Vorlesung 14 4.5 Heteroepitaxie

Übersicht über Kapitel 4

- 4. Schichtwachstum
- 4.1 Homoepitaxie

4.2 Nukleation

- 4.3 Inselformen
- 4.4 Wachstumsmanipulation
- 4.5 Heteroepitaxie
- 4.6. Thermische Stabilität von Nanostrukturen

4.2 Nukleation

Lernziele

- Wachstumsmodi bei der Heteroepitaxie
- Wulff-Rekonstruktion und Verspannungen
- Frenkel-Kontorova Modell

Zusätzliche Literatur

→ Buch: Michely / Krug: "Islands, Mounds and Atoms",

 \rightarrow Buch : Markov "Crystal Growth for beginners"

Thermodynamik der Benetzung

Both crystals differ energetically (or chemically) and geometrically.

4

2D: Benetzung

$$\gamma_A > \gamma_B + \gamma_I$$

2D-Wachstum: Franck-van der Merve

$$\gamma_A < \gamma_B + \gamma_I$$

3D-Wachstum Vollmer-Weber

5

Thermodynamik der Benetzung

- Wasser benetzt nicht die Oberfläche der Blätter
- Schmutz wird von Wasserperlen davon getragen
- Anwendung des *Lotuseffekts* in modernen Fassadenfarben

Lotusblume (Nelumbo nucifera) Symbol der Reinheit im Budismus

Klassifizierung von Schichtwachstum

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022

8

Oura, S. 358

Wulff-Konstruktion

• Oberflächenspannung in realen Kristallen ist beeinflusst durch die Gitterstruktur

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

^{SS 2022} Oura, S. 232-235

Wulff-Konstruktion

- Ebenen senkrecht zum Radiusvektor werden für jeden Winkel gezeichnet.
- Die innere Einhüllende ergibt die Kristallform im Gleichgewicht
- Bestimmt die Anisotropie der freien Oberflächenenergie
- Die Anisotropie ist Temperaturabhängig (Entropie)

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

erflächenphysik" SS 2022 https://nanoconvergencejournal.springeropen.co 10

Karlsruhe Institute of Technology

m/track/pdf/10.1186/s40580-021-00275-6.pdf

Elastizitätstheorie

- Dünnschichtsysteme bieten die einzigartige Möglichkeit, Materialien in einem Zustand zu synthetisieren, in dem die Verspannung/Strain eine Größe haben kann, die im Volumen nicht realisierbar wäre.
- **Beispiel**: Silizium unter Spannung, in dem Elektronen und Löcher eine doppelt so hohe Mobilität wie normal besitzen
- Wachstum und Stabilität solcher Filme werden durch die im Film gespeicherte **elastische Energie** bestimmt.

Elastizitätstheorie

Verzerrung (Strain): Strain in einem Festkörper wird durch die Abhängigkeit eines Verschiebungsvektors **u** von der mit **r** bezeichneten Position beschrieben

 $\varepsilon_{ij} = \frac{1}{2} \left\{ \frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right\}.$ symmetrische Tensor Rang 2 i: x,y,z Richtung

Volumenänderung: $\frac{\Delta V}{V}$

$$\frac{dV}{V} = \sum_{i} \varepsilon_{ii} = \operatorname{Tr} \varepsilon \qquad \qquad \varepsilon_{ii} \equiv \frac{\partial u_{i}}{\partial x_{i}}$$

Diagonalelemente: Längenänderungen

Off-Diagonalelemente: Scherbewegung

Kräfte, die die Verzerrungen (Strain) auslösen: Spannungen (Stress)

 \mathcal{T}_{ii}

alternativ

$$\varepsilon_{k\ell} = \sum_{ij} s_{k\ell ij} \tau_{ij}$$
 $S_{k\ell ij}$: Elastizitätstensor

In isotropen Materialien gilt:

 $s_{44} = 2(s_{11} - s_{12})$

Weitere Zutaten:

• Young's Modul:

 $Y = 1 / s_{11}$

Zusammenhang zwischen Spannung und Dehnung

Poisson Verhältnis

$$v = -s_{12} / s_{11}$$

Volumenänderung beim "ziehen" (0.5 entspricht keiner Volumenänderung, 0 maximale Änderung)

Anisotropy of Young's modulus

D. Sander, Rep. Prog. Phys. 62 809-858 (1999)

Beispiel: elastische Energie eines dünnen kubischen Films auf kubischen Substrats

 $\tau_{33} = 0$, keine Kraft senkrecht zur Oberfläche

$$\begin{aligned} \varepsilon_{11} &= s_{11}\tau_{11} + s_{12}\tau_{22} & \varepsilon_{11} = \varepsilon_{22} = \varepsilon, \\ \varepsilon_{22} &= s_{12}\tau_{11} + s_{11}\tau_{22} & \tau_{11} = \tau_{22} = \tau, \end{aligned}$$

$$\begin{aligned} \varepsilon &= s_{11}\tau + s_{12}\tau \\ &= (s_{11} + s_{12}) \cdot \tau \end{aligned}$$
 Für x- und y-Richtung

Differential der elastischen Energie:

$$\mathrm{d}U_{\mathrm{elast}} = 2\tau \,\mathrm{d}\varepsilon = \frac{2\varepsilon \,\mathrm{d}\varepsilon}{s_{11} + s_{12}}$$

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

16

• Die elastische Energiedichte ($\int dU \cdot t$) pro Fläche ist dann

Table 3.3. Young's moduli (in 10^{10} N/m²) and Poisson-numbers for the (100) and (111) planes of some cubic crystals.

Material	Y ₍₁₀₀₎	V(100)	<i>Y</i> ₍₁₁₁₎	V(111)
W	39.5	0.287	39.4	0.287
Fe	13.0	0.364	21.4	0.383
Cu	6.66	0.42	9.51	0.361
Ag	4.37	0.428	8.35	0.514
Au	4.29	0.459	8.16	0.573
Pt	13.6	0.419	18.5	0.450
Si	13.0	0.279	16.9	0.262
Ge	10.3	0.273	13.8	0.252

Generell ist Y anisotropy aufgrund der Form der Fermi-Oberfläche (Neck and Belly für Cu, Ag, Au)

Ibach, S. 131

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Messung der Verspannungseffekte bei der Heteroepitaxie

 Messung der Spannung (nicht der Verzerrung) durch Verbiegung eines dünnen Substrats. (ähnlich wie ein AFM)

Messung der Verspannungseffekte bei der Heteroepitaxie

 Die Spannung in dünnen Filmen, die auf einem Substrat aufgewachsen werden, kann eine Biegung des gesamten Kristalls verursachen!

Ag films grown on Fe(100)

Fig. 3.15. Integral over the stress in a thin silver film deposited on a Fe(100) substrate at 150 K vs. the film thickness. After completion of the first monolayer the stress agrees with the stress calculated from the misfit of -0.8% (courtesy of Dirk Sander, [3.15]).

Beispiel:Fe/W(110)

D. Sander, Rep. Prog. Phys. 62 809-858 (1999)

• Ist die elastische Energie groß genug, kommt es zur Versetzungsbildung, d.h. Atome sitzen nicht mehr in dem Adsorptionsminimum.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Markov, S. 377

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022

23

Verspannungseffekte bei der Heteroepitaxie

Substrat und Film haben im allgemeinen unterschiedliche Gitterkonstanten

- Beim Aufwachsen kommt es zur Verspannung des Films
- Verspannungsenergie nimmt mit Filmdicke zu
- Verspannungsenergie kann als Grenzflächenenergie behandelt werden

Übergang von 2D- nach 3D-Wachstum: Stranski-Krastanov Wachstum

- epitaktisches Wachstum: geordnetes Aufwachsen
- pseudomorphes Wachstum: Aufwachsen mit identischer Gitterkonstante

Oura, S. 378

Frenkel-Kontorova Modell

Verschiebung der Atome

Figure 4.10: For the determination of the atom displacements X_n and x_n and the atomic spacing $\Delta X_n = X_{n+1} - X_n$ in the 1D model of Frank and van der Merwe (1949a).

$X_{n+1} = (n+1)a + x_{n+1}$ $X_n = na + x_n$ $\xi_n = x_n/a$

$$\Delta X_n = x_{n+1} - x_n + a = a(\xi_{n+1} - \xi_n + 1),$$

Strain der Bindung zwischen den Atomen:

Karlsruhe Institute of Technolog

$$\varepsilon(n) = \Delta X_n - b = a(\xi_{n+1} - \xi_n - f).$$

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Oura, S. 250, Markov S. 389

Frenkel-Kontorova Modell

• Einfaches Potential-Modell

$$E = \frac{1}{2}\gamma a^2 \sum_{n=0}^{N-2} (\xi_{n+1} - \xi_n - f)^2 + \frac{1}{2}W \sum_{n=0}^{N-1} (1 - \cos 2\pi\xi_n),$$
(4.15)

 $\sim \sim \sim$ ___b__

strain energy of the system

harmonische Näherung für Film mit Gitterkonstante b interaction across the interface

Periodisches Potential des Adsorptionsplatz auf dem Substrat mit Gitterkonstante a

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 26

Oura, S. 250, Markov S. 389

Lösung für das Frenkel-Kontorova Modell

 f_{ms} : metastable Gitterfehlpassung

Markov, S. 401

Pb on Cu(111) [0.6 ML]

- Verhältnis der Gitterkonstanten: 4.1/3
- \rightarrow 4x4 Rekonstruktion mit viel Misfit Dislocations
- ightarrow Kaum compressive strain

Ga on Ge(111) γ -phase [0.7 ML]

Ge(111)

Quasi-periodic superlattice mit ~7.4a

Ga Gitterkonstante ca. 10% größer als

Verspannungseffekte bei der Heteroepitaxie

Oura, S. 380

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Mehrere Lagen

- Der Film wird im Allgemeinen mit dem Substrat bis zu einer kritischen Dicke, die eine Funktion der natürlichen Fehlpassung ist, pseudomorph sein.
- \rightarrow HS akkumuliert sich linear mit zunehmender Filmdicke und bei einem gewissen Wert wird die Strain-Energie größer als die Energie der MDs.

Filmdicke:

30

Spannungsinduziertes Wachstum von geordneten Streifen

(a) Ag Fe/Co(b) +a + Ag Fe/Co

• Ag in Kompression und Co/Fe in Spannung

Tober et al., Phys. Rev. Lett. 81, 1897 1998

Mn/Fe(100): Unscharfe Grenzfläche

- Diffusion über Austausch führt bei Mn/Fe(001) zu einem verwaschenen Übergang
- Erst bei 5ML Mn findet man keine Fe Atome mehr.

T. Yamada et al.

Bevorzugtes Wachstum im Verspannungsfeld

Ge/Si(100)

InAs Quantenpunkte in GaAs

Xie et al., Phys. Rev. Lett. 75, 2542, 1995

- Nukleation von verspannten Inseln
- Relaxation über Versetzungsbildung
- Aufwachsen von Trennschicht
- Bevorzugtes Wachstum über vergrabener Insel

Literatur

- Ibach: 168-176
- Fauster: 64-65
- Growth modes: Oura, S. 357-359
- Strain effects in heteroepitaxy: Oura, S. 377-381
- D. Sander, Rep. Prog. Phys. 62 809-858 (1999)
- Markov: Crystal growth for beginners

Elastitätstheorie

- Ibach: S. 125-138
- https://de.wikipedia.org/wiki/Elastizit%C3%A4tstensor

Verspannungseffekte bei der Heteroepitaxie und Entstehung von Nanostrukturen:

> Verspannungsfeld in vergrabener Schicht beeinflusst Nukleation an Oberfläche

2.5 nm Si_{0.25}Ge_{0.75} on Si(001)

Intermediale Phase zwischen 2D-Schichten und makroskopischen 3D-Cluster.

kleine Cluster mit ausgeprägter FacettenKristallographie und einer spezifischen Ausrichtung bzgl des Substrats.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Mo et al., Phys Rev Lett 65, 8 1990