Vorlesung 23 Spins on Surfaces

Übersicht über die Kapitel der Vorlesung

- 0. Motivation
- 1. Die Oberfläche
- 2. Dünne Gase
- 3. Methoden der Oberflächenphysik
- 4. Schichtwachstum
- 5. Oberflächenchemie
- 6. Elektronische Struktur von Oberflächen
- 7. Oberflächenmagnetismus
- 8. Quantennanowissenschaften auf Oberflächen

6.11 Rastertunnelspektroskopie

Wiederholung: Rastertunnelspektroskopie nach Tersoff-Hamann

• Rastertunnelspektroskopie: lokale elektronische Struktur der Oberfläche

$$\frac{\partial}{\partial U}I(x,y,z_0,U) \propto e\mathcal{T}(eU,U,z_0)D_S(0)\rho^*(x,y,eU)$$

$$= \int_0^{eU} \rho^*(x,y,E)\mathcal{T}(E,U,z_0)\frac{\partial}{\partial U}\overline{D_S(E-eU)dE}$$

$$= \int_0^{eU} \rho^*(x,y,E)D_S(E-eU)\frac{\partial}{\partial U}\mathcal{T}(E,U,z_0)dE.$$
(6.4) Hintergrund

Oberflächenzustände

Kondo-Effekt

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

Lernziele

- Inelastische Tunnelspektroskopie
- Mechanismen der Atom-Manipulation

8. Quantennanowissenschaften auf Oberflächen

8.1 Inelastic Electron Tunneling Spectroscopy (IETS) 8.2 Atom Manipulation

- Excite vibrations of molecular adsorbates
- Some of the tunneling electrons can lose energy by exciting vibrations.
- These inelastic processes lead to a second tunneling path, which gives an additional current contribution to the tunneling current.
- Since the incident electron should have enough energy to excite this vibration, there is a minimum energy required

$$e \cdot V_{Tunnel} = E_{Vib}$$

Karlsruhe Institute of Technology

 Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"
 SS 2022

 https://en.wikipedia.org/wiki/Inelastic_electron_tu
 https://www.science.org/doi/10.1126/science.
 6

 nneling_spectroscopy#
 280.5370.1732

 Konsistenz-Check: Unterschiedliche Isotope haben unterschiedliche Vibrations-Energien

https://www.science.org/doi/10.1126/science. 7

280.5370.1732

- Das physiosorbierte CO wird von der Ag(100) Oberfläche gehoben und auf ein einzelnes Fe Atom gesetzt wo es chemisorbiert.
- Es kann ein einzelner Fe(CO)₂
 Komplex hergestellt werden.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 8

https://www.science.org/doi/epdf/10.1126/science.286.5445.1719

Vibrationsspektroskopie einzelner Moleküle

- Alle Zwischen- und Endprodukte können einzeln spektroskopiert werden und somit eindeutig identifiziert werden.
- Isotopenverschiebungen der Linien geben Auskunft über nukleare Spezies.

Inelastic spin flip spectroscopy

• Spin excitation of a surface spin via the tunneling current if the energy is high enough

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik" <u>https://pubs.aip.org/physicstoday/article/68/3/42/415025/Atomic-spins-on-surfacesWhen-</u> adapted-to-cryogenic

SS 2022 10

Measuring the Zeeman interaction

- Above a threshold voltage, electrons are able to transfer energy to these excitations during the tunnelling process.
- This additional tunneling channel results in an upward step in conductance at the threshold voltage.
- Tunneling electrons lose energy to spin-flip excitations of single Mn atoms.
- The signature of Zeeman splitting in spin-flip IETS is a step up in conductance at an energy proportional to the applied magnetic field.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 11

https://www.science.org/doi/pdf/10.1126/science.1101077

Magnetic Anisotropy: Fe atoms on CuN

- Magnetic atom becomes incorporated into a polar covalent surface molecular network in the copper nitride.
- \rightarrow Provides magnetic anisotropy

$$\hat{H} = g\mu_{\rm B}\vec{B}\cdot\hat{\vec{S}} + D\hat{S_{\rm z}^2} + E(\hat{S_{\rm x}^2}-\hat{S_{\rm y}^2})$$

B II N direction

- The axial term D splits the degeneracy of the spin-states on the basis of the magnitude of the spin's z projection m
- the transverse term **mixes** E states of different m.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

https://www.science.org/doi/pdf/10.1126/science.1146110

Magnetic Anisotropy: Fe atoms on CuN

- Experimental parameters can be determined by fits to the step position and height
- For that the Hamiltonian needs to be diagolanalized and Eigenenergies need to be calculated

Fit parameters:

$$\hat{H} = g\mu_{\rm B}\vec{B}\cdot\hat{\vec{S}} + D\hat{S_{\rm z}^2} + E(\hat{S_{\rm x}^2}-\hat{S_{\rm y}^2})$$

g = 2.11 ± 0.05 , D = $-1.55 \pm$ 0.01 meV, and E = 0.31 ± 0.01 meV

A quantum antiferromagnetic spin chain

- Positioning atoms in close distance via atom manipulation
- Leads to additional Heisenberg exchange interaction

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 14

https://www.science.org/doi/pdf/10.1126/science.1125398

Length dependence

Odd length chain: spin-flip excitation at V~0

в

5

Cu(100)

1nm

 Even length chain: no spin-flip excitation at V~0, large step at higher voltage

1nm

Α

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

https://www.science.org/doi/pdf/10.1126/science.1125398

- Spectra taken on a single Mn atom on CuN
- The existence of spin-flip excitations requires S > 0 for the ground state of these chains.
- Small zero field splitting

Conductance spectra of Mn dimer on CuN.

• The IETS steps thus correspond to spin-changing transitions from the ground state (with S = 0 and m = 0) to an excited state (with S = 1 and m = -1, 0, 1)

- Excitations vary little over the chain
- \rightarrow Global excitation of the chain from S = 0 and S = 1

Karlsruhe Institute of Technology

Manipulation of the Electron-Spin dynamics m = -5/2Spin pumping with tunnel electrons -3/2-1/2+1/2**No Spin-Polarized Spin-Polarized** +3/2 (magnetic) tip (magnetic) tip +5/2d Low current -5/2Low current 1.2 dl/dV (normalized) dl/dV (normalized) 1.2 -3/2High current -1/21.0 1.0 +1/2 Zeeman splitting +3/2 0.8 0.8 High current +5/2-20 -10 20 0 10 -20 -10 10 20 0 Voltage (mV) Voltage (mV) STM tip Mn Cu Mn Cu. /Mn Mn Cu₂N Cu SS 2022 Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

https://iopscience.iop.org/article/10.1088/1367-2630/12/12/125021/meta

19

- a spin-polarized tip gives a larger step for negative V than for positive V
- This asymmetry is the consequence of a selection rule for spin excitations with tunnelling electrons
- \rightarrow total spin angular momentum is conserved during the tunnelling process
- \rightarrow spin excitation changes m for the atom by -1, it requires down-electron states in the tip when current flows out of the tip (V > 0), and up-electron states in the tip when current flows into the tip (V < 0)

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022

https://iopscience.iop.org/article/10.1088/1367-2630/12/12/125021/meta

20

- **Spin-Pumping**: at high currents the excited electrons gets again excited before it can relax
- Depends crucially on the lifetime T1 of the surface spin
- Changes the ground state population

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 21

https://iopscience.iop.org/article/10.1088/1367-2630/12/12/125021/meta

Bistable AFM array of Fe atoms.

- atoms on a surface coupled antiferromagnetically with exchange energy J.
- Surface-induced magnetic anisotropy fields cause the spins of the atoms to align parallel to the easy magnetic axis, D.
- A spin-polarized STM tip reads the magnetic state of the structure by magnetoresistive tunneling.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 22

https://www.science.org/doi/full/10.1126/science.1214131

- Thermal stability of AFM arrays: (2×6) and (2×4) arrays of Fe atoms.
- Both arrays have stable Néel states at 1.2 K

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 23

https://www.science.org/doi/full/10.1126/science.1214131

- Ultradense AFM data storage. (A) Non–spin-polarized STM image, 24 × 8 nm, of eight (2×6) arrays assembled from Fe atoms.
- Information storage in a magnetic byte. A color-coded difference between spinpolarized and spin-averaged images is shown, with red corresponding to higher tip height and blue to lower tip height in the spin-polarized image.

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

https://www.science.org/doi/full/10.1126/science.1214131

IS.m>

1,+1>

11,0>

11.-1>

|0.0>

Magnetic Field

- Magnetic exchange coupling can also appear in carbon structures and radical spins
- Here: Nanographene with magnetic spin singlet ground state
- Very large spin-spin coupling

С

Energy

-100

0

Sample bias (mV)

100

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 25

200

https://www.nature.com/articles/s41557-021-00678-2.pdf

8. Quantennanowissenschaften auf Oberflächen

8.1 Inelastic Electron Tunneling Spectroscopy (IETS) 8.2 Atom Manipulation

Atomare Manipulation

Bei kleinem Abstand zwischen Spitze und Probe überlappen die Wellenfunktionen sehr stark

 \rightarrow Wir formen eine chemische Bindung \rightarrow Kräfte

a,e: Kleine Tunnelströme, so dass das
STM im Wesentlichen nur abbildet
(Überlapp klein)
a→b: Strom erhöhen, es entstehen
Kräfte
b→c: Spitze seitlich bewegen, Adsorbat
bewegt sich mit
c→d: Strom erniedrigen

Ziehen, Schieben oder Gleiten von Atomen

- a) Attraktive Wechselwirkung, Pb springt von Gitterplatz zu Gitterplatz
- b) Sehr starke attraktive
 Wechselwirkung: Pb Atom gleitet
 mit der Spitze
- c) Repulsive Wechselwirkung: "schieben" des Adsorbates

Meyer at al. Appl. Phys. A 68, 125 (1999)

A Boy and his Atom

https://www.youtube.com/watch?v=oSCX78-8-q0

Vertikale Manipulation und Herstellung einer chemischen Bindung

- Locker gebundene (physiosorbierte) Moleküle können durch geeigneten Stromfluss von der Oberfläche auf die Spitze übertragen werden.
- An gewünschter Stelle können sie durch den umgekehrten Prozess wieder auf die Oberfläche gesetzt werden.
- Es lassen sich gezielt chemische Bindungen herstellen.

- moving cobalt (Co) on Pt(111) requires a lateral force of 210 pN
- this force is independent of the vertical force.
- The lateral force can vary substantially with the chemical nature of the underlying surface as it is only 17 pN for Co on Cu(111).

 \rightarrow nature of the chemical bonding plays a strong role.

• shift of the oscillation frequency Δf , which for small A is roughly proportional to the vertical stiffness

$$k_z \approx 2k_0/f_0 \times \Delta f$$

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

SS 2022 31

https://www.science.org/doi/epdf/10.1126/science.1150288

 Experiment: Scan over the atom at a certain height and detect conductance and frequency shift

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

https://www.science.org/doi/epdf/10.1126/science.1150288

• From these curves one can calculate the force in x- and z-direction

Khalil Zakeri-Lori und Philip Willke, Vorlesung "Oberflächenphysik"

- Difference between Cu and Pt substrate: both are fcc crystals and the Co atom binds at a threefold hollow site on both surfaces.
- → This indicates that the nature of the chemical bonding plays a strong role.
- For Cu, the bonding is dominated by hybridization of the electronic states of the Co adsorbate with the 4s metal band, which shows no discernible direction dependence.
- In contrast, extra bonding occurs on Pt resulting from its partially filled and strongly directional 5d bonds, which apparently increase the forces necessary for manipulation.
 - Co: hollow site (17 pN), CO: top site (160pN)
 → Same substrate, different interaction

Co on Cu(111)

CO on Cu(111)

