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I. LITERATURE

1) A.A. Abrikosov, Fundamentals of the theory of metals.
2
3
4) P. G. De Gennes, Superconductivity Of Metals And Alloys.

J.R. Schrieffer, Theory of Superconductivity.

M. Tinkham, Introduction to Superconductivity.

)
)
)
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II. SHORT HISTORY

1911 - discovery by Dutch physicist Heike Kamerlingh Onnes in mercury. Observed
disappearance of resistance at 7' ~ 4.2K. Nobel prize in 1913.

1913 - led is superconducting at T' ~ 7K, 1930’s - niobium at 7"~ 10K.

1933 - Walther Meissner and Robert Ochsenfeld discover that superconductors expel
magnetic field - Meissner effect.

1935 - London equations (Fritz London and Heinz London).

1950 - Ginzburg-Landau theory of superconductivity (Lev Landau and Vitaly Ginzburg).

1957 - Abrikosov vortices in type II superconductors (Alexei Abrikosov). Nobel Prize for
Ginzburg, Abrikosov and A. Leggett in 2003.

1957 - BCS theory by John Bardeen, Leon N. Cooper, and Robert Schrieffer. Microscopic
theory. Nobel Prize in Physics in 1972.

1962 - Josephson effect (Brian Josephson). Nobel Prize in Physics in 1973. First observed
experimentally by P. W. Anderson and J. M. Rowell in 1963. In 1964 first SQUID (Super-
conducting QUantum Interference Device). P.W. Anderson - one of the greatest theoretical
physicists. Numerous contributions to understanding superconductivity (Andersson-Higgs
mechanism). Nobel Prize in 1977 (not for superconductivity).

1986 - Beginning of the era of High Temperature Superconductors (HTS). Georg Bednorz
and Alex Miiller discovered superconductivity in Las_,Ba,CuQO4 at T ~ 35K. Nobel Prize
in Physics, 1987. Soon YBCO with 7"~ 92K. No full theory up today.

III. IMPORTANT APPLICATIONS

1) Superconducting Magnets. E.g. in Magnetic Resonance Imaging (MRI), at Large
Hadron Collider (LHC), Trains.



2) Superconducting wires in the electricity grid (only very recently, with HT'S materials).
3) All possible Josephson devices as sensors (SQUID), metrological standards (Volt stan-

dard). SQUIDS are used for magnetometry in brain, geology, search for dark matter etc.
4) Quantum Bits.

IV. PHENOMENOLOGY

=
41\ T

FIG. 1: Ilustration: Disappearance of resistivity p of Hg below critical temperature T, ~ 4.2K.

i @

T,

H. Kamerlingh Onnes 1911.

FIG. 2: Tlustration: Meissner effect. Magnetic field is expelled from the superconductor.

V. LONDON EQUATIONS

The zero resistivity and the Meissner effect are closely related. Assume the electrons are

accelerated without resistance (the electron charge is equal to —e):

d "
maﬁ: —el . (1)



FIG. 3: Illustration: Specific heat capacity as a function of temperature. Indicated a second order

phase transition.

With the current density given by j = —ne#, where n is the density of electrons, we obtain
05-"%, 2)
The Maxwell equation reads:
Vx F— —E%B (3)
Thus we obtain ,
%(ﬁx]+%é>:0 (4)

But deep inside the superconductor both B = 0 and j = 0 (Meissner effect). Thus F.
London and H. London postulated that everywhere inside the superconductor:

ne’

Vxj+—B=0 (5)
mc

.

1. Time-independent situation

An external magnetic field is applied. We consider magnetization currents explicitly, thus

we use microscopic Maxwell equation:

VxB= —J (6)
This gives
— = — — = — — — — — 4 — —
Vx(VxB):V-(V-B)—(VZ)B:—(VQ)B:%ij (7)
From the London equation (5) we obtain
dr = - 4rne? 5
Tvxj=-"25 8)
c me



Substituting the London equation we obtain

o = Admne? - 1 =
VHB = B=—B 9
(V9B =B =55, )
Where we have introduced the London penetration depth A\;, = 4’:7522.

The London penetration depth does not change if we transform to (Cooper) pairs, i.e.,

e —2e,m—2m,n—n/2.

A. Another form of London equations

B=VxA (10)
With this the London equation
- o ne? o
Vxj+—B=0 (11)
mc
reads
2
VXt evVxAd=0 (12)
mc

—

If both V- j =0 (continuity equation in static (time-independent) case) and V-A=0
(Coulomb gauge) this gives

(13)

In this form the London equation is convenient to connect to the microscopic theory.

VI. GINZBURG-LANDAU THEORY

Theory works for T' ~ T.. One postulates that electron liquid consists of two parts:
superconducting (superfluid) with density ns(7") and normal with density n,(7"). Dropping
the historical perspective we understand that the density of Cooper pairs is equal to ng/2.

One introduces the order parameter

U= [ i (14)



1. Landau Theory

One postulates for the free energy

F = /dVF: /dV {Fn+a|xp\2+g\qf|4} (15)

In order to describe the phase transition one postulates a = a7, where

T-1T,
= = 16
=2 (16
and a > 0, b > 0.
By varying (over |¥|) we obtain:
2a|W| + 26|¥]* =0 . (17)
For 7 < 0 this gives
ar o1, =T
U= = € 18
up = - =57 (18)
For 7 > 0 we have |¥|? = (. Phase transition.
We define
a

2.  Ginsburg-Landau Theory, equations

Theory for inhomogeneous situations, currents and magnetic fields. One postulates for

2+?} . (20)

the free energy

b 1 - 2e -
]::/dVF:/dV F, +a|V|? + = |U* + — —ihV—f——eA v
2 4m c us
Here, for a while, we consider the superconductor on its own. Thus B is the field induced
by the currents in the superconductor itself. Below we will include the external field.

It is important to note that the GL free energy is gauge invariant. A general time-

independent gauge transformation reads

- o = 2i

A=A+Vyxy , ¥V =UTexp {—gx] : (21)
Here we have to vary with respect to W regarding ¥* as independent. This gives

1 e 2 2\’ )

9



Next we vary with respect to A. The variation of the magnetic energy goes as follows:

5 568 B (¥ x0d
5/dV8—:/dV 45 :/dV (V > 04) (23)
T

7 47

Next we perform integration by parts (dropping as usual the boundary terms):

B-(V x 64) = Bieirp(VidA,) = —6Apeip(ViBs) = 046 (ViB;) = 0A- (V x B) .

int. by parts

(24)
Performing the variation we obtain
— — 4 —
VxB=—j (25)
c
with
- 2ieh - - 2¢)? -
7= (\I/*V\I/ - q/v\p*) _ 2 g4 (26)
dm 2mc
For ¥ = Wy we obtain again the London equation.
fom 2 g (A heg) - e (14 o, (27)
s = 2me ° 2e T me 2e
This is the gauge invariant form of the original London equation. It also allows to introduce
the so called superconducting velocity v,. Namely, from the general relation j = —en,Us we
obtain
h (= 2e -
vs=—(V —A) . 28
U= ( ¢+~ ) (28)

In the literature one frequently has a different sign, i.e., ¥s = % (§¢ — 2—55) This has to do with the negative sign of the electron charge

and creates some confusion. For example Tinkham (Ch. 4) first has 75 = L* (ﬁqﬁ — %A'), where m™ is the mass of the relevant charge carrier
and e* its charge. Then a substitution is made m* = 2m and e* = 2e, meaning probably that e < 0. Later, however, Tinkham uses e* in the
definition of the flux quantum ®g = % = %. This would mean that &9 < 0. Here I use the substitution e* = —2e, so that e > 0. Also

g = 2zhe > 0.

Introducing again the London penetration depth

cAm cAm
AL = = . 29
- \/471’71562 \/871'\1/(2)62 (29)

we can rewrite the London equation as

- c - heco

10



3. Coherence length

Coherence length is obtained by considering small fluctuations of the amplitude of W. So

we assume A = 0, and W = Wy + 6 (both real), and W2 = —a/b. Then we obtain

h2
—mv%qf +6U(a+3b03) =0 . (31)
In the normal state ¥y = 0 and a > 0 we obtain solutions of the type e**/¢, where
h
£ = (32)
dma

In the superconducting state V2 = —a/b, a < 0
- V25U + 6V (a + 3b03) = I V250 — 246V = 0 (33)
4dm ¢ 0 am wE=4

We still define the coherence length as in the normal case

h
: 4dm|al| (34)

However the solutions look like e*V2/¢,

A. Flux quantization

In the bulk of a superconductor, where ]2 = 0, we obtain

A+ — =0 35

+ 5. Vo (35)
o o he [ = - ke 2mhe

fAdl — —%%ngdl = %27m = n= ndg , (36)

Where &y = QQZC is the superconducting flux quantum.

This quantization is very important for, e.g., a ring geometry. If the ring is thick enough

(thicker than Ap) the total magnetic flux threading the ring is quantized.

B. Anderson-Higgs mechanism

We consider again the GL free energy density (action):

b 1 . 2 -\ P B?
F = a0+ [0+ — |(—inV + =4 0| +—
2 4dm c 8
1 . 2 - . 2 - V x A)2
= o w4 Yo (e = 228) o | (i 228 we] £ XA o
2 4dm c c s

11



Consider small fluctuations around the real solution ¥y = y/—a/b.
U(r) = o + ¢1(F) + 1¢2(7) (38)

where ¢ and ¢, are real. Considering also fT(F’) to be small we expand the action to second

order in ¢1, ¢o and A:

1 26 2 N 2 = 2 d 2 26 — =
2 - - = 2 2 2 <€
i = o (%) (4)" e (T) e (%) on (%) wo (450,
Vi A2
— 2a¢? + (V8X—7TA) + higher orders . (39)

We still have the gauge freedom:
Al=A+Vy , V¥V =UVexp {—gx] : (40)
c

To keep A" small we perform an infinitesimal gauge transformation, which then reduces to

U~ (1 —ix) = (Wo + ¢1 +ig)(1 — ix), where ¥ = 2. In terms of the deviations we

obtain

Pr =1+ @X Py =d2— X — YoX . (41)
We can always find a gauge transformation such that ¢, = 0. In our expansion this is
achieved with ¥ ~ ¢o/Wo. Thus x is of the first order in fluctuations and the terms —¢;x
and ¢ox are of the second order and can be dropped. Dropping the primes we obtain

e \?
— A,I 2 1 2 2 N2
n (VSX—) 4 g (f) VA <A> + higher orders
T

_ (ﬁ >2+22¢2 42 (V x A)? + 7.2 (J)Q + higher orders (42)
= 01 E 707 o 7 igher orders

Thus we obtain two modes. The first mode, ¢, called also Higgs mode, has a characteristic

length, which coincides with the coherence length & (we have defined & = \/fmiw, this explains

factor 2). The second mode is described by field A. The transversal components of A are
characterized by the London penetration depth (cf. Eq. (29)), i.e.,
8t [2e\” 4re’n
NP=— (=) vi=—2 43
L am ( c ) 0 mc? (43)
This can also be seen as the photon mass. Our theory has no time-dependence, but is

otherwise complete with respect to the transversal components of the field A. This means,

12



in the relativistic dispersion relation E? = p%c* + ¢?p? we should take F = hw = 0. Then

p? = —p2c®. Since p? < 0, we obtain spatial decay, i.e., penetration depth. Identifying
p? = —hzx\ZQ, we obtain the photon mass
dme?n,
(e = B2 = ()2 (44)
m
Here
4re’n,
2 s
Wy, = 45
5= (45)

is the plasma frequency of the superconducting electronic liquid. At T = 0 (ns = n) it
coincides with the usual plasma frequency.

The variation of (42) with respect to the longitudinal component of A results simply in
fT” = 0. Thus, unlike in full Higgs case, no longitudinal photon appears at w = 0. In order
to treat the longitudinal modes (plasmons) properly we have to introduce time-dependence

and the scalar potential. This is beyond the scope of this text.

C. Comparison with Higgs mechanism in quantum field theory

1
L=~ Fu P 4+ (D) (D"0) = V (W), (46)

where D, = 9, +ieA, and V() = —p?|U|> + \| U [*.

D. External field

If a superconductor is placed in an external magnetic field ﬁo the proper free energy

reads

1 - .
]—"H:/dVFH:/dVF—EHO/dVB. (47)

Here B is the total magnetic field, B = Hy + B,. Here B, is the field induced by currents in

the superconductor. Thus

b 1 . 2\ _.|° B> H,-B
fH:/dV E,+alVP? + |9* + — —ihV + A w| 4 - O . (48)
2 4dm c 8 4

Note, that this gives the same Ginsburg-Landau equations. Indeed B?/(87) — BH,/(4m) =
B? /8w + const. and we vary, actually, the field B;.

13



In the normal state we have B = Hy and Fg = F,,— HZ/(87). Deep in the superconductor

B=0and Fy = F, +a|V*+ 2|¥* = F, — 3_12) =F,— (‘;722. Thus we obtain the critical field

H., i.e., the value of Hy above which the normal state has a lower free energy. We obtain

H2/(87) = 157 and

4ma? 4 oe?

He= |5 =1y (49)
1.  Reduced Ginsburg-Landau equations
We define
U=V , o =r/\, , B =B/(HN2) , A =A/ANHN2)
7= &ch | (50)
We also define the reduced energy
N H2) T
]-"’:]-"[ ZW} (51)
and the reduced flux quantum
@ P gL 2T (52)

_ 20 9 S
0 HA2 )2 AL K

We obtain the Ginsburg-Landau equations in the reduced form (omitting the primes)

— — 2
(—M1V+A) VU4 WP =0, (53)
J=VxB=Vx(VxA) = (WV0-wvu) - [wpA, (54)
where
AL
K= — . 55
: (55)

Thus, everything depends on k.

The free energy in these units reads
2

1 — — —
]-“H:}"n—i—/dv — WP+ St + +B*=2H,- B, . (56)

<—E+A’> v
K

Integrating by parts, disregarding the boundary, and using the Ginsburg-Landau equa-

tions we obtain

1 . S o
Fug=F, + /dV {—§|‘1’|4+BQ_QB'H0} : (57)

14



E. Surface energy

Let us estimate the surface energy of an interface between superconducting and normal
phases. We assume Hy = 1/4/2 (in usual units Hy = H.), i.e., both phases are possible. In
the normal phase we have the critical magnetic field B = 1/v/2 (in usual units B = H.). In
the superconducting phase B = 0 and ¥ = 1 (in usual units ¥ = ¥;). In both phases the
free energy (106) is given by

Fu. = Fo + /dV {—%} —F. /dv {-i3} . (58)

At the possible border between the two phases both ¥ and B are changing from one asymp-

totic to the other. Such a border is then associated with the energy
1 L
J-"H—}“HC:/dV {—§|\IJ|4+(B—H0)2} : (59)

Far from the border (either |[¥| = 0 and B = Hjy or |¥| = 1 and B = 0) the integrand
vanishes. Near the border the balance between the two terms is violated. One of them
dominates and we obtain the surface energy which is either positive or negative.

The order parameter varies on the scale ! (£ is usual units). The magnetic field varies
on the scale 1 (Az in usual units).

We consider a quasi-one dimensional situation. All the quantities depend only on . A

is along y (A = A(z)7) and, thus, B is along z. We can take ¥ to be real. Then
K2VAU 4 (1 — AU — 0P =0, (60)

VZA-V2A=0. (61)

Consider 2 cases:

a) & > A (k < 1)(superconductor of the 1-st type). In this case there is a layer on
the interface of thickness & where the magnetic field has already vanished and the order
parameter has not yet grown, i.e., the state is normal. We see that there is an additional
cost of ~ & g—f per unit of area. The logic: the work of expelling the magnetic field has
been performed but no energy reduction through the order parameter appearance. Thus the
surface energy is positive in this case and the system avoids interfaces.

b) ¢ < A (k > 1)(superconductor of the 2-nd type). In this case there is a layer

of thickness \;, where the magnetic field is present and also the order parameter has its

15



FIG. 4: Surface energy for £ > A\p,

HZ
8w

bulk value. The surface energy is then negative and equal ~ —A;==. The logic: magnetic

field not expelled in the layer, thus no energy cost. The energy is reduced by having the

superconducting order parameter. Thus the system likes to have interfaces.

\f’\ 4%/%

FIG. 5: Surface energy for A\, > &

The critical value of x at which the surface energy vanishes is given by k. =1/ V2.

F. Type II superconductors, H.

For k > k., = 1/4/2 the surface energy is negative. Thus the system could profit by
having a non-homogeneous order parameter. We want to understand at what magnetic field
a non-homogeneous superconducting order parameter could start appearing. For this we
assume |V| < 1 (in GL units) and linearize the GL equations.

We consider again a quasi-one dimensional situation. All the quantities depend only on

z. Alis along y (ff = A(z)y) and, thus, B is along z. We can take ¥ to be real. Then
K2VAU + (1 — AU — 0P =0, (62)
VZA-T?A=0. (63)

16



For ¥ « 1 we can linearize:
K2VAU 4 (1 - AU =0, (64)

VZA=0. (65)

The last equation gives A = Bx = Hyx. Here Hj is the external field. The superconductor

does not screen yet. Then, from the first equation we obtain
KTEVAU A+ (1 — HZx?)U =0 . (66)

We want to find the field Hy at which an infinitesimal solution with ¥ — 0 for x — *oo

can appear. We rewrite as a Schrodinger equation
~V2V + K H32*U = kU (67)

This equation has the same form as the usual Schrédinger equation of a harmonic oscillator

h2 ) mw2 )
_%V \11+Tx\11_hw(n+1/2)\11. (68)

By comparing the coefficients we get m = h?/2, K?HZ = mw?/2 = h*w?/4, and k? =

hw(n +1/2). We get
2

hw=— =2xkH, . 69
Y= vy o (69)
Thus solutions exist for
K
= ) 70
O o1 (70)

We are interested in the biggest possible Hy at which the infinitesimal solution is possible,
i.e., n = 0. This gives

HCQ = K. (71)

In the usual units

Hey = kV2H, . (72)

For k > 1//2 we have H,, > H,.

G. Abrikosov vortex

It turns out that in the mixed phase at fields H. < Hy < H. magnetic field penetrates

the superconductor in form of vortices (Abrikosov vortices). Actually, this penetration starts

17



H

FIG. 6: Type II superconductors. Two critical fields H. and H.. Below we will introduce yet
another field H,;.

even at a lower field H.; < H.. Each vortex carries the magnetic flux of ®,. Here we consider
just a single vortex. In reality vortexes form a lattice.
We work in GL units. Consider an Ansatz: ¥ = feX. Then the second GL equation
(Eq. (54)) reduces to
j=-f7, (73)
where
T, =k"'Wx+A (74)
is the "superconducting velocity” in the GL units. We introduce polar coordinates (7, )
and try to find a solution of the form f = f(r), @ = v(r)é,, A = a(r)é,. For a single vortex
we take y = —p. Then ¢ ﬁxdf = —2m. Far from the vortex center we expect no current,
this 7, — 0. This would mean that § Adl = 2w s~ = @, (in the reduced units). Thus the
magnetic flux is equal to &y and our choice corresponds to a single vortex.

18)

From this we obtain (using V = é}% + €1 35

o1
@:(_7¢+Mm>@, (75)
or v(r) = —(kr)~! + a(r) (notice the singularity at » = 0). Substituting this Ansatz into

the first GL equation (Eq. (53)) we obtain

—/{_2<d2f+1ﬂ)+v2f:f—f3. (76)

dr? " rdr
We have used the fact that in polar coordinates V2 = 92/0r% + (1/r)d/0r + (1/r2)0%/d¢>.
In our Ansatz B = B(r)é.. Therefore

VxB=—-—¢,. (77)



We have used here

S B (1832 - an) - (6)BT - 8Bz) : +% <8(rBS0) - 8BT) 5 )

r 0y 0z 0z or or Op
This gives
dB
) P (79)
Finally, using A = a(r)é, we obtain
L. .14 }
B=VxA= o [ra(r)] €, (80)
Using v(r) = —(kr)~! + a(r) we obtain for r > 0
B = [ralr)] = defdr + (1) 1)
= [ro(r)] = dv/dr T .

The full version of this equation should include r = 0. There is a singularity there. Indeed

from (75) we get

V X ¥ = =K'V X (e—“’) +VXA=—r1208(r)E, +V x A . (82)

B=VxA=V x0,+r'21(r)é, . (83)

Let us collect the equations for r > 0:

U _ Pyt (55)
B- %d% ro(r)] = du/dr + (1/r)o . (86)

The last two equations give

Ve —v/rt = o (87)

The boundary conditions read f(r — o0) = 1, v(r — oo0) = 0. For r — 0 we have to
demand that a(r) does not diverge, thus v(r) &~ —(kr)~! for r — 0.

Multiplying (87) by r? we obtain
2"+ — (fr*+ 1) =0. (88)

19



For r > =1 (r > £ in normal units) we have f ~ 1 and we get the modified Bessel equation
20" + v — (1 +n*v =0 (89)

with n = 1. The solutions vanishing at » — oo are the modified Bessel functions of the

second kind K,(r). Thus we obtain
v(r) o< Ky(r) (90)
with the asymptotic behavior at large r > 1 (r > Ar)

Ki(r) ~ \/ere_r 1+0(1/r)] . (91)

The differential equation (89) is linear, thus it does not give the constant in front of K;(r).
To find this constant we use the asymptotic behavior Ki(r) ~ 1/r for r < 1. Comparing
this with v(r) = —(kr)~! + a(r) we obtain

v(r) = —-Ki(r)/k . (92)
From this we get
B(r) =dv/dr + (1/r)v = Ko(r)/k . (93)
The asymptotic behavior reads
B(r) ~ % In(1/r) for 1/k<r<li, (94)

and

1/ _,
B(T)Ngﬁ/ge for r>1. (95)

The logarithmic divergency is cut off in the core, for r < 1/k. Thus, approximately,

B(r)~ — In(k) for r<1/k. (96)

d? 1d
—K 2 (—f + ——f) +v*f=f—f° (97)
r
and consider the domain r < 1 (r < Az in normal units). Then v ~ —(xr)~! and we get

2 (d?f ldf 1

dr?  rdr 12

f) — P (98)

20



For 1> r > k! (A > r > &) we can expect that f is already close to 1 and thus the

derivatives can be neglected. Then
-2 1 3
()=, 0

which has the solution

1
=1 —— . 100
f (HT)Q ( )
This is consistent with the assumption f ~ 1.
Finally, for r < k71 (r < £) we can assume f < 1. Then one can try an Ansatz
f = Ci(kr) + Co(kr)? + Ca(kr)® + ... (101)

Substituting we get Cy = 0, C3 = —C7/8. The Ansatz seems to work. The coefficient C

one can get from the numerical integration.

B[r))«"lr) N
£t —(g.)

FIG. 7: Abrikosov vortex. Magnetic field B(r) and the order parameter f(r).

H. Energy of the Abrikosov vortex. Field H..

We consider type II superconductors with x > 1. The question is at what field vortices
start to appear. A naive ansver would be H.. It turns out this happens at a lower field
H. < H.. To estimate H.; we have to calculate the free energy of the vortex.

We use again

1 — —
.FH:.F——HO/dVB, (102)
47
where
b 1 - 2 -\ _|* B2
}":/dV Fn+a|\IJ|2+—|\I/|4+— —ihV+—€A Ul +— > . (103)
2 4dm c 8
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In the reduced units, which we will use here these read

]—"Hz]-"—Zﬁo/dVE, (104)

(—iqtff) v
K

Integrating by parts, disregarding the boundary, and using the Ginsburg-Landau equa-

and
2

1 _
}“:]-"n+/dv —\\Il|2+§|\11|4+ +B% . (105)

tions we obtain
1 —
F="Fn+ /dV {—§|\D|4+B2} : (106)
In the case of a vortex it is very easy to calculate the contribution of the external field.

Since the total flux of the magnetic field in the vortex is given by &, we obtain
2 H, / dV B = 2 Hy®,L , (107)

where L is the length of the vortex line.
Using the solution obtained above one can calculate the free energy of the vortex per unit
length, i.e.,
F =¢€lL. (108)

The penetration of vortices starts if the negative contribution due to the external field wins,

ie., if
2Hy®y > €. (109)
A calculation (exercise) gives
2m
e~ Ink . (110)

For the critical field H,.; we should have

2m
2H61(D0: ﬁlnlﬂ . (111)
Using ®¢ = 27/k (in the reduced units) we get
1
Hcl = %hl/i . (112)
In the usual units this gives
H,
Hy~—F=Ink. (113)
KV 2

The phase diagram is shown in Fig. 8
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FIG. 8: Phase diagram of type II superconductors for x > 1. The mixed phase realizes for
H. < Hy < Heo.

I. Pearl vortex

In thin films vortices look differently. Moreover, even in films of type I superconductor
such vortices can appear. This limit has been discussed by J. Pearl [1].

Consider a thin film of type II superconductor in the (z,y) plane (z = 0). The thickness
of the film is d < A\p. Then we can consider the current density f, the order parameter, and

the vector potential A to be almost independent of z within the film. Recall the London

equation
- c -  hcso
s = — A+ — : 114
J 4\ ( T2 qu) (114)
Here j, is the 3D current density. The 2D current density in the film is then given by
Jo—dj = —— (A% (115)
T T T 2¢ 7))

where A = A% /d > A, is the so called Pearl length. For the 3D current density we can then

write
- c

: > > hcs
i, 2) = Le)ale) = -5 (445590 a(6). (116
This gives rise to a 3D equation

— — -, 4 - 1 nd h 4
V x (V x A) = %js = <A+2—Zv¢) 5(z) . (117)

Consider the Coulomb gauge for /T, ie., VA = 0. Then we obtain

(/ﬂ @ﬁ¢> 5(2) . (118)



-

We introduce for brevity ®(x,y) = Z—gﬁ¢ We now perform a 3D Fourier transform of

Eq. (118). We introduce k = (g, k), where = (ky, k,). We obtain
(2 + ) AR = 1 (A0 + 8@) -
Here the 3D Fourier transform reads
Ak) = /dazdydz Az, y, )" harthyy+haz)
whereas the 2D Fourier transforms are

Aé(g) = /dmdy ff(%y,O)e‘i(’“eryy) ’

and
3(q) = /dxdy B (xz,y)e kv thuy)
Since
- dk,dk,dk, -, - .
A _ [ GRalRyAR: 2 ilkeatkyy)
(@..0) = [ LR A
we obtain

- dk, -
As(q) = = A(q, k) .
A0 = [ 5 Ak
From Eq. (119) we obtain

oo 1 1/ -
Aak) = 1 (2@ + @) -

Integrating over k., gives

A = —2qu (A + 3@) -

Here ¢ = |¢] = v/¢?. This allows us to express both A, and A via . Namely

M (7

Aa(q) = 1+2Aq’
and .
L 2qP

A k) = -t

(> +k2)(1+2Aq)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

Recall that 5(:1:, y) = h—g§¢ has as a vector only two components. Thus also A (as well as

2

fTQ) has only components A, and A,.
For the 2D current density we get
- c - c = 2Aq
Jp=—- <A <I>> -3 .
(@) =~ (A2t A TR,

24

(129)



Let us consider a single vortex: ¢(z,y) = —p = cos™(z/y/2% + y?). Here ¢ is the angle
in the polar coordinates. As we have already seen in the discussion about the Abrikosov
vortices (using V = e +e,t %) we obtain & = —20 ¢, and V X ® = —Byd(z)d(y)é..
The Fourier image of this relation reads

— -

[V X ®ls =i x B = —Byé, . (130)

Both ¢ and ® lie in the x,y plain. Thus

B(q) = —io[q x &) /q* . (131)
We obtain . o
Al@) = — i(g)\q - @O% , (132)
For the magnetic field at z = 0 we obtain
Bud) = i x Al@) = (133

One can perform the Fourier transforms and obtain the current, the vector potential and
the magnetic field in the coordinate representation (exercise). However it is already clear
that the behavior changes at a distance of order A from the vortex core. If r < A this

corresponds roughly to ¢ > 1/A. Then from

- c T c - 2Aq c =
=—— (Ay+P)=——-0 ~——-® 134
(@) 47TA< 2+ ) AA @1+2Aq AA (@) (134)

we see that the contribution of Ay can be neglected and the current is fully determined by
the gradient of the phase of the order parameter ®. In this regime |J| o< 1/r. For r > A
one can show that |J] o< 1/72.

For superconductor of type I the same theory applies as long as A > £. For this we need
N Jd > € e, d<< N2 /E.

The theory presented above does not describe the core of the vortex, where

the order parameter is suppressed.

J. Josephson Effect from GL theory

Consider a bridge geometry as shown in Fig. 9.

25



FIG. 9: A bridge geometry leading to Josephson effect.
The GL equation in normal units reads

1 S 2 2\
4—<—ihv+h—iA) U+ aV + b|V|*¥ = 0 (135)

m

In the bridge is ¥ only on x dependent. We consider zero magnetic field, i.e., A = 0. Thus:
n o

— U4 a¥ + bV =0. 136

gz Y T el oY (136)

We introduce f(z) = ¥(z)/ ¥y, where U2 = —a/b (remember a < 0). We divide in addition
by |a|. This gives

92
2 2
@ = FHIfPf =0 (137)
As boundary conditions we take
f(aj = O) = ei¢)1 s
flx=1L) = &% . (138)

Assume the bridge is much shorter than the coherence length, L < £. Then the first term

is dominant and we should solve — 286—;2 f = 0. The solution is straightforward:

f(z) = <1 - %) e 4 %ei@ . (139)

Note that such a solution corresponds to a suppression of the order parameter in the middle

of the bridge. Indeed
= (-2 (2 () (emsn. am

where A¢ = ¢y — ¢1. For example, for A¢ = 7/2, we have |f(L/2)]* =1/2.

Let us calculate the current

j= 2 (qf*ﬁqf - \W\IJ*) . (141)



We obtain

- eh .
j= —E\IJ(Q) sin(Ag) . (142)
For the total current we multiply by the cross section area S and obtain
ehWis
[ =—I.sin(A h I,=—23% . 143
sin(A¢) , where — (143)

The minus sign here is consistent with the London equation in the bulk of a superconductor:

- c - hecso
A A+, 144
b= Tz < T2 W) (144)

VII. BCS THEORY
A. Attraction due to phonons

A somewhat simplified description of the interaction between electrons and phonons is
provided by the following Frohlich Hamiltonian:
Haon = S M(@) by oro [an— at q} . (145)
k,q,0
The main simplifications here the neglecting of the umklapp processes and the restriction
to a single phonon mode (longitudinal, acoustic). The matrix element M (q) must satisfy
M(~3) = M(@)"
Consider a process (Fig. 10) in which an electron with momentum k1 emits virtually a
phonon with momentum ¢, so that its new momentum is ky — ¢. Then an electron with

momentum Eg absorbs the photon and its momentum becomes IZQ +q.

;//@ - M(_;’/ 11_,7__;&}_
[ [
’ét'mg | ? /
—> —
I, , 6, | M(7)
I |
E:g \ E,/ \1 Ea
FIG. 10: .
In the initial state the energy is Ey = € + €. In the virtual state the energy is

E, = € —q T €, T heog.
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The second order amplitude of this process reads

M(q)|? M(q))?
M@E _ M@ -
Eo — El EEI — 6/21*(? - hwq

Another process which interferes with the first one is as follows. Electron with momentum

e — ~7 o
AN 7)1, 81
! [
‘él‘l"’le | (»/
1, -7 //Z+?, 6,
iZ,, 6, M7
| |
';0 \ E// \1 Ea
FIG. 11: .

EQ emits a phonon with momentum —¢. Then electron with momentum El absorbs the
phonon. The energy Ej of the intermediate state in this case reads Ey = € + € | it hewg.

The amplitude reads

M(q)|? M(q)|?
M@ _ M@ (147)
EO_El €x —hwq

2 €E2+t§'

Conservation of energy requires ez + €z = € _ it € The total amplitude reads
| M(q)]” N | M(q)|”
e I, €y~ Ford — I,
2|M () |*h

(€5, — €r,_q)? — (Twy)?

We observe that if |e; — e,;rq\ < w, the sign of the interaction matrix element is negative,

i.e., we obtain attraction. We take into account that around the Fermi surface ¢;; ~ hv N
kr). In addition w, ~ cq, where c is the sound velocity. We notice that ¢ < vp and
the highest density of state of phonons is around ¢ ~ ¢p, or w, ~ wp. Since the Debye
momentum is very large (of order kr), we can satisfy the condition |e; — € _ (j| < wy only
if both €z and €f,_g are near the Fermi surface. That is, even if ¢ ~ gp (the typical case)
we have hcgp = hwp < ep. Therefore €7 and € should be within Awp from ep.

We introduce

Voo 2AM@PRe, _ Guksa
R e el ()

(149)
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(Introduction of g is convenient since g does not contain extensive quantities like V' or N.
The dimensionality of g is energy x volume). This amplitude is only taken on-shell as far

as electrons are concerned. Thus

2

2
(er, — €p,—g)” = (&5, — €g,04)

That is the effective second quantized interaction between electrons due to phonons reads

1 t f
He_e1—pn = 5 E Gk1,k2,0 Chy +q.01 Cha—q.o Ch,0a Chir o (150)

k1,01,k2,02,q

The noninteracting Hamiltonian reads

Hy = Z ekcl’g Ch.o (151)
k,o

B. Cooper problem (L. Cooper 1955)

The interaction is attractive and considerable as long as the energy transfer |e; —e E1—§| <
hwy < hwp. We simplify the model as follows:
—q if \e,;l — ep| < hwp and |6E17qﬂ— er| < hwp

Gkr oy = _ (152)
0 otherwise

Cooper considered a pair of electrons above the filled Fermi sphere. That is the Fermi

sphere is given by

@)= [ i l0) . (153)

k<kp,o

Cooper explored the following state

|q)> = Z ¢(k517 01, k?) 0—2)621,01622702 |q)0> (154)

k1>kp,01,ko>kp,o

The wave function ¢ (ky, 01, ke, 02) is antisymmetric, i.e, ¥(ky, 01, ko, 09) = —(ka, 09, k1, 071)
(indeed the second quantization is organized so that even if we use here not an antisym-
metric function, only the antisymmetric part will be important). We use ¥(ky, 01, ka, 09) =

a(ky, ka)x(o1,09). Further we restrict ourselves to the states with zero total momentum,
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El + EQ = 0. We also restrict ourselves to the layer of states with energies [Er, Er + hwp].

Any pair out of this layer interacts with any other pair. Thus

@) = > a(F)x(o1,02)c), e 4. [@0)

Erp<er<Ep+hwp,o1,02

The Schrodinger equation reads
E|®) = (Ho + Her—ci—pn) |P)
We count the energy from the energy of the filled Fermi sphere. Then

E|®) = Y 2ea(k)x(01,02)c}, ¢y, [00)

k,o1,02

g —.
- V a(k)X(Ul’ OQ)CL—H],Gchr—k—q,og ‘(I)0>
k,01,02,q
This gives
(26, — B)a(k) = % Y alk)
EF<6k1 <Ep+hwp
We denote
1
EF<6k1 <EF+th
and obtain
gC
k)= ———
k) = G — By

Summing this equation we obtain

1 gC
C=v 2 (2¢, — E)

EF<€k1<EF+hWD
We obtain equation for £
Ep+hwp ( )
v(e)g
1= de——"—
(2¢e — E)
Er

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

Approximating the density of states by a constant v(e) = v (this is density of states per

spin) we obtain
1 1 1 EF + th — E/2
— = —1In
gro 2 Er—E/2

Thus
2EF + 2th —F 2

2Er—E "
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(2Ep — E)(em — 1) = 2hwp (165)
For weak coupling gy < 1 we obtain
2Ep — E = 2hwpe 70 (166)
E = 2Ep — 2hwpe 70 (167)
The binding energy per electron is then found from F = 2Fr — 2A

A = hwpe (168)

1. Symmetry

Since a(k) = «a(—k), i.e, symmetric, the spin part of the wave function xy must be

antisymmetric - singlet. That is x(11) = x({4) = 0 and x (1) = —x({1) = 1/V2.

C. BCS state (J. Bardeen, L. Cooper, and R. Schrieffer (BCS), 1957)

1) Everything done in the grand canonical ensemble. The grand canonical partition

function
ZQ = Z e—ﬁ(En,N_NN) (169)
n,N

shows that at 7' = 0 one has to minimize H; = H — uN.
We obtain

DN | —

g
Hg = Z(Ek - /L)CL,U Ck,o — V Z CLJrq,al 01]'.627(1,0‘2 Cky,02 Chy,01 (17())

ko k1,01,k2,02,q
where the interaction term works only if the energy transfer €, ., — €, is smaller than the
Debye energy hwp. One can also see (Fig. 12) that under this restriction the phase space
available for the interaction is maximal if K = El + EQ ~ 0.

Although the Hamiltonian conserves the number of particles, BCS constructed a trial
wave function which is a superposition of different numbers of particles:

|BCS) = [ [(w + vech ¢y, )) 10) (171)
k

with the purpose to use u; and vy, as variational parameters and minimize (BC'S| Hg |BC'S).
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FIG. 12: For K = 0 the phase space available for interaction is much bigger.

For this purpose one can introduce a reduced BSC Hamiltonian. Only terms of this

Hamiltonian will contribute to the average with BCS trial functions. The reduced Hamilto-

nian is the one in which k; = —ko and o; = —o9:

Hpcs = Z(Ek - M)C};,U Cho —

k,o k,q,0

NO| —

Renaming k' = k + ¢ we obtain

— ] lyg
Hges = Y (ex — p)ck, Cro — IV o o Cto Ch
k,o k,k' o

or

g
HBCS = Z(Ek - /J/)C‘I];’a- Ck,‘p’ - V Z CL/’T CT—k’,\L C_khl/ Ck;]\ 5
k,o kK’

Also the condition on k and k' gets simplified. We just demand that

u—th<ek,ek/<,u+th.

1. Averages

Normalization:

1 = (BCS|BCS) = (0| H Uy, + Uy Coky | Ch 1) I_I(Uk1 + vklclmcikw) 0)

k‘g k’l

= J[Cluxl® +loel?) -

k

g o
V Ck+q,<7 —k—q, —o C=k,—o Chkyo -

(172)

(173)

(174)

(175)

(176)

We further restrict ourselves to real u; and vy such that u} + v = 1. Thus only one of

them is independent. The following parametrization is helpful: u; = cos ¢y, vg
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We obtain

(BCS|d} ;s | BCS)

= (O [ [ (ke + vrsCrrsint)eh s e [ [ (i + vrach, 1ty 1) 10)
k)z kl

(BCS|d},| cx,y |BCS)

= (O] [ [ (i + vrsC—tosint)eh ) ey [ [ (i + vrach, 1ty 1) 10)
ko k1

—= U*k

<BCS‘ CL/,T Cik’& C_k,| Ckt ‘BCS>

= (O] [ [ (i + vrsCtn s hat) oy o oy crn [ [ (s + vkicf, 1¢h i 1) 10)

ko k1
= ULVEUk Vgt

This gives

<BCS| HBCS |BCS> = 2;(6k - ,U,)Ui - %%ukvkuk/vk/

or in terms of the angle ¢y

1

<BCS| HBCS |BCS> =2 ka Sin2 qbk - —g sm(Zgbk) sin(2¢k/) .
k

4V

k'
where &, = €, — p.
We vary with respect to ¢

0
Dby,

(note extra factor 2 in the second term due to the permutation k < £').

We introduce A = £ 3 upvp = 5% >, sin(2¢y) and obtain
&k sin(2¢y) = A cos(2¢%)

33

= (BOS| Hpos |BOS) = 26 sin(26,) — % cos(261) Y sin(2¢1) = 0.
X

(177)

(178)

(179)

(180)

(181)

(182)

(183)



or in terms of v and wuy

26 e = A(ui — i) .

(184)

Trivial solution: A = 0. E.g., the Fermi sea: u;, = 0 and vy = 1 for ¢, < p and up =1

and v = 0 for e, > p.

We look for nontrivial solutions: A # 0. Then from & sin 2¢;, = A cos 2¢; we obtain

A
&k

sin 2¢k = QUkUk =

cos 20y, = u; — Vi =

It is now possible to find v and v}.

02 = sin? ¢y, = 1 — cos 2¢y, :1_ &k
g 2 2 2,/A21¢2
1
uizl—vz:——i- S

2 2 /ATy

These functions are shown in Fig. 13.

wmB M v‘:'*b Ey
FIG. 13: Functions v,% and v,%.

From the definition of A = % >, urUr We obtain the self-consistency equation

g A
A=—"— _—
ZVXIC:,/A2+§]§

or
hwp
g 1 gvo / 1
1 = — _ — d —_—
2V§ VAT (e —p)? 2 5\/A2+£2
—hwp
hwp/A
1 hwp /A 2hw
= guy / dwﬁ = gvp In(vV1+ 22+ 2) . ~ g1 ln AD

0
We have assumed A < hwp.

This gives
A= 27le67$
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(189)
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2. Total energy

We want to convince ourselves that the total energy of the new state is lower that the

energy of the trivial solution (fully filled Fermi sphere).

EBC’S = <BCS’ HBCS |BOS> =2 Z(Ek — ,u)v,i — %Zukvkuk/vk/
k kK

=2 (e — vy — A ugy (192)
k k

whereas
ENorm = (Norm| Hgcs |[Norm) = 2 Z(ek — )0 — €x) . (193)
k
We obtain
AE = Egcs — Enorm = 2Z(ek —p)(vp =0 —e)) — AZukvk , (194)
k k
With &, = e, — p,
. 1 — cos 2¢kz 1 fk
2
N _ S Sk 1
v; = sin® ¢ 5 NI, (195)
and
A
UpVp = ——— 196
= e (196)
we obtain

_ Lo &% gl o A

hwp
_ N I
AR — V/ vode (25 [2 WICE= o( f)] 2\/A27+§2)
hwp 62 A2
=2V [ wpdt lf— JATrae 2 /APt &

zm) (198)

The last integral is convergent and for hwp > A can be taken to co. The integral gives

—1/4. Thus

= 2V, A? / (x—\/1+x2+
0

2
AE — _y 2

(199)

Roughly energy A per electron in window of energies of order A.
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D. Excitations

We want to consider the BCS ground state as vacuum and find the quasiparticle excita-

tions above it. Let us start with the normal state, i.e., vy = 6(—¢&;) and ux = 6(&). For

& > 0 we have

Cko |[Norm) =0

while for & < 0

0;270 |Norm) =0
we introduce
Cho 1f & >0
tct, , if & <0
or equivalently

_ T
Qo = UkCl o T UkCp o

(the sign to be chosen).

We see, thus, that ay, |[Norm) = 0, whereas

T T
Q. , = UkCy 5 T UpC_ o

creates an excitation of energy |&x|.

For the BCS state we obtain

ko |[BCS) = (ugcnq £ vpel ) [ [ (g + vec] 1ct, 1) 10)

q

We see that the proper choice of sign is

_ 1
Ao = UkCko — O’UkC_k’_g

and
Ok o |BCS> =0.
The conjugated (creation) operator reads

.I.

— T
ak,o = ukc,w — OVC—f,—¢

One can CheCk the commutation relalions
« OKT = 5 5
ko> ko’ k,k'Yo,0’
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{Oék,g,ak/7g’}+ =0 {Oé};a,OéL, J’} =0 (210)
b b +
The inverse relations read:

T 1

_ _ T
Cho = UkQko +OovRQl, ¢ = upay , + OOk (211)

We can show now that in the BCS ground state the expectation values (c_j | cx4) and

(c,lT cT_h 1) do not vanish. They can be calculated explicitly

Using
CLT CT—M = (uka,t,T + vkoz_k7¢)(ukaiw — Utk 1)
= uia,tyTaT_w — VR g + upvR(l — O‘LTO%,T — OzT_k7¢a,k7¢) (212)
and
Cop Chp = UpQ_j, | O g — 'U,%OzLTOzT_M + upvg (1 — a,tﬁam — O‘T—k,ﬁ)‘fk,i) (213)

we obtain in the BCS ground state (c_x | cx4) = vgug and (c,t’T CT—I«:,¢> = viuy. This follows

from ay, |BCS) = 0 and (BCS| o], = 0.

1. Mean field

We adopt the mean field approximation for the BCS Hamiltonian.

9
HBCS = Z(Ek — ,LL)C};U Cko — V Z CL/,T CT—kﬂi C—k,| Ckr - (214)
k.o kk

Note that in the interaction the terms with & = k&’ are absent, since the matrix element of
the electron-phonon interaction is proportional to the momentum transfer ¢ = k — k’. Thus
the only averages we can extract in the interaction term are (c_j ¢ 1) and (cL’T Cik, DL

We use
AB = (A)(B) + (A) (B — (B)) + (A= (A)) (B) + (A= (A))(B — (4))

and neglect the last term, which leads to
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. We introduce A = & 3" (c_p  cry) = & Zk(cm cf "1.1)- The mean field Hamiltonian reads

g
Hyds = D (ex — p)el, o + v D kgl ) (eonyer)

k,o kK
g g
— V Z <CL/,T Cik/7¢> Ck | Chtr — v Z C;r%T CT—I@’,¢ <C_k,¢ Ck,T>
k,k' k,k'
f Fot A
= Z fkck,g Cko — Z AC_k7¢ Ckr — Z Ackﬁ Cik& + V; (215)
k k k

Substituting the expressions for ¢ operators in terms of o operators we obtain a diagonal

Hamiltonian (exercise)

H= Z EkaLU Q. + const. | (216)
k,o

where Ej, = /A% + &2
For proof one needs
et — (ol f
kgt Ckt T Cg C—k| = (ukam + vpo—g, ) (upQurs + Ukafm)
+upal ), | — veon) (uper_g,y — vrer) ;)

= (ui — UI%)(C“L,TO%,T + aik7¢a,k7¢) + 208 + Zukvk(a%aim + o opr)  (217)

2. Nambu formalism

Another way to get the same is to use the Nambu spinors. First we obtain
2

& —A c A
Y =" ( chy iy ) ST ) G oy + V7 (218)
k - k

A0 cim

Next we rewrite ), SkcL¢ cry = > . &(1 —cpycl =208 —cpy el ki) This gives

& —A c A2
H =" ( chy o, ) e etV (219)

k —A =&, C k g
The eigenvalues of the matrix S read +FEy, where Ej, = /A% + &2, For the

A -5,
eigenvectors we get
—-A u u
&k k _ 5, k (220)
—A =& Uk Uk
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and

—A
&k O I (221)
-A —& U Uk
Thus
—A E. 0
ot [ v=|"" , (222)
—A & 0 —Ej
where
U= R (223)
—Vk Uk
We obtain

fk —A Cp. A2

MF __ N

Hgeg = E (CL,T cf,m>UUT A Uut ; + g &—FV? (224)
k A - d ) T

We use the diagonalization (222) and the Bogoliubov transformation written in the matrix

to obtain
Ek 0 (8% AQ
MF _ k.t
Hpos = Z < oz,i}T gy ) 0 g : + Z&“ + V? (226)
k Lk Ok k

Using again the commutation relations for the a operators we obtain

AQ
Hyls =Y Epal jope+ ) (& — Ex) + V7 . (227)
k,o k

3. 4X4 Nambu formalism

In the 2X2 Nambu formalism presented above we have explicitly broken the symmetry
between spin up and spin down. There is a way to do the same without breaking the

symmetry. Introduce a 4-spinor ( Cot CT—M _CT—kT ) Then

0 & 0 0 ¢ A2
HYE =" (ehy ey ey —coir ) ol evE L (o)
7T k»l/ _k»l/ _k’T
p ~A 0 0 0 el 9
00 0 0/ \—c,,
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One observes, however, that there is a redundancy here and we can rewrite

& 0 —A/2 0 Cho
0 &k 0 —A/2 Cp
HYE = (cT e, —c ) v
; BRI A2 0 00 0 .y
0 -A/2 0 0 —c 4
A2
LvA (229)
g

Also the kinetic energy can be written in a more symmetric form

1 0 fk 0 —-A C
MF _ - t t k|
HBCS - 2 ;(Cva Ck,\L C—k:,¢ _C_kyT) _A 0 _é_k 0 CT
,k‘,i
0 A 0 =&/ \ -,
A2
+ Z§k+v . (230)

E. Finite temperature

We obtained the energy spectrum Ej, = /A2 + &7 in the mean-field approximation as-
suming that (c_j cr+) = vpug, where the averaging is in the ground state, i.e., there are
no quasi-particles excited. For T" > 0 some quasi-particles get excited and the value of

(c_g, ¢kt ) changes. Namely, we obtain
<C—k,,LCk,T> = vkuk(l - an) y (231)

where ny, = f(Ey) = Zr7-
If we still want to have the Hamiltonian diagonalized by the Bogoliubov transformation,

we have to redefine A as
g Z C_ klckT Zukvk 1 — an (232)

Then, however, A is temperature dependent and thus Ej, = /A2 + £ is also temperature
dependent. We must do everything self-consistently.
From
A

UV = —F———— 233
= e (233)
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we obtain the new self-consistency equation

BE}

g A
A= N 2 tann (234)
2V ; JA & 2
To find the critical temperature 7, we assume that A(7,.) = 0. This gives
Lgel P s TR
g i anh 5> anh
2V el 2 g”“/gs mo [ 6 259
0 0
Assuming y = hwp/(2kgT,.) > 1 we can roughly estimate
[ tamha  [d
/ iy R W (236)
x T
0 1/2
This gives
th
= 1 237
ol 1 (237
or
1 A(T=0
k‘BTc = the 9o = % (238)
More precise calculation gives
_1 A(T=0
kgT,. = 1.14hwpe w0 = % (239)

For T'~ T, and T < T, one can obtain

T
A(T) = 3.06ksTo\[1 — = (240)

1. More precise derivation

We have to minimize the grand canonical potential Q = U — uN —T'S = (Hpcs) — T'S.

For the density matrix we take (the variational ansatz)
PRI S (241)
Z Y

where ny , = ozL -Oko are the occupation number operators of the quasi-particles while Ej,

are the energies of the quasiparticles (to be determined). Here
Qo = UpCho — UUk;CT,k’,g (242)
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with v = sin ¢, and uy, = cos ¢, and ¢y, is another variational parameter.

We thus obtain

g
Hg/[C{TS‘ Z gk Ck o Ck, O’ - V Z <CL,T Cik’,¢> <C_k’¢ Ck,T>

Z 285, [(uj, — vp) f(Ex) + vi] — % <Z upvg(1l — Qf(Ek))>

For the entropy we have

S=—2kg Y [f(Ex) Inf(Ey) + (1— f(E)) In(1 — f(E))]

We vary with respect to ¢, and with respect to Ej. independently. This gives

o
Oy

- 279 <Z upvg(1 — Qf(Ek))> (1 —2f(E)) (uj

Introducing

we obtain the old equation

k

kK

= 4§kukvk<1 - 2f<Ek))

VZC kJ,ClcT

Ek Sin 2¢y =

2
Vg

V Zukvk 1 — an)

A cos 2¢y,

Thus all the formula remain but with new A.

00 (M) 05
8Ek a 8Ek aEk
= 26,(ui — )ﬁ—i—élAu v
k(Uj OF, KUk A
of of
_ 9. /e2 2 ZJ
= 24/ + A OE, 2E, — 9B,

Thus we obtain

F. Heat capacity

e

of
OF,

= 0.

oS

OE},

)

=0

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)



Using for S Eq. (244) we obtain

of of
— TS (—BE)L =25 B, 2L 251
Cy kg ;(ﬁk)aT g k57 (251)
Let’s introduce g(x) = ezlﬂ. Then f(Ey) = g(BEL).
of
S A—e 252
om, ~ D9 (252)
OfF _ v (g 98 L 308\ _ v (_p B 0B\ _0f (_Ex 404
or 7 (E’“aTJFﬁaT) —9 ( E’“TJFﬂaT) ~ 9B, \"T " E.0T (253)
Thus
B E. A O0A\ Of
Cv_zzk:Ek( T aT) A%, (254)
First, we analyze at T' — T,. There Fj ~ &.
With
of ~ ’ 2 ¢
op ~ TOE) — & (keT)°0"(E) (255)
and
/ T
A(T) =~ 3.06kgT.4 /1 — T (256)
We obtain for T'=1,. — 0
B _52 af / OAN%Of
Cy(T.—0) = 2V0/d£< 7 8§+V0 d. T 0
2m vk 9 o
= 3 T. + (3.06)°1pkgT. = Cy(T. + 0) + ACy (257)
Thus one obtains
ACYy
— =~ 1.43 258

Jump in 22 leads to jump in Cy (see Fig. 3).

For kgT < kgT. ~ A(0) one obtains Cy o ¢ BT

G. Microscopic derivation of London equation

We consider the BSC ground state (with real A) and add a small vector potential to the

kinetic energy. In the first quantisation

N2
(7+£4)

Hin:
b 2m

(259)
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with p'= —ihV. It is more convenient to start the derivation in the coordinate representa-

tion. We define the field
1 .
U,(r) = — ck,ge’k’" )
e

This gives in the second quantised form

. N
(<inv + £4)
Hin = 3 [ 4V W) 0 (0) = Hogan + H + O(47)
where
(& — —
_ & t _—
Hy = 2mc;/dV\Ifﬂ(7‘) <Ap—|—pA) U, (r)

- miCZ/dvqfi,(r) (/Tﬁ) U, (r)

—

(the order of operators A and § unimportant since V - A = 0).

Current. The current density is defined as follows

-2 5Hk7,n
r)=—c—— .
i) SA()

One obtains
iRV + §A’> S5A(r)

2m

—c0Hpn = —€Y / dv \If:f,(r)<

Iy T) <—zhﬁ + Eff)

SA(
= / AV Wi (r) o U, (r) .

We obtain 5': j:, + fd, where

f»_ieh
= om

(W) [V ()| = VUi 0)] o)
is usually called the paramagnetic contribution, whereas

Jalr) = = Alr) Y WL (r) W (r)

(260)

(261)

(262)

(263)

(264)

(265)

(266)

(267)

is usually called the diamagnetic contribution. Note that the jd contribution immediately

gives the London equation:

(268)



with the full electron density n.
Another contribution linear in A could come from jp. In order to calculate fp we have to
look closer at the effect of the perturbation H;. We assume the vector potential is a plane

wave with a transversal polarization
A= G el (269)

and ¢-d, = 0 (this corresponds to VA= 0). Since we study the linear response, the response
to a general A= > . c?qe""ﬁ can be calculated as a superposition. Using ¥, = % >k ck,ge“‘”
and the symmetrised form (262) we obtain

H, =

© 2me

- . he -
ChtquoCho (2K + Dg) = — > ey jonq(kdy) (270)
k,o

Nea
It is necessary to express H; via the creation and annihilation operators of the quasiparticles.

We use the Bogoliubov relations

_ T T T
Cho = UkQko +OURQL, ¢ = upoy , + OV (271)
Then
he 3 i t (ke
H, = p (quaHW + OVt O f—g—o ) (U Qg o + avka_kv_a)(kaq) ) (272)
k,o
We divide H; to two parts:
he -
a _ T T =
Hy = — (Uk+quk%+q,a@k,a + Uk-i-qvk’a—k—q,—aafk,fa) (ki) ,
k,o
he + 1 7
= = D Uk UkO g o O — Vb—qUktk—q0 05 | (Kdg)
k,o
he i i T
= (uk+quk%+q,aak,a + vk*qvkak,oak*%0> (kd,) (273)
k,o
and
he -
b _ Pt -
H} = s (U4 Uy 5O gy T+ OV qUE g o Ok o ) (Kdy) - (274)
k,o

In what follows we will also need the current operator jp expressed with the help of

quasiparticle operators. We are interested in the Fourier component ¢ of jp, ie.,
W = [ @ 275)
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From (266) we get

- eh

Jp(q) = 5 (2k + @C;gcmq,a : (276)

k,o

We obtain
- eh =
Jp(Q) = 5 Z(% +q) <“k04£,a + avka,k,,g> (ukﬂamw -+ avk+qaik_q7_0) . (2m7)
k,o

Only H? can generate corrections to the BCS ground state |0) = |BCS). The first order

correction reads
(1| Hy b 0)
=> 10 | | (278)
140

The linear in A contribution to j, then reads

(p) = (@11 [0) + (0] 7 1) - (279)
This gives
O l (1 Hb 0
10

To calculate |®;) we need the matrix elements (I| H; |0), where |lI) is an excited state.

Let us consider an excited state with two quasiparticles, namely

|l> = all—i—ql,alaikl,—al |O> ’ (28]‘)
<l| = <O| O—ky,—01 Q1 +q1,01 - (282)
We obtain
he -
<l’ Hi) |O> = % Z(kaq}o—uk-‘rqvk <0| Q—ky,—01 Qi +q1,01 O[qu,oa/ik,fa |O> (283)
k,o

We realize that the relevant terms are either those with &k = ky, ¢ = ¢, 0 = 01 or those with
—k =k +q, ¢ =q, 0 = —o1. Thus only states |l) with ¢; = ¢ are of relevance. For this

particular |I) we, thus, obtain

he ¢ - _ - .
U H?(0) = —= ((Fridy)ovun, v + (<R = @)1 ve,44)

he

= — (k1dy)o1 (Uky4+qUk, — Uk, Vky4q) (284)

For ¢ — 0 we see that the matrix element vanishes. Together with the fact that |Ey—E;| >
2A this gives "rigidity” and
{7p) =0 (285)
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To calculate the current we need also (0|, |I). We obtain
- eh -
L) 1) = =5~ D> (2 + Dovkttiry (0] ok —00kiq00), 440,004, 0, [0)  (286)
k,o
Again there are two options: 1) k = ki, 0 = 0y or 2) —k = k1 + q, 0 = —o1. We obtain

- €h
<O|Jp(Q) W = —%(%1 + q_>al(vk1uk1+q - Uk1+quk1) . (287)

This gives

- €2h2 (ECT )(2];; + cj)(vkuk — Uk Uk)2
: — 9 q +q +q
<JP(Q)> R‘e 2m20 Z Ek + Ek+q

_ T (Kiig) (2K + @) (it g — Vrqin)?

m2c ho Ek + Ek‘—‘,—q

(288)

Substituting k=—k-— ¢ and using the symmetry of Ej, v and u; we obtain (after dropping
the prime in £')

Z kaq 2k — @) (VUn g — Vergui)’ (289)
— Ey 4+ By

Thus the term ¢ from 2%k + ¢ drops and we obtain

- 221> l;(l;&'q)(vkukﬂ — VppqUi)?

<jp(Q)> = mQC — Ek; + Ek;+q

(290)

This can be in general written as
]p o) = Z Q 4)14,5 (291)

This contribution adds to the one due to the diamagnetic current. In general the relation

between the current and the vector potential reads

<]oc (D ZQaﬁ @Aﬁ _) (292>

2
Here Qo5 = ﬁ + Qa,m where Qi,ﬁ = %50475

In coordinate representation this reads
uld) = =3 [ @1 Qualr = )45 (293)
B
This is called Pippard relation.
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H. Pippard vs. London, coherence length.

The matrix element (284) vanishes for ¢ — 0. Let us analyze it more precisely. We have

fk+q \/ \/ L & Ektq
= , / Sk Sktg 294
UhkaV T UEUkg =0\ [ T o 2E,c 2 T 2m \2 T 2B, (204)

For &, < By, ~ A we obtain

1 hvrq
UketqUk = Welktg A 5 (Sherg = Ek) & 22 - (295)
This introduces the coherence length:
hv
£ = TF (296)

(one usually defines & = F“’F ’F). Interpretation: ¢ is the size of a Cooper pair.
We conclude that the kernel Q in (293) decays at the distance of order ¢. Indeed Q? is
local, whereas QP decays at £. Two limits: £ < Ay - London limit, £ > A - Pippard limit.

I. Superconducting density

At T = 0 we obtained
e’n -

j=——A4 (297)

mc

Here n is the total electron density. Note that transition to pairs does not change the result.
Namely the substitution n — n/2, m — 2m, and e — 2e leaves the result unchanged.
At T > 0 not all the electrons participate in the super current. One introduces the

superconducting density ns(7") and the normal density n,(T"), such that ns + n, = n. Thus

A (298)

Calculations show that near the critical temperature, i.e., for T, — T < T,

N T
—~2(1—-— 299
a2 (1o ) (299)

The new penetration depth is defined as

Am M (T =0) T\ 2
MAT) = s NG (1 - —) (300)
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Proof. Here we concentrate on the part of the perturbation (272), which conserves the
number of quasiparticles, namely H® given by (273). In the limit ¢ — 0 and using u} +v3 = 1

this reduces to

Hp = o

5o me 2 ol o (Kdiy) - (301)

Nea

This can be interpreted as a shift of the energy of the quasiparticles, namely E, — E; =
E,+ %(Eﬁq). Also the paramagnetic current density (277) in the limit ¢ — 0 can be written

as

- eh =
Ip(@—0) = —— Z kazvaak,g . (302)

The idea is now that due to the perturbation (301) the occupation numbers of the quasi-

particles are changed. Namely

he -
(o] yano) = f [Ek + —(ka q)] : (303)
Here f[...] is the Fermi function. This gives rise to a finite paramagnetic current
God— 0) = LSk [ B+ 2 (Fa,) (304)
=—— —(kd,)| .
ed m = T e
We expand in @, and notice that the unperturbed result is zero. This gives
S e2h? af
(7 == k(k
o= 0) = = S ) gl (305)

The derivative 0f/OF is non-zero only in the vicinity of the Fermi energy. Thus we can
take |k| = kp. Introducing the angle 6, such that k& = |a|ks cos 6}, and averaging over the

3D solid angles we obtain

- 2€2h2 8f
Gol@— 0)) =~y 5 K [ der (306)
Using
Vg = W s n = ﬁ (307)
we obtain
> of
0)) = 308
Gt - o = -4, " [acot (308)
Combining with the contribution of the diamagnetic current we obtain
" ne? of nse?
(d—0)) = —q, — d = —q, — 309
(@ 0) = ~a, "< / el =-a," (309)

—00
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where the superconducting density is given by

o)

of
= 1 dé—1 . 1
ns=n +/ 5313 (310)
We recall that E = /A2 4+ £2. Thus
r E  of
= 142 | dE— — | . 11
ns=mn |1+ / AT OF (311)

A
For T' = 0 this gives ny = n.
For T < T, one obtains ny = n(1 — O(e=2/T))

For T'— T, (Abrikosov)
T
LIS (1 - —) (312)

J. Critical field

One applies external magnetic field H. It is known that the field is expelled from the
superconductor (Meissner effect). That is inside the superconductor B = 0. When the field
reaches the critical field H, the superconductivity is destroyed and the field penetrates the
metal.

Naive (but correct) argument: The total (free) energy of a cylindrical superconductor
consists of the bulk free energy F, and the energy of the induced currents screening the

external magnetic field. We have B = 0 = By + Binduced (recall that H = Bey). The energy

2
induced

of the induced currents is given by B (87). Thus the total energy of a superconductor

reads F, + H?/(87). For H = H, the free energy of a superconductor and of a normal metal

should be equal
H2
F < =F,. 313
+ o (313)

The less naive thermodynamic argument involves the free enthalpy G = F — HB/(4m) (see the book by Abrikosov).

At zero temperature (F' = U — T'S) we have

I/QA2

Fo—Fo= = (314)
Thus we find
H.(T =0) = 2/myA(T = 0) (315)



In particular also for H, we have the isotope effect, H, oc M~1/2,
For T'— T, — 0 one obtains (no proof)

HL(T) = 1.735H,(0) (1 - %) (316)

K. Order parameter, phase

Thus far A was real. We could however introduce a different BCS groundstate:

IBCS(¢)) = [ [(ux + e Pvic) ¢t ) 10) (317)
k
Exercise: check that
2
d .
Bes()) = [ 52 1BCS(e) e (318)

0

gives a state with a fixed number of electrons N.

We obtain for A
A= %;@k, Vo) = %; wpvee®® = | Al (319)

This can be understood as follows. The BCS Hamiltonian (174) is invariant under the

transformation

~ —10/2
Cho — Cho = €920, 4 |

e, = o, . (320)

Under this transformation also the BCS ground state gets transformed:

|BCS) — |BCS) = [ [(ur +weel 4", ) [0) = [ [(we + e vic], ¢ty ) 10) (321)
k k

A general gauge transformation reads:
A— A =A+Vy (322)
U — U = We neX (323)

Comparing with (320) we see that (320) is the gauge transformation with a constant (-

independent) phase. We, thus, identify

5 =X (324)



Now we generalize to an -dependent phase ¢(7). This dependence should be sufficiently

slow. Then the gauge transformation reads

A A =A+—V¢,

Assume in the ’ frame the order parameter is real. Then for the current we obtain

- eng -

Js = — A/

mc
In the original frame the London equation becomes

2
js = _6 s (A"‘Eva) :
2e

mc

It is a gauge invariant equation.

L. BCS state with N Cooper pairs

Above we have introduced (317,318) a BCS ground state with a phase ¢:

|BCS(¢)) = H(Uk: + €i%k02,¢cik,¢) 0) .
k

We have argued that state

Bes()) = [ 52 1BCS(e) e

0

gives a state with a fixed number of Cooper pairs V.

(325)

(326)

(327)

(328)

(329)

(330)

Here we try to see if the state | BC'S(IV)) corresponds to the same expectation value of the

energy as the state |[BC'S(¢)). First we discuss the normalization. Generalising Eqs. (176)

we obtain

(BCS(¢)| BCS(¢1)) = (O] [ (ks + € vryeposcrot) [ [(uns + € vrycf, 10y 1) 10)

ko k1

= T} + @) op) .
k

52

(331)



Thus,

(BCs()| Bes() = [ / 102 =ver=en) (BOS(63)] BOS(6)

21 27
A1 [ dds _ingi-s2) i(61—2)
=[5 ] S YT )

0 0
21 27
_ / dey / APz —iN(61-2) [Ty in(ud +ei61-02)02)
2 2

2
= /% / dgs e~ iN(91=02) 3o, In(1+[e i(61-¢2) _1] v2) (332)
2 .
Assuming N > 1 we can use the stationary phase approximation and expand in ¢; — ¢s.
We obtain
d d 1—¢2)v2— M 02—
(BCS(N)| BCS(N / ¢1/ o) o iN(91—¢2) Zk|:(¢ $2) (vi k)] .

(333)

We estimate >, v ~ N(u), where N(u) is (half) the number of electrons in a Fermi gas

with chemical potential p. Further,

1 A2 T
A= Z — 'Uk ; Z AQ—+§£ =~ ZVVOA , (334)

where 14 is the density of states (per spin direction) at the Fermi surface and V is the
volume. In sufficiently large systems VipA > 1. (Moreover, if the system is so small that

VipA < 1, the superconductivity becomes impossible.) This gives

21 2m
doy [doa N b)) AG1-02)°
BOS(NY BOS(NY, — [ 991 [ 092 iN-N(w)(61-62)- 21213
(pes@oBes) = [0 [
0 0
o1 (N — N(u))
~ = (3
Thus, we see that if [N — N(u)| < VoA the properly normalized state is
27rd
BCS(N = (2 A)V/4 d¢ BCS(¢)) e ¢ 336
Norm or
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Analogously to Eqgs. (177,178,179) we obtain

(BCS(s)| cj 1 et [BCS (1))

= (O] ] J(us + €7 vryeichon)eh s i | [ (s + € vkycl, 1cty, ) 10)
kg kl

_ U et i(p1—p2) H(uz + ei(¢1—¢2) Ul?) (337)
q#k

(BCS(¢n)| cf, ey IBCS(1))

= (O] [ [ (i, + € vryey )l ey [ [ (s + € vrc, 4ty 1) 10)
kQ kl

= 02,/ @=02) TT (u2 + @192 2) (338)
q#—k

(BOS(¢a)| cf ey ) cony ey [BCS(41))

= (O] [ [ (ks + €7 vryety s Chat) o o cmrg cr [ [y + € vrycf, 1e0y ) 10)
k1
_ i(p1—¢2) 2 i(p1—¢2) ,,2
= UL VLUK Uy € H (uy +e ;) (339)
q#k,q#K
This gives (we introduce d¢ = ¢ — ¢y for brevity)

(BCS(¢2)| Hocs [ BOS(61)) —61“{22 el | (At

a#k
—% Z Uk VUL Ut H (Ug + €i5¢ US)} . (340)
k! a#k.a#k
and
d d
(BOS(N)| Hyes |BCS(N / o / %2 g=iN3 (BCOS(60)| Hocs |BOS(61))
d d
/ gbl/ 0 e~ 5¢{2Zek— kau +e"%07)
qFk
- % Zukvkuk/vk/ H (ug + €% 02)} : (341)
k! Gtk gk
In a sufficiently large system we can approximate
H(uz + "¢ vs) 2 H(ug + €' vg) , (342)
q#k q
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H (ug + ¢'0? vg) ~ H(uf] + e'? '02) . (343)
qF#k,qF#kK q

Thus we obtain

(BCS(N)|Hgcs |[BCS(N)) = {2 Z(ek — )i — %Zukvkuk/vk/}

kK’
27 27
dor [ dos _in—a 5 2 i5p 2
/g/ge e 1}(“q+e vy) - (344)
0 0

The double integral is the same as in (332) (up to an immaterial N — N — 1). Thus we
observe that if |N — N(u)| < v/VipA

(BOS(N)| Hyos [ BCS(N)) = {2 S (e — )k — %Zukvkuk/vk/} J;T_A C (349)

Changing to |BCS(N))xorm
(BCS(¢)| Hees |BCS(¢)). In conclusion, the projection of the BCS wave function

we obtain the expectation value equal to

on a state with a fixed number of particles works well if this number is sufficiently close to

the one dictated by the chemical potential.

VIII. TUNNEL JUNCTION

Consider a tunnel junction. The Hamiltonian reads H = H;, + Hg + Hr, where

Hy =Y tipcld, +hec. . (346)

k,p

We use the Golden Rule to calculate the rate of tunnelling from left to right and vice versa:

Coon = 5 SO IPA)(1 = Faley)d(es — )
k.p

— Z%WQ/depL(e)pR(ﬁ)fL(ﬁ)(l — fr(€))

— 2%|t|2/de pr(€)pr(€)f(e — pr)(1 — f(e — pr))

Ap

27 9
= f|t| PLPR

where Au = pup, — pg. For simplicity we assume the absolute value of the tunnelling ampli-

tudes to be constant, i.e., |t ,| = |t|]. We observe that the tunnelling rate is not vanishing
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if Ap =0 and even if Ap < 0, if the temperature is finite 7' > 0. This is the reason for the

thermal noise. Identifying the voltage as Ay = —eV we obtain the current

2
e
I=—e(Tpsr—Tror) = s 2m)2|tpLor - (348)
Thus we obtain the Ohm’s law I = G7V, where the tunnelling conductance Gy = 1/ Ry is
given by Gr = grGg, where
gr = 2m)*[tPpror (349)

is the dimensionless tunnelling conductance and G = 1/Rx = e*/h = €?/(2wh) is the
conductance quantum.

For electrons with spin we effectively have 2 parallel channels, since

Hy = trpchd,, + hec. . (350)

k,p,o

Thus we obtain gr = 2 x (27)*|t|*pLpr, where py,/p are the orbital densities of states.

A. Josephson effect

We consider now a tunnel junction between two superconductors with different phases

¢r, and ¢r. The Hamiltonian reads
H = Hpcs,, + Hpesr + Hr (351)

where the tunnelling Hamiltonian reads

HT - Z T |:R/1;:1,UL/€2,U + L11270'Rk2170'j| . (352)
ki1,k2,0

Here Ry, = c,g? is the annihilation operator of an electron in the right superconductor.

Two important things: 1) microscopically the electrons and not the quasiparticles tunnel;
2) tunnelling conserves spin.

A gauge transformation Lj, — €%:/2L; , and Ry, — €*?/2R;, "removes” the phases
from the respective BCS wave functions (making v, ug, and A real) and renders the tun-
neling Hamiltonian

Hr= YT [R,;’(,Lkwe—iw? + L R

ko,o
kl,kQ,U

e (353)

k1,0
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where ¢ = ¢r — ¢r. This choice of sign corresponds to a gradient of phase in the bulk of
the superconductor.

Josephson [2] used (353) and calculated the tunneling current. We do so here for a time-
independent phase difference ¢. The current operator is given by time derivative of the
number of particles in the right lead Ngp =3, | R,Tf .

e

I

k1,k2,0

1= —GNR = ——[HT,NR]

g Tl

k1,0

Ly, e — L] R, e . (354)

ka,0 k1,0

The first order time-dependent perturbation theory gives for the density matrix of the system

in the interaction representation

t
,O(t) Te~ zf dt'Hp(t") p Tezf dt' Hp (") ~ —i/ dtl[HT(t/),po] ) (355)

For the expectation value of the current this gives

t t

(I(8)) = Te{p(®)I(t)} = —i / 0t T {[He(t'), polI(1)} = —i / at' Te {[1(t), Hr (1) po}

— 00 —0o0

= =i [ 1o Ha))o (356)

The proper way to perform this calculation is to introduce the “adiabatic switching” of
the tunnelling Hamiltonian, i.e., Hp(t') — Hp(t')e®, where § > 0 and § — 0. Equivalently
Hrp(t') — Hp(t)e %), This makes all the integrals converging.

In particular, at zero temperature (...)o corresponds to averaging over BCS states in
both superconductors. We obtain

1), Het)] = 517 Y

k1,k2,0,q1,92,Y

(Bl o)L o (0 = L (00 Re, f(106%2) | (B, (1) Ly (1) 4 L, ()R, (1))
(357)

To get Josephson current we collect only the terms in which the phase ¢ does not disap-

pear. The other terms contribute only if ¢ is time-dependent. We, thus, are left with

k1,k2,0,q1,92,7

e [(R;il "( )Lk%o( >> <R:§1 7( /)Lqmv(t,))} — e [(LLQ,a(t)Rkl,g(t)) (L3;2 y(t,)quﬁ(t'))] ,
(358)
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where ... stands for omitted terms.

Upon averaging we obtain

(1), Hrl o == 12 3 |

e " {(RL SR (Eo(Ly, (O, () — (RL (1)RT kl’_a(t))o<Lk27a(t’)L_k2,_a(t)>0}
e {ULL o (O, o (1)olByy (DR, ()00 = (L], () LE, _ (0)o{ Ry ()R, (D)0}
I (359)

At zero temperature we use

<Ckg(t1> Ly —o(t2))o = <BCS’CkU(t1) cLy—o(t2) | BCS)
= (BCS| <ukozk (t1) + ovpa_y, J(t1)> (ukaik’ﬂ(tg) — avkakva(t2)> |BC'S)

= gupupe Erli—t) (360)
and

(BCS| e (ty) c_p—o(ts) | BCS)
— (BOS| (ukam(tl) +oval k,,g(tl)) (uka_k,_a(tg) - avka;g(tz)) IBCS)

= —ouvpupe Brlit2) (361)

After some algebra we obtain (from the anomalous correlators, the rest gives zero)

t
(I(t)) = 26T2€i¢/ at’ Z Uky Uy Vg Uy [efi(E’“lJ“E’“?)(t*t/) - ei(E’“lJrE’“?)(t*t/)} e00=t)
- k1,k2
t
— 26T26i¢/ dt’ Z Uky Uy Vkop Uy [e_i(E’“lJrE’“?)(t_t/) — 6i(E’“1+E’“2)(t_t/)] e 0(t=t)
T kyks
= —8eT?sin(¢ Z U Oy Ohaka 902 sin(¢) Z A’
Ek1 + Ek Ek1 Ek2 (Ek1 + EkQ)
= —27T2T2V26A7’LL sm((b) = —I.sin(¢) , (362)

where the Josephson critical current is given by

greA  mA
4h 2€RT

I — (363)
where gy = 2 x 47*T?1?% is the dimensionless conductance of the tunnel junction (factor 2

QL
e2

accounts for spin), while the tunnel resistance is given by Ry = This is the famous
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Ambegaokar-Baratoff relation [3] (see also erratum [4]). At finite temperature the relation

reads (no derivation is provided, see Ref. [4]):

I = %}g;)tanh (%(T)) | (364)

where A(T) is the temperature dependent gap.
Thus we have obtained the first Josephson relation I = —I.sin¢ = —I.sin(¢r — ¢r.).

The minus sign here corresponds to the London equation in the bulk of a superconductor
- c -  heo
)s=——— A+ =V : 365
J 4\ ( T % ¢) (365)

We have introduced the variable ¢ as the difference of two phases ¢ = ¢r — ¢r. The

gauge invariant definition reads
2¢ [T .
p=0¢r—¢r+— [ Adl. (366)
he J;

As a shortest way to the second Josephson relation we assume that an electric field exists

in the junction and that it is only due to the time-dependence of A. Then we obtain

. 9% (BT 1 - 2 (B 2¢
== —Aldl=-= | Edl=-=
¢ hc/L [Gt } nJL R (367)

where V' is the voltage (note that voltage is usually defined as V' =V, — V). An alternative

way to derive this is to start with a difference of (time-dependent) electro-chemical potentials

H=Hy,+Hp—eVi(t)Y L}, L,,—eVr(t)) Rl R, +Hr, (368)
k,o k,o
where V7, are the applied electric potentials (in addition to the constant chemical potential
i, which is included in H; and Hg). A time-dependent gauge ransformation with

U — e*%NLj‘VL(t/)dt/ e*%NRJt‘VR(t/)dt/ (369)
leads to the new Hamiltonian
H=iUU'+UHU" . (370)

the terms with V;, and Vi are cancelled and instead the electronic operators are replaced

by, e.g,
L - ULU ' = Le'/? (371)
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FIG. 14: RSJ Circuit.

t . . .
where ¢, = const. + 2 [V, (t')dt’ and, thus, ¢ = ¢g — ¢ = 2(Vg — V) = —2V.
It is of course more convenient to abandon the logic of London relation and to define the

phase drop on the Josephson contact as

¢ =éL— dr - (372)
Then we get the usual Josephson relations

I =Isin(¢') $:%v. (373)

Later we will drop the prime.

IX. MACROSCOPIC QUANTUM PHENOMENA
1. Resistively shunted Josephson junction (RSJ) circuit

Consider a circuit of parallelly connected Josephson junction and a shunt resistor R. A
Josephson junction is simultaneously a capacitor. An external current I, is applied. The

Kirchhoff rules lead to the ecquation
. |7
ICSIIlqb—i-E—FQ:]w . (374)

As@Q=CV and V = 2—2(]5 Thus we obtain

A
2eR

o

I.sing + ¢+§g¢:4% (375)
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It is very convenient to measure the phase in units of magnetic flux, so that V' = %@ (in ST
units V = ®):

ch q)o )
o="p= 0 — o
o=5s . o=y (376)

Then the Kirchhoff equation reads

d > O
Lsin(2n— |+ —+ — =1, , 377
SIH(WQDO)chR—i_ c (377)
or in SI units ]
Lein (2me )+ 2 L od 1 (378)
csin | 2m— — = 1. .
D R

There are two regimes. In case I., < I, there exists a stationary solution ¢ = arcsin(/l.,/1.).
All the current flows through the Josephson contact as a super-current. Indeed V' gb =0.
At I, > I. at least part of the current must flow through the resistor. Thus a voltage

develops and the phase starts to "run”.

2. Particle in a washboard potential

The equation of motion (378) can be considered as an equation of motion of a particle
with the coordinate x = ®. We must identify the capacitance with the mass, m = C, the

inverse resistance with the friction coefficient v = R=!. Then we have

mi = —yi — Z—Z , (379)
where for the potential we obtain
U(®) = —Ejcos <27T%0) — 1,9, (380)
where
)= I;io - Zi (381)

is called the Josephson energy. The potential energy U(®) has a form of a washboard and
is called a washboard potential. In Fig. 15 the case I, < I. is shown. In this case the

potential has minima and, thus, classically stationary solutions are possible.
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FIG. 15: Washboard potential.

3. Owver-damped case

We rewrite (378) in terms of dimensionless phase ¢ = 27®/®:

g—ehézé + %é + Ising = 1., . (382)
Assume we can neglect the first term in comparison with the second. This will be the
case if the RC' time is shorter than a characteristic time of the ¢(t) time-evolution: over-
damped case. We will determine the applicability domain of this approximation later. In

the over-damped case the equation of motion reads
I ¢+ I sing =1 (383)
o D cSM QP = leg .
2eR >

For I., < I. the stationary solution reads <z5 =0, sing = I.,/I.. We now try to find the

stationary (running) solution for I, > I.. This solution should have the form

2T

o(t) = Tt +9(t) , (384)

such that d¢(t) is periodic: d¢(t+T) = dp(t). That is the "period” T is the time over which
the phase changes by 2w. We rewrite (383) as

d¢  2eRl,,
dt h

(1= (Ie/Iex) sin @) . (385)

Further we use separation of variables

do _ 2eRl,
(1—(I./I;)sing)  h dt . (386)
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We integrate over one period T and use that fact that sin ¢ is periodic. Further we use the

integral
2m

1 2T
/d¢1—asin¢: — (387)
0

for 0 < a < 1. Thus we find the period T"
2w 2¢eRI,,

T =— T, (388)
or
2 2eR
;— eh 212 (389)
This immediately gives the average voltage
. by /. D)2
0-()-R)-RE-ETE om

It is also possible to find analytically the full time-dependent voltage V' (¢) (see the book
by Abrikosov). Clearly, V (t) oscillates around (V') with period T
Now we are also ready to formulate the condition for the over-damped dynamics. One

possible criterium would be (Abrikosov) RC < T'/2w, then we obtain

o0rRC 2 R2
”T 2«1, (391)

This seems to fail for 1., — oo.

Alternatively (Tinkham), we can rewrite (382)
Ic¢ * 2e R[

The coefficient in front of the first term has dimensions of [¢t]?. This allows us to introduce

¢ +sing = Iy /1 . (392)

the frequency

2 2el. _ (2e)?E; .
p Ch Ch2
This is the plasma frequency of small oscillations in the case of no damping R — oo and

(393)

no bias current I, = 0. In what follows we will introduce the charging energy (for Cooper
pairs) Ec = (2¢)?/2C. Then w? = 2E;Ec/h*. We introduce now dimensionless time

7 = wpt. Then the equation of motion reads

d2
Q7% kg = (1T (394)
Here () is the quality factor given by
2eRI.
Q=" =wRC. (395)

p
The condition for the over-damped dynamics reads @ < 1.

63



AN

FIG. 16: Macroscopic Quantum Tunneling (MQT).

4. ac-Josephson effect, Shapiro steps

5. MQT

When the external current is close to the critical value a situation shown in Fig. 16
emerges. If we allow ourselves to think of this situation quantum mechanically, then we would
conclude that only a few quantum levels should remain in the potential well. Moreover a
tunneling process out of the well should become possible. This tunneling process was named
Macroscopic Quantum Tunneling because in the 80-s and the 90-s many researchers doubted
the fact one can apply quantum mechanics to the dynamics of the "macroscopic” variable ®.
It was also argued that a macroscopic variable is necessarily coupled to a dissipative bath

which would hinder the tunneling.

6. de-SQUID

The simplest de-SQUID (Superconducting QUantum Interference Device) is shown in
Fig. 17. It consists of two Josephson junctions in a superconducting ring. The current
bias is applied. The simplest case is when the superconducting parts of the ring are thick

(thicker than the London penetration depth A;). Then along the dashed line in Fig. 17 the

64



FIG. 17: de-SQUID. The superconducting parts assumed thicker that Ar. The dashed line is deep
in the superconducting parts so that the superconducting velocity there vanishes. This is used for

the discussion of the flux dependence.

superconducting velocity vanishes. That is
— h —
(A + 2—Cv¢) ) (396)
e

along the dashed line (in the electrodes) but not in the junctions. Integrating along a closed

contour we obtain for the total flux &:

o= gad— [ A [
electrodes junctions

P - -
= = V¢dl+l/‘ Adl (397)

27 electrodes junctions

The phase of the order parameter is single valued (mod(27)). Therefore

/ Vodl + Agy + Ady = 0[mod(2r))]. (398)
electrodes

Here A¢; and Ag, are the phase drops counted according to the integration direction (later

on the contour minus earlier on the contour). This gives

)
—OA¢1 + /
2T ,

junction 1

—

L. P -
Adl + 2—72A¢2 + / Adl' = ®[mod(®,)] . (399)

junction 2

This can be written as

21w d

¢1+ P2 = D, (400)

where ¢; and ¢y are the gauge invariant phase drops on the junctions (counted in the
direction of the contour). Here we use a clockwise contour in Fig. 17 and, thus, a positive
magnetic flux "goes into the picture”. Recalling the discussion on the signs of the phase

drops at the end of Sec.VIIT A we obtain for the current (from left to right)
I =—1I.sin¢; + I.sin ¢y . (401)
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For simplicity we assume here that the two critical currents are equal.
Of course, we can now change the signs of ¢; and ¢, (as at the end of Sec.VIIT A ) and

get the commonly used

I =1.sin¢; — I.sin ¢, . (402)
This gives
_ i _
I =2I.sin b1—¢2 cos b1t _ 91, cos —— - sin 1~ ¢2 (403)
2 2 02 2

The combination (¢; — ¢2)/2 is the effective phase drop in the SQUID considered as an

effective Josephson junction. The effective critical current is given by

(404)

7. Quantization

We write down the Lagrangian that would give the equation of motion (379 or 378).
Clearly we cannot include the dissipative part in the Lagrange formalism. Thus we start

from the limit R — oo. The Lagrangian reads

2 P2
L:Oi—U(fl)):CijLEJcos(

)
2mr— 1.9 . 4
5 5 W(I))—i-ex (405)

0

We transform to the Hamiltonian formalism and introduce the canonical momentum

= =C9. (406)
0P
The Hamiltonian reads
Q? Q? o
H=—+U®) = —-F 2n— | — 1., . 407
o0 U =55 — Bycos ( 2mg (407)

The canonical momentum corresponds to the charge on the capacitor (junction). The usual

commutation relations should be applied
(D, Q] =ih . (408)

In the Hamilton formalism it is inconvenient to have an unbounded from below potential.
Thus we try to transform the term —I.,$ away. This can be achieved by the following

canonical transformation

R = exp {—%Qwu)@] 7 (409)
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t
where Qe (t) = [ I..(t')dt'. Indeed the new Hamiltonian reads
- : — Qes(t))? P
f=RHR 4 infp = @@l p (022 (410)
2C D,
The price we pay is that the new Hamiltonian is time-dependent. The Hamiltonian (410) is

very interesting. Let us investigate the operator

P 2 1 )
cos (2#(}7) = cos <§ @) =5 eXp [% 2e @] + h.c. (411)

We have

exp {%2@} Q) =[Q+2¢) , exp {-%2@} Q) = |Q — 2¢) . (412)

Thus in this Hamiltonian only the states differing by an integer number of Cooper pairs
get connected. The constant offset charge remains undetermined. This, however, can be

absorbed into the bias charge ().,. Thus, we can restrict ourselves to the Hilbert space

|Q = 2em).

8. Josephson energy dominated regime

In this regime E; > E¢, where E¢ = % is the Cooper pair charging energy. Let us first
neglect Fo completely, i.e., put C' = oco. Recall that C' plays the role of the mass. Then the
Hamiltonian reads H = —FE; cos (2#%). On one hand it is clear that the relevant state are
those with a given phase, i.e., |®). On the other hand, in the discrete charge representation

the Hamiltonian reads
E;
H:—7%:(|m+1) (m| +|m) (m+1]) . (413)

The eigenstates of this tight-binding Hamiltonian are the Bloch waves |k) = > e*™|m)
with the wave vector k£ belonging to the first Brillouin zone —7 < k < m. The eigenenergy
reads Ey = —Fjcos(k). Thus we identify k = ¢ = 22

Pg

9. Charging energy dominated regime

In this regime F; < E¢. The main term in the Hamiltonian is the charging energy term

H, = (Q _2ch’x(t)) _ (zem;CQex) ‘ (414)
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eigen
energies

FIG. 18: Eigen levels in the coulomb blockade regime. Different parabolas correspond to different
values of (Q = 2em. The red lines represent the eigenlevels with the Josephson energy taken into

account. The Josephson tunneling lifts the degeneracy between the charge states.

The eigenenergies corresponding to different values of m form parabolas as functions of
Qe: (see Fig. 18). The minima of the parabolas are at ., = 0,2e,4e,.... The Josephson
tunneling term serves now as a perturbation H; = —F; cos (27?%0) . It lifts the degeneracies,
e.g., at Q. = €,3e,5e, . ...

If a small enough external current is applied, Q., = I.,t the adiabatic theorem holds and
the system remains in the ground state. Yet, one can see that between the degeneracies
at Qe = e,3e,be,... the capacitance is charged and discharged and oscillating voltage
V = 0FEy/0Q., appears. Here Ey(Q.,) is the energy of the ground state. The Cooper pairs
tunnel only at the degeneracy points. In between the Coulomb blockade prevents the Cooper

pairs from tunneling because this would cost energy.

X. VARIOUS QUBITS
A. Charge qubit

We start by considering the so called Cooper pair box shown in Fig. 19. We derive the

Hamiltonian starting from the Lagrangian

_ Gy, G
2 2

L —U;(®y), (415)

68



D, Oq4

I_

EJICJ Cg -V

-l- 9

FIG. 19: Cooper Pair Box. The Josephson tunnel junction is characterized by the Josephson energy
E; and by the capacitance C;. The superconducting island is controlled by the gate voltage V
via the gate capacitance Cy. To derive the system’s Lagrangian and Hamiltonian we introduce the

phase drop on the Josephson junction ®; and the phase drop on the gate capacitor ®@,.

where U; = —Fjcos (271’ %). The sum of all the phases along the loop must vanish and

the phase on the voltage source is given by const. + Vjt. Thus we obtain

by =~y —V, (416)

and the Lagrangian in terms of the only generalized coordinate ®; reads

Cy0%  Cy(dy +V,)?

I — > + 5 —Uy(®y)
¥
_ % + Cy®,V, — Us(®,y) + const. . (417)

The conjugated momentum (charge) reads

oL .
Q=—=(C;+Cyd;,+C,V, . (418)
0P,
Since C;®, is the charge on the Josephson junction capacitance while Cg@ J+CV, = —C'gcbg
is minus the charge on the gate capacitance we conclude that ) = 2em is the charge on the

island (we disregard here the possibility to have an odd number of electrons on the island).

We obtain
_ Q _ C'ng

_ 419
7T+ G, (419)
The Hamiltonian reads
: (Q — CyV,)?
H=0Qb,—[ = ~%_ 2979/ L (d
@, 2(C,+C,) 7(®)
(Q —C,V,)? D,
_ w99 _p o =2 . 420
2(Cr+ 0y T g, (420)
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FIG. 20: Charge quit with controllable Josephson energy.

This is exactly the Hamiltonian (410) with Q., = C,V;. The two level system is formed by
the two lowest levels around CyV, = e + 2eN.

In Hamiltonian (420) the interplay of two energy scales determines the physical regime.

These are 1) Josephson energy FEj; 2) Charging energy Fo = (C(i;fcg) In the simplest

regime F; < E¢o and for ()., ~ e one can restrict the Hilbert space to two charge states

with lowest charging energies [1) = |@ = 0) and |]) = |@Q = 2¢). In this Hilbert space we

have
) 1
cos <27r a‘;) =50, (421)
and
Q=ec(l—0,). (422)
Substituting these to (420) and disregarding constant energy shifts we obtain
1 Qex 1
H=—|(1- E —-F : 42
9 ( e ) Cc 0, 9 JOg ( 3)

Thus we obtain an effective spin-1/2 in a magnetic field whose z-component can be controlled
by the gate voltage.

In Fig. 20 a charge qubit is shown in which the Josephson junction was replaced by a dc-
SQUID. A straightforward derivation (assuming the geometrical inductance of the SQUID
loop being vanishingly small) gives again the Hamiltonian (420) with C; — 2C; (just

because there are two junctions instead of one) and

o,
Ey — 2EY cos<”q) ) . (424)
0

Here Ef,(” is the Josephson energy of a single junction. We assume the two junctions of the
SQUID to be identical. Now we can control also the z-component of the effective magnetic

field.

70



E;C

FIG. 21: RF-SQUID.
1. Transmon

A "Transmon” qubit is essentially a charge qubit shunted by a large capacitance in order

to decrease the charging energy. The Hamiltonian can be written as
H=FEc(n—q,)*— Ejcos¢, (425)

where ¢, = Q,/2e = C,V,/2e is the dimensionless gate charge. The quantization is provided
by the relation e |n) = |n + 1). The system is controlled by the time-dependent g,(t). Due
to the shunt capacitance one decreases the charging energy and reaches the regime Fo < Ej.

In this case it is not sufficient to consider only two charge states.

B. Flux qubit
1. RF-SQUID

The simplest flux qubit is called RF-SQUID (Radio-Frequency-Superconducting-
QUantum-Interference-Device) and is shown in Fig. 21 We recall the London equation
js = —efn—"(j (/Y + %ﬁqﬁ) and the fact that the super-current density fs vanishes in the bulk
of the superconductor. Thus assuming the ring in thick and integrating along the line which
is in the middle of the ring (see Fig. 21) we obtain (we integrate clockwise along the dashed

line)

b b
0= / (fﬂ h—j%) dl’ = / Adl + %(@, — ¢a) (426)
he - b/fd* 427
(6= on) = [ AdT. (427)
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Ejq1,C >< .., >< Ej2,Cs

FIG. 22: 3-junction flux qubit. Proposed by J.E. Mooij et al.

a b a
h - = - = - = - =
2—C(¢a—¢b)+/Adl:/Adl+/Adl:]{Adl:<I>, (428)
e
b a b
where @ is the total flux through the ring. Thus the gauge invariant phase drop across the

Josephson junction reads:

a

2e - - 2e P
AP = (¢, — — [ Adl= —® =21— . 429
6= (0 n)+ 1o [ Adl= C0—2m (129)
b
As before it may be more convenient to change the sign of A¢: A¢' = —A¢p = 27T(£%.

The Josephson energy can be written then as —FE;cos(A¢’') = —E; cos(2n®/Pg). For the
inductive energy we observe that the flux created by the current in the ring is given by
® — P,y Indeed P is the total flux (and the dynamical variable of our theory). Part of it is
due to ®.,;. The rest must be created by the current flowing in the ring. Thus the inductive
energy reads (® — ®,,;)?/2L. Finally the energy of the electric field reads C' P2 /2. Thus, the

Lagrangian of the system reads:

H2
L= 02 U@, (430)
where
(D= D)’ 27
U(P) = 5 Ejcos 3 ) (431)

At &,y = §y/2 we obtain a double-well potential if I.L > ®q /27 (here I, = 2w E;/®q). One
needs then a relatively large inductance. Purely geometric inductance can be achieved by

increasing the size, which usually brings problems with noise.

C. 3-junction flux qubit

For a loop with three junction (a qubit proposed by J.E. Mooij, Fig 22) there are three

gauge invariant phase drops across the three junctions (measured in units of flux), ®;, @,
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®3 and the argument similar to the provided for the RF-SQUIS gives (here we have already
flipped the signs of the phase differences)

Dy + By + Py = — (432)

where @ is the total flux in the ring. Neglecting the geometric inductance of the ring
we have & = ®_,,. Thus we are left with two dynamical variables ®; and ®,, whereas

b3 = -,y — Py — $,. The Lagrangian reads

L=K-U, (433)
where ) ) ) )
C19?  (Cy®3  Cy(Py + Dy)?
K — 1%7 + 2% + 3( 1t 2) 7 (434)
2 2 2
and
21 d 21 d 21 (P + Py + D,
U= —FEjcos s — E;j5cos it — Ej5cos (P14 P2 + Pe) . (435)
’ ON ’ ON ’ 0N
An interesting regime arises for £;; = E;5 and Ej3 = aEj,, where a ~ 0.7.
D. Fluxonium
The Lagrangian is the same as that of an RF-SQUID
CP? (D — Deyy)? 2 d
— — E — 4
L 5 5T + Ejcos R (436)
which gives the Hamiltonian
Q? (P — Deyy)? 21 d
== —-——°"+4+F — . 4
H 50 5T + Ejcos B, (437)

XI. BOGOLIUBOV-DE GENNES FORMALISM

We need this formalism to describe non-homogeneous structures including superconduc-
tors, e.g., Normal metal - Superconductor (NS) interfaces or Superconductor - Normal metal
-Superconductor (SNS) constrictions.

One starts from the Hamiltonian (170) with an attraction due to phonons.

DN | —

g
Hg = Z(Ek - #)CL,U Ck,o — V Z C}LelJrq,al 0227(1,0‘2 Cky,02 Chy,01 (438>

k,o k1,01,k2,02,9
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If we forget for a moment about the restrictions on the energies and momenta of electrons
participating in the interaction, this can be written as a contact interaction in the r-space.

Namely, introducing
1 )
Vo(r) = —= Y croe™ | (439)
R

we can rewrite (170) as
He = / AV, (1) (1] Yo (1) — g / AV ()Y (r) gy (r)e(r) - (440)

Here hf}l{@ is the single-particle Hamiltonian. In (170) this is h((,llzt72 = [e(—@ﬁ) — u} Oory g -
However, in general, more complicated situations are possible (e.g., with spin-orbit interac-
tion, with external magnetic field, with inhomogeneous external (scalar) potential etc.).

In the mean-field approximation this gives

HMF _ / dV L (1) [hS),,] ey (r) + / de
- [avamulele) - [ avamueed) (441)
where
A(r) = gy (r)vr(r)) - (442)
Introducing a spinor
Pr(r)
W) = [ () ), 0], —wl o = | ) (443)
zﬁ(r)
—i(r)
we can rewrite
WO A2 AP
MF _ t(p r )
H _/de) g \If()+/dV ; (444)

We now want to make the matrix more symmetric. Since the operator h") contains deriva-
tives (momentum operator) it is more convenient to think of it as a non-local one and write

the diagonal part as

/ dT’ldTQ Z 2/)3;.1 (Tl)h(l) (7’1, 01,72, O'2)"(ﬂ02 (7’2) . (445)

01,02

74



We can now commute v and ¥ and obtain

—/dmdrg D oy (r2)h N (11, 01579, 02)08, (1) +/d7“zh(1)(7“,0;7“, o). (446)

01,02 o

The last term is a (possibly infinite) constant, whereas the first term can be written as

T
—/dthQ Z Vo, (T1) [h(l)] (r1,01;72,02)¢) (12) (447)
01,02
We also use the fact, that the second half of the spinor (443) is given by
T 0 1 T T
%T = 1/}1 = io, w: (448)
_@Z}T —-10 @ZQ ¢¢
Thus we obtain (up to a constant)
HME = —/dV\I/T(r) AT W(r) +/dv| Gl (449)
2 “A* —g, [hm] o, g

~

T
The transposition operator in [h(l)} relates to all indexes of A(!), that is to coordinate and

spin indexes.

We define

thG = (450)

. AT
—-A* —o, [h(l)] oy
This is a Hermitian operator, which should have a complete basis of eigenstates, hge®, =

E,®,. These eigenstates are 4-spinors:

<I>1,n(r)

Q,(r) = Panlr) (451)
(I)gm(’l“)
@47n(7a>

Inserting > @, (r)®] (r') left and right of hpae (we should again consider hpgq as a matrix

hpac(r,r") in the coordinate space as well) we obtain

1 A(r))?
HMF = 3 > E.ala, + / av1200F , (452)
- g

where
a, = /dr ®F (1)U (r)
= [ ar (00,0704() + B3, () 0) + @3, ()0 (r) — @5, (0A))  (453)
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are annihilation operators of the BAG states. Multiplying this relation by ®,,(r") from the
left, summing of n and using >, ®, (r')®} (1) = §(r —r')14 (here 1, is a 4 x 4 unity matrix)
we get

V() =) Pu(r)an . (454)

A. Particle-hole symmetry

Consider an operator given by

0 —ioy
C = = 7,0, . (455)

1o, 0
It’s easy to see that C~! = CT = C. We observe the property

From this one observes that is ®,, is an eigenstate of hpgye with the eigenvalue F,,, then the

state C'®; is an eigenstate with eigenvalue —E,,. Indeed
hpicC®: = CC  hpyaC®F = C(—higyq)®: = —E,C0F . (457)

To each eigenstate with positive energy there corresponds an eigenstate with opposite neg-
ative energy. It is convenient to introduce the notation ®_,, = C®} and E_,, = —FE,,. This
allows us to organize the indexes so that positive n correspond to positive energies and
negative n to negative energies. This particle-hole symmetry is completely analogous to the
particle-antiparticle symmetry of the Dirac theory and is called there charge conjugation
symmetry.

However, the superconductivity has an extra property. Namely, it is easy to observe that

the field W (see (443)) is self-conjugate, namely
Cv = (vhHT (458)
From this we obtain (using C* = C)
a_p, = /dr o' (1) W(r) = /dr (COX)Tw = /dr orow = /dr T (whHT
= / drU'd, (459)
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Therefore

al, = / dr &I = o, . (460)

This very important property is closely related to Majorana physics in high energy, i.e.,

particles and antiparticles are the same. We finally obtain

1 A(r)]?
HMF:ZEnaLan—EZEn+/dV’ g)‘ . (461)

n>0 n>0

B. Self-consistency condition

The order parameter has been introduced as
A(r) = g(ihy(r)ipy(r)) - (462)

Using ¥(r) = >, ®,(r)ay, we get 4(r) = Y Py ,(r)ay, and ¢y (r) = > Popn(r)oy,. This

gives

Alr) =g Do (r)Prn(r)(aman) - (463)
Using the property ozT,n = o, we obtain

A(r) = g)  ®an(r)®ra(r)(afe,)

n>0
+ g Y Pon(r)®y_n(r){o,0l) . (464)
n>0
Using ®_,, = C®;, and
0 00 -1
0O 01 O
C = (465)
0O 10 0
—-100 O

we obtain

= gy Poa(r) @], (r){a,al) (466)
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C. Spin-independent case

The simplest case is when A1) is spin independent (diagonal in spin indexes), i.e. . Then

hgp4c can be written as

hrY 0 —A 0
0o ar® 0 —A
hpac = (467)
~A* 0 —[pW]* 0
0 —-A* 0 —[pW)

The problem factorizes into two equivalent blocks (1-3) and (2-4). In each block the Hamil-

tonian reads

) ho A
h = 468
BdG A —[h(l)]* ( )

This 2X2 block is still particle-hole symmetric, i.e.,
C™'h5C = —hGe (469)

where now C = 7,,.
We can look for the eigenvectors of hgc)lG in the form (u,(r), —v:(r))T. That is
) —A Uy, Uy,
=FE, : (470)
—A* —[pW]* —uk -
It is important to realize that such a solution provides two degenerate eigenvectors of the

4 x 4 problem. That is

Uy, 0
0 Uy,
o) = , 0P = (471)
-y 0
0 —ur

Then, from (466) we get

A(r) = gZun(T)vn(T) tanh (5;%) : (472)

n>0
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1. Homogenous case

In the simplest case when everything (A, p, external potential) is homogenous, we recover

our earlier results. Namely (470) can be solved using plain waves
U ikr
S (473)

- -y, vV

U (1)

—un(r)

Assuming hVe*™ = [pV]* e = &.e*" we get

—-A u u

S =g | " . (474)
—A" =& — Uy, —Ug

This differs from (220) only by the fact that A is complex. Assuming A = |Ale™ we can

solve by putting u, = uyy > 0, v, = vioe'®, where vy > 0. For uyg, vy we obtain

—|A u u
&k A o) kO ’ (475)
—|Al =& —Uko —Ukg
which coincides with (470). The solution is then Ej = /& + |A|? and
L &
N S L 4
Uko 2 28, (476)
(477)

The quasiparticle annihilation operators are then given by

1 —ikr —tkr 1 7
04,(:) =Qpt = W /d?‘ [ukoe Mapy (1) — vgoe e g%I(r)] = UgoCrp — € voc ;. |, (478)

and
f (479)

—k1 -

1 —ikr —ikr i %
04,(5) =y = W/dr [ukoe M (1) 4 voe e gz’zﬂ(r)] = UpoCr + €Pvgoc

These are the same Bogoliubov relations as in (206) or (225), except for the non-vanishing

phase of the order parameter and, correspondingly, the factor ¢’ multiplying the BCS

coefficient vyg.
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2. Number and phase again

The factors € in (478) and (479) can be given a very important interpretation. On
the first sight the operators ozLo = UkOCLU — Je*id’vkgc_k,_a acting on a state with a given
number of particles M creates a superposition of a state with M + 1 particles and a state
with M — 1 particles. However, this is not so. Let us recall the role of the operator e™*.
From the analysis of Sec. VIIL we can conclude that the operator e~* increases the number

of Cooper pairs in the condensate by one (the fact that e~ and not €’ increases the number

has to do with the signs chosen in Sec. VITL). Thus the proper interpretation should read

O‘L,a = UkOCL,g —oStopee ko (480)

where ST = 7% creates an extra Cooper pair in the condensate. This way the operator oz,i, -

adds a single electron to the system and creates a quasi-particle excitation. Of course one

can also define another operator

d;;,a = SO(LG = Sukoc};,g— — OVkoC—k,—0 - (481)

This operator removes one electron from the system and creates a quasi-particle excitation.
This issues are discussed in the book by Tinkham and in the very important paper by
Blonder, Tinkham and Klapwijk [5] (BTK theory).

D. Non-homogeneous situation

The BdG equation in general (spin-diagonal case) read (cf. 470)

) —A Uy, Uy,
- E, . (482)
—A* —[pW]* —uk -

This can be rewritten as

S A Uy, Uy,
—E, . (483)
A* —[pW]* v vk

Usually in the literature one uses also v}, — vy,. We will keep vy, as in (483) so that the phase of v, coincides with that of A in the homogeneous

case.

For the simplest situation

— K (484)



E. NS contact, Andreev reflection

Consider a contact in which A = 0 for z < 0 and A = |Ale for z > 0. We will start
with a quasi one dimensional setup, in which the transverse movement in y and z directions
is restricted by a potential V (y, z). That is

RPV2 RV 4+ V2
W =y = Ve VAV (485)

2m 2m

Then one first solves the transverse Schrodinger equation

h2(V§ +V?)

2m

+V (Y, 2) | Ym(y, 2) = €mthm(y, 2) . (486)

Here, m counts the transverse channels. The wave functions ¢,,(y, z) can be choses real.

To solve the full problem one makes an ansatz

u(r) ()
- @ij( s Z) (487)
o (r) R

For u(x) and v(z) (we drop the index m and focus on a single channel) we obtain the

following BdG equations

vz o .

— 5= — Az u U
zm M Wf ) _E . (488)
A*(x) 5t v* v*

Here, i = p — €, is the effective chemical potential for transverse channel m.
We look for solutions with £ > 0. Most important is the regime F < ji. For z < 0 and

x > 0 the solutions are plain waves.

1. Spectrum on the normal side

For z < 0 we have A = 0 and there are 4 solutions:

1 ) thQ
+ikex e ~
e E = — 489
. e , 5 H (489)
and
. h2 k2
kn E=p——2. 490

We introduce the Fermi momentum hkp = y/2mji. Then, from E > 0 follows |k.| > kr and

|kn| < kp. This spectrum is shown in Fig. 23.

81



|
|
|
|
“’ﬁ'
|
|
|
|
|
l
x,P*§
m 1
7
/

FIG. 23: Spectrum on the normal side of the NS contact.

2. Spectrum on the superconducting side

For x > 0 we look for solutions of the form

Uk

ek (491)
U,
This gives an algebraic equation
A u u
&k Fl _p k 7 (492)
A* =& vy, (O

where & = 22 _ i The situation differs for E > |A| and E < |A|.

om
Case E > |A|. For E > |A| we obtain the usual BCS coherence factors u and v. Namely
E = /|A]? + & and

&k

v = €%y = €

N | —

1
Uk = Uko =\ 5 + 26—27 . (494)

The equation F = /|A|? 4+ & has four solutions for k as shown in Fig. 24. This can be
found from & = +1/E? — |A]2. The two solutions with &, > 0 are particle-like and the two
solutions with & < 0 are hole-like. We obtain

h2k2
S =+ E*— A, (495)

2m

— i /E2—|AR. (496)
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FIG. 24: Spectrum on the superconducting side of the NS contact.

Case E < |A|. We need also solutions for £ < |A| to match with the corresponding
solutions for x < 0. These will be evanescent waves. Of course only waves decaying at

r — oo are important. In this case £ < 0 and & = +i+/|A|2 — E2. We can still take the

solutions
L&
=1/=+ == 497
2 + 2F (497)
Vp =€ i 5 — ﬁ s Vi = €l¢ 5 + ﬁ = €Z¢Uk . (498)
These are no longer normalized, i.e., [ug|*+|vg|? # 1, rather |ug| = |vg| and u? + (e*%v})? = 1.

The equation & = +iy/|A|? — E? has 4 solutions for k. Two of these (& = +iy/|A]? — E?)
satisfy

h2k2
%1:ﬂ+ﬁAAP—E? (499)

Only one with Im[k] > 0 should be kept. Namely

A 2 E2

For the other two (&, = —iy/|AJ]? — E?) we have
h2k?
— i —i]APR — E? . (501)

2m

Again only one with Im[k] > 0 should be kept. Namely

A 2 E2

What is left is to match the solutions using usual boundary conditions.
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3. Andreev reflection for E < |Al] in an ideal contact.

For E < |A| the free propagating solutions exist only for x < 0. For scattering problems
it is convenient to normalize the wave functions to a unit flux of particles by multiplying

/ 2, where v, = h~'OE,/0k is the group velocity. The incoming waves should have

with vy '
positive v, for + < 0 and negative v, for x > 0. The outgoing wave should have negative
vy for < 0 and positive v, for £ > 0. For an incoming electron-like particle the possible

processes are shown in Fig. 25. For an incoming hole-like particle the possible processes

HDI'MDLZ

N refL. Avdreey

FIG. 25: Andreev and normal reflections for incoming electron at E < |A|.

are shown in Fig. 26. The conversion of electron into hole or vice versa is called Andreev

FIG. 26: Andreev and normal reflections for incoming hole at E < |A]|.
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reflection (A.F. Andreev, 1964).
Let us consider the process in Fig. 25 (incoming electron) and assume F, |A| < fi. Then
the absolute values of the group velocities off all three modes involved are approximately

equal to |vy| = vp = hkp/m. The wave function for x < 0 is then given by

1 A 1 , 0 ,
ezk5x+ N e—zk5x+ A ezkhx ) (503>

Poe<0=751 AR vor \ 1

For the evanescent wave for x > 0 we can write
U, . U* .
Uz >0)=A 7 emT 4 B 9 etk (504)
e"¢U;‘ e‘Z¢Ug

where

2K

It is not necessary to normalize the evanescent wave functions. For F, |A| < i we have

VAF—F JAP=F 061

hop hvp

E+i/[AP - E2
ng\/ +ivIA| . (505)

ki~ kp+1 , ko~ —kp—+1i

In an ideal contact the wave functions and their derivatives should be continuos. The

continuity of the wave functions gives

14+ry
— AU, + BU*
o g+ bUg
LA _ (AU + BU)e ™ . (507)

NoT

For the derivatives we approximately put |ke| = |ky| =~ |k1| = |k2| = kp. Then

1-— N
— AU, — BU?
VUF ! -
A _ (AU — BU,)e™ | (508)

VUF
The solution reads B = 0, ry = 0, AUy = 1/\/vp, 74 = \/ﬁAUge—iqﬁ = (U;/Ug)e—w_ We

have

U: E —i\/|A]? — E?
29 _ = exp [—iarccos(E/|A|)] . (509)
U, \/E+i\/\A]2—E2

Thus, in this approximation we have a 100% Andreev reflection: ry = 0 and
ra = e WemE) (510)
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where v(E) = arccos(E/|A|).
Coming back to the discussion of Sec. XI C2 we write down the corresponding quasipar-
ticle creation operator for x < 0. This reads (cf. 453, we use here a different normalization)

1
\VUF

of = / dx [{eikew + rye e} 1/4@) — rAeikhxw¢(x)] + evanescent part . (511)
<0

The fact that r4 contain the phase factor e~ means in the spirit of Sec. XI C 2 that an extra
Cooper pair is created. Thus an electron in reflected to a hole and the charge is conserved

as an extra Cooper pair is added to the condensate at x > 0.

F. Andreev reflection in 2D or 3D, propagation direction of the reflected hole

We consider now a 2D ideal NS contact between 3D normal metal and 3D superconductor.

The BdG equations read

252
_E2Z — A(?“) U _z U (512>
* R2v?2 * * ’
A*(r) S T v v

where A(r) = 0(x)|Ale’. On the normal side (z < 0), where A = 0 the solutions are

1\ h2k? o
e : E:2 —pu>0 , |k >kp, (513)
0 m
and
0\ .- R2k? .
e, E=p— >0 , k| <kp. (514)
1 2m

Upon reflection the y and z components of the wave vector are conserved. Thus possible
scattering processes are shown in Fig. 27. As we can see, the Andreev reflected hole prop-
agates in the direction opposite to that of the incoming electron. In contrast, a normally

reflected electron undergoes a usual specular reflection.

G. SNS contacts, Andreev bound states, Josephson current

1. Byers—Yang theorem

The relation between the phase drop in an SNS contact and the current can be discussed

in the framework of the so called Byers—Yang theorem. This was first formulated by N. Byers

86



FIG. 27: Andreev reflection in 2D.

and C. N. Yang in Ref. [6]. A version with a much wider application domain was provided
by F. Bloch in Ref. [7]. We will follow F. Bloch. Consider a (superconducting) ring. The
current flowing in the ring can, in principle, create its own (internal) magnetic field (vector
potential /Tm) In addition an external magnetic field (flux) is applied. Thus, one can split

the magnetic field and the vector potential into the internal ﬁfm and the external ffex ones.

—

A=A+ A,y (515)

The simplest (theoretically) situation arises if the external magnetic flux is concentrated in
the opening of the ring such that the external magnetic field vanishes in the body of the
ring itself. Thus in the body of the ring V x A, = 0. Thus, locally, in the body of the ring

A, = ﬁx. However, x(r) is not single valued in general. Indeed

f{ Adl = ., | (516)

where the integration contour is in the body of the ring.

Consider the many-body Hamiltonian of interacting electrons (here first quantization)
H = H[pj + eA(7) /e, 7] . (517)

Here p; = —ihﬁj. This Hamiltonian should in principle also include the degrees of freedom

corresponding to the internal field A;,. The support of the many-body wave function P(r5)
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is in the body of the ring. We can perform there a gauge transformation:
W(75) = o(75) exp [————-j{j;x ] . (518)

Upon this gauge transformation the Hamiltonian for vy will not contain /fex, ie.,
Ho = H[j; + eAin(75) /e, 73] (519)

However, the new wave function 1)y has a non-trivial boundary condition. Since 1) is single
valued, 1o is multiplied by a factor

exp {%%} (520)

when particle with coordinate 7 is brought around the ring. If, however, ®., = 2mnhc/e,
the wave function 1)y is periodic and . This shows the the (many-body) spectrum does not
change upon addition of 27hic/e to the external flux. In other words spectrum and, thus, all
thermodynamic quantities are periodic functions of ®.,. The period is in general 27hc/e.
However, if the system is superconducting and the electrons are paired into Cooper pairs
of charge 2e, the period is halved and is given by ®q = 2whc/2e. This is the essence of
Byers—Yang theorem: the free energy F(®.,) is a periodic function with period of @germal =
2®, in general and @ if the ring is superconducting.

More important for us now is the relation between F(®.,) and the current in the ring.

The integral of the external electric field (EMF, voltage) is given by

1d®,,
e 2B 21
Ve c dt (521)

From dF/dt = IV,, (at constant temperature, thus free energy and not just energy) one

gets dF = —I1d®,,/c and

I=—c (522)

0.,
2. Josephson current through an SNS contact

Consider the following theoretical trick. Put formally an SNS contact into an ideal thick
(thicker than London penetration length) superconducting ring. Apply an infinitesimal

external flux 0., as in the construction above (no magnetic field in the body of the ring).
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Repeating the arguments used in flux quantization we conclude that the gauge invariant
phase drop on the SNS contact gets an addition of §®.,. After the sign flip (as above) we
conclude that the phase drop is changed as & — ® — §®,,. Thus from I = —cOF /0P,
follows

oF

I=coe . (523)

(If we would not flip the sign of phase drop, we would get a minus sign here.)
Thus, solving the BAG equations ang obtaining the spectrum of positive eigen-energies
E,(®) we can calculate the Josephson current. Using
1 INGIE
HME =N "E.ala, - =) E, /dv— 524
;O alo, =5 ; + el (524)

and assuming the last term does not depend on ¢ we obtain

F(®) = —kpTIn ] ("% + eﬁEn/z)] = =B In(2cosh(BE,/2)) . (525)

n>0 n>0
Thus
I=—- tanh . 2
5 Z an ( 5 ) 5% (526)
n>0
At zero temperature this gives
c 0FE,
I=—=
5 75 (527)
n>0

H. Ideal SNS contact, Andreev bound states. Short junction limit.

Consider an SNS contact similar to the NS contact considered above. The normal part
(A = 0) extends form x = —L/2 to x = L/2. For x > L/2 we have a superconductor with
A = |Ale"r for < —L/2 we have a superconductor with A = |A[e®’Z. Both NS contacts
are ideal and no scattering happens in the normal part. We will first consider the limit of
short junction. Namely we will disregard the phase difference acquired by the electron and
hole wave at distance L. The precise criterium will be specified below.

We consider eigenstates of the Bogoliubov-de Gennes hamiltonian with £ < |A]. Such
states are bound to the normal part and are called Andreev bound states.

First solution. We can consider Andreev bound state, in which the electron propagates
to the right and the hole propagates to the left. Since, as we know from Sec. XIE 3, the

Andreev reflection is perfect at E < |A|, these two waves would constantly transform to
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each other on both boundaries. Thus no other waves are generated. The wave function for

—L/2 <x < L/2 reads

1\ 0\ ..
U(-L/2<x<L/2)=a et +b e (528)
0 1

(Normalization is not important here.) In the approximation k. = kj, ~ kg the solution is

simple. The Andreev reflection (as analyzed above, see Eq. 510) at x = L/2 provides the

relation

b=ere E)q (529)
The dual Andreev reflection at x = —L/2 gives (left as an exercise)

a=ePre B (530)

These two equations are compatible only if

ci(0L—=0R) o =207(E) _ 1 (531)

We obtain the quantization condition

(61— 6r) — 29(E) = 0 mod(2r) (532)
We use the relation (509):
, Ur E —i\/|A]? — E?
e (B = 2 — = exp [—iarccos(E/|Al)] . 533
- \/EH, s = expl-iarceos(E/ 1) (533)

Since cosy = E/|A| > 0 and siny = /|A]?2 — E2/|A]| > 0 we conclude that 0 < y(F) < 7/2

for E > 0. Thus, a positive energy solution exists only if 0 < (¢, — ¢r) < w. There

V(E) = (2 ; Or) (534)

and

E= |A‘COSM . (535)

For m < (¢, — ¢r) < 27 the solution found here is still a legitimate solution, but with £ < 0.

Its positive energy counterpart will be found next.
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Second solution. Another possible solution is the one, in which the electron moves to

the left and the hole moves to the right. The wave function in the normal domain reads

1 ‘ 0 4
U(-L/2<z<L/2)=a e~ ket 1 eTiknT (536)
0 1

Solving the Andreev reflexion problem again (left as an exercise) we get at x = L/2

a = ePre=(E) (537)
Considering now the boundary at x = —L/2 we obtain (exercise)
b=e Wre(Blg (538)

We obtain again a slightly different quantization condition
(6 — dr) +27(E) = 0 mod(2n) . (539)

Since again 0 < v(E) < 7/2 for E' > 0 we obtain that positive energy solution exist only if
- < <¢L — ¢R) < 0 and

V(B) = (¢ ; $r) (540)
If we want to have 0 < (¢, — ¢r) < 2, we should shift by 27. Then we get
V(E) = (o1 ; ¢r) P (541)
where now 7 < (¢ — ¢r) < 2m. Thus, finally
E:—|A’COSM >0 (542)

2

for 7 < (¢ — ¢r) < 2m. This solution is still a legitimate one for 0 < (¢ — ¢r) < 7.
However, in this domain it has a negative energy.

Short junction condition. In our consideration we have neglected the difference of
phases acquired by the electron and hole wave over the distance L. That is we assumed

[ke(E) — kp(E)|L < 2m. Since

krE E
\/2m,u+E kF+F—M:kF+—, (543)

hUF

and

hUF

krE E
\/2mu E) kF—F—M:kF——, (544)
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the condition of short junction reads

2EL

hUF

< 2r . (545)

The maximum relevant value of E for the Andreev bound states is |A|. Thus the condition

is satisfied if
Thup

L ~ £. 546
<<!A| 3 (546)

Here ¢ is the superconducting coherence length.

Summary. Collecting the results we get two Andreev bound states. The first one has

the energy
— |AJcos 02— 97) 5 or) (547)
which is positive for 0 < (¢, — ¢r) < . The second solution has the energy
Ey = —|A COSM , (548)

which is positive for 7 < (¢, — ¢r) < 2m. These results are summarized in Fig. 28. Using

L%

j/\

FIG. 28: Andreev Bound States in an ideal SNS junction.

(526) we can now calculate the contribution of theses Andreev bound states to the Josephson

current. We obtain (at 7' = 0)

2me 2e oF,
I = — S — =
APS 29, £ Z “ O(¢r — Or) 2h £= 0(¢L — ¢r)

Blesin 22208 for 0 < ¢y, — ¢y <7, (549)
IAh\e sip eL=%r ¢L ¢R for m™ < - <2m.
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I. Long junction limit.

We now consider the case L > £. Let us reconsider the problem of Andreev reflection
for the case of the boundary located at x = L/2. Equations (507) and (508) then should be

rewritten as

ezkeL/Q + ,,ﬂNefzkEL/2

NGT

— AUgeile/2+BU;eik2L/2 7

raethnl/? (AU e*1 /2 4 BU eih2L/2)e=i# (550)
L e e € :
\/UVF 7 ’
’ikfeL 2 _ 7’L’k‘eL 2
pikeL/ rye / _ AUgeile/z _ BUg*eikzL/2 :
\VUF

,',,AeikhL/Q . ) i

_ (AU;ezle/Q o BUgelk2L/2)e—7«¢ . (551)

VUF
Solving these we obtain

py = eilke—ki)L/2 =i ~ir(E) (552)

For the problem of Andreev Bound State considered above we obtain the relations

h = e @R V(E)ilke—kn)L/2 ) (553)
The dual Andreev reflection at x = —L/2 gives (left as an exercise)
a = 'L e=(E) gilke=kn)L/2 (554)

Thus, the quantization condition reads

(6L — or) — 2v(E) + (ke — k)L = 0 mod(27). (555)
This leads to
(61— 1) = 21(B) + 7 = 27N. (556)
(%

In the limit L > ¢ there are multiple solutions possible (for different values of V).

J. Majorana bound states

We consider a model proposed by Kitaev [8], a 1-D p-wave superconductor. The Hamil-

tonian reads

=2

-1

H= [—zfc;chrl + Acjcjp1 + he.| . (557)
1

J
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We assume the order parameter A to be real. We introduce the Majorana operators (not

really related to Majorana particles)

1 .
cj = 5(7&]‘ + VB,

c} = %(VA,J' —1YB,;) - (558)
The inverse relations read

Ya; = ¢+ c}

VB = —i(c; — c;r) ) (559)
The commutation relations of the Majorana operators read {vqj, Ya/,j' }+ = 20a,a/0;7. Here

a,o/ = A/B. In particular ’Yi,j = 1. Also these operators are Hermitian, ’yld- = Ya,j-

Substituting we obtain

N-1
1 . 4 . 4
H = 1 Z [=t(va; — 1vB,5) (Vager + VB 1) + A(vay +iv8,5) (Va1 + VB 41) + he]
j=1
(560)
The AA and BB terms vanish and we are left with
. N-1
i
H=3 D [(—t+ A)yavsier + (E+ A)ypva4) - (561)
j=1
An interesting situation arises if A = ¢. We obtain
N-1
H=iY typ7a41 - (562)
j=1

Two Majoranas are not involved in this Hamiltonian and, thus, commute with it. These are
v, = va1 and yg = 7yp,n. This means that all the eigenstates including the ground state
are double degenerate. Indeed from ~; and vz we can form a new pair of Fermi operators

1 1

5 +ive) and d' = Sy —ivR) . (563)

d=

The operators d and d' commute with the Hamiltonian. The doubling of the states in
according to the occupation number d'd. If there exist a ground state |g0) such that d|g0) =
0, then also the state |g1) = d' |g0) is a ground state, i.e., it has the same energy.

Consider a more general model

H= —,uz cle, + Z [—thLch + h.c.] + Z [Acpcnit + hoc] . (564)

94



An infinite (periodic) system can be diagonalized by transforming to the Fourier space.

Namely, we introduce
Cp = —— cpe™" 565
VN Zk ¢ (565)

where N is the number of sights. Substituting we obtain
H= _“Z che, + Z [—tclcke%k + h.c.} + Z [Ac_gere™ +h.c] . (566)
k k k
Symmetrizing with respect to k <> —k we obtain

H=—u Z cle, + Z [—215 cos(k‘)czck} + Z [iAc_ger sin(k) + h.c.] . (567)

k

Rewrite this in a matrix form

—p — 2tcosk —iAsink Ch
H=3(dew)| 74 T (568)
A 1Asink 0 cly

And in a symmetric form

1 —p—2tcosk —2iAsink c
H == E ( CL i ) H ")+ const. (569)
2 B 2tAsink  p+2tcosk cT_k

We can rewrite the BAG Hamiltonian using the Pauli matrices
hpac = (—p — 2t cos k) 7, + 2Asink 7, . (570)
This Hamiltonian possesses the particle-hole symmetry
C 'hpagC = —higuq - (571)

with C' = 7,. To see this one has to take into account that complex conjugation involves

k— —k, ie., e = hiya(—k). Also the field
Cn cretn Ck

1 1
cl _\/_Nzk: cze_ik” _\/_Nzk: ol

—k

T, = eikn (572)

satisfies, of course,
T

Cv, = (v1) (573)

The Majorana edge states appear in the so-called topological phase. The simplest way
to identify this phase is to write hgqg as

-

hpac = d(k)7 (574)
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-

and follow the trajectory of vector d(k) = (0,2Asink, —p — 2t cos k) in the Brillouin zone:

k = [—m,m]. The eigenenergies are given by

\l/(fﬁ
TOF- 'O],‘ﬂl{zg Tf\014z /gka{’é

_/(/Z{— <0 (L(:p) ,//(/Zf >0 (kiﬁ)
/OC%’Z% So (k=T ,//L/\LZ"[ >o (u=m)

FIG. 29: Topological and trivial phases of the Kitaev model.

for —2t < p < 2t. A transition between the phases requires closing the gap either at £k =0

orat k =m.

1. Domain wall and a zero (Majorana) mode.

Consider the long-wave limit k£ ~ 0 in the vicinity of the phase transition u ~ —2t. We

linearize (570) and obtain

hpac = (—p — 2t cos k) 1, + 2Asink 7, = m7, + 2AkT, . (576)
Here m = —p — 2t. We can go back to the (continuous) coordinate representation. We
consider a smooth domain wall m(z) such that m(x — —oo) = —m (topological phase) and

m(xz — oo) = m (trivial phase). The Hamiltonian can be written as
hpic = m(z)T, —ihv(0/0x)T, . (577)

Here v = 2A/h (in proper units 2Aa/h, where a is the lattice constant) is the velocity. The

zero mode can be found solving
0 = hpac® = m(z)r,®(x) — ihv(9/0x)T,P(x) , (578)
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where ®(z) = (¢1(z), po(x))T is a two-component (spinor) wave function. This gives

m(z)

0/02)0 = 7 @ (579)

Two possible solutions are proportional to the eigenvectors of 7. Namely

:I:% fdxm(m) 1
d(z)=e "0 (580)
+1
In our case only the variant with minus converge at both limits, thus
7% fdmm(x) 1
d(z)=e "0 (581)

2. Physical realizations of Majorana wires.

Wire with strong spin orbit interaction, magnetic field and proximity induced supercon-
ducting correlations [9-11]

2
thG: (QP——/L—Fupay) 7'Z+BO'Z—A07'm (582)
m

Particle-hole symmetry with C' = 7,0,. One considers the regime in which B > A, and
B > mu?. In this case one can reduce to a single spin component
P
tmac = ( 4z = e ) 7. = 0, (553)

Particle-hole symmetry with C' = 7. Here v ~ %.

. T .
. —-L 92 — 0
-l fa o) | (ol n@) v U() s
2 Vi) 00 5,00+ p(r) ) \¥M(2)
The BdG equations read
_LaQ - a:v n n
00, 502+ p() ] \galo) gn(2)
The two-component wave function
o, ) (586)
In()
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topological vacuum (trivial)

A {\¢>o L %o 1%:A [‘

vacuum (trivial)

o[l y ‘\ 70) >

K= =0 p=p1>0 = =00

FIG. 30: Wave functions of the Majorana edge modes.

The quasiparticle operators read

on= [l @)¥) = [do () gita)

— [ s (£@@) + 5@ @) (587)

Particle-hole symmetry

o, —cor— [P (588)
f(2)
and
o, = / dr (gu(@)id(a) + fule)!(2)) = o, (589)

If ¢ = e_1 = 0 one can form superpositions of these two. For example we can construct

(real) Majorana operators
w=mtal  ig=o-af. (590)
The corresponding wave functions are easy to find:
VLR = / dx @} ()W () (591)

where

O, =P+ Py = : (592)

(593)
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The wave functions ®;/p satisfy &, = C®} and & = C®%. They are eigenvectors of the
BdG Hamiltonian with zero energy. Most importantly they are localized at different edges

of the wire.
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