =

∫ ϑ

0

dϑ′ tan

(
ϑ′

2

)
= −2 ln

(
cos

ϑ

2

)
, (57)

a+(ϑ) =− 1

2

∫ ϑ

0

dϑ′e
−2 ln

(
cos ϑ

′
2

)
= − tan

(
ϑ

2

)
. (58)

Using the equation (40) along with the decomposition (42) and the result
(54), prove that

|0〉γ = (1 + a+J+)e−
1
2
az |0〉 ≡

(
cos

ϑ

2
− sin

ϑ

2
c†↑c
†
↓

)
|0〉 . (59)

To see this we consider

U † |0〉 =ea+J+eazJzea−J− |0〉 = ea+J+eazJz |0〉 = ea+J+e
1
2
az(N−1) |0〉 = e−

az
2 ea+J+ |0〉

=e−
az
2 (1 + a+J+) |0〉 , (60)

where we used that J2
+ |0〉 = 0. Now substituting the results of our previous considera-

tion we find that

|0〉γ =

(
cos

ϑ

2
− sin

ϑ

2
c†↑c
†
↓

)
|0〉 . (61)


