

Vorlesung: **Teilchenphyisk I (Particle Physics I)**

Units and Conventions

Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

WS19/20

Natural Units

Common choice in particle Physics

"natural units" with $\hbar = c = 1$

SI units, ptb.de

- very pratical in particle physics,

but different from SI unit system

Consequences:

 \rightarrow

- $c = 1 \rightarrow [L] = [T]$ (length and time have same unit)
- $\hbar = 1 \rightarrow [E][T] = 1$, from Heisenberg's uncertainty principle
- \rightarrow Length and time have units of 1/energy: $[L] = [E]^{-1}, [T] = [E]^{-1}$

•
$$E^2 = (pc)^2 + (mc^2)^2$$
, $c = 1$

Momentum and mass have unit of energy: [p] = [E], [m] = [E]

Relativistic Kinematics

• 4-vectors in 4-dimensional space-time (Minkowski space):

 $x^{\mu} = (t, x, y, z)$ with $g_{\mu\nu}x^{\mu}x^{\nu} = x_{\nu}x^{\nu} = t^2 - x^2 - y^2 - z^2$

 Lorentz transformation from inertial frame of reference S to S' (moving with velocity v relative to S)

• Relativistic **boost**: $\beta = \frac{v}{c}$ (in 3D: $\vec{\beta} = \frac{\vec{v}}{c}$)

Relativistic γ *factor*: $\gamma = (1 - \beta^2)^{-1/2}$

Lorentz transformation

in 1 spatial dimension:

$$\begin{pmatrix} t' \\ \mathbf{x}' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} t \\ \mathbf{x} \end{pmatrix}$$

Units of Energy

- Unit of energy in particle physics
 - Electronvolt (eV)
 - 1 eV = amount of energy gained by particle with charge *e* = 1.609 · 10⁻¹⁹ C of a single electron (elementary charge) moving across an electric potential difference of 1 V
- Typical energy scales in particle and astroparticle physics
 - Neutrino masses: meV
 - Flavour physics: GeV
 - Physics at the LHC: TeV
 - Cosmic rays: up to EeV

Useful identities

$$\hbar = 6.6 \cdot 10^{-25} \,\text{GeV}\,\text{s} \rightarrow 1 \,\text{GeV}^{-1} \approx 6.6 \cdot 10^{-25} \,\text{s}$$

 $\hbar c = 197 \,\text{MeV}\,\text{fm} \rightarrow 1 \,\text{fm} \approx 5 \,\text{GeV}^{-1}$

Kinematics at Collider Detectors

- Conventions for kinematic variables at collider detectors (motivated by cylindrical symmetry of detectors)
 - Right-handed cylindrical coordinates system
 - Azimuthal angle ϕ : angle to x axis in xy plane
 - Polar angle θ : angle to z axis (beam axis)

Rapidity

Rapidity y very conveniently used to describe a Lorentz boost (here along the z axis)

$$\begin{pmatrix} ct'\\ z' \end{pmatrix} = \begin{pmatrix} \cosh y & -\sinh y\\ -\sinh y & \cosh y \end{pmatrix} \begin{pmatrix} ct\\ z \end{pmatrix}$$

with $y = \tanh^{-1} \beta_z = \frac{1}{2} \ln \left(\frac{1+\beta_z}{1-\beta_z} \right) = \frac{1}{2} \ln \left(\frac{E+p_z}{E-p_z} \right)$

 $\beta_z = \frac{v_z}{c}$ is the component parallel to z axis

- relation $y \leftrightarrow \beta$ is similar to α (the angle between a straight line and the x axis) \leftrightarrow s (the slope, with $\alpha = \tan^{-1}(s)$):
- angles or rapidities are additive, slopes or (relativistic) velocities are not (two subsequent rotations or Lorentz boosts)
- upon a global rotation or Lorentz boost of the coordinate system, difference in angles or rapidities remain constant

Rapidity and Pseudo-Rapidity

At hadron colliders,

where the centre-of-mass system of a collision is not at rest, **y** is the proper variable,

or the pseudo-rapidity
$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

for massless particles (or $p_z >> m$) $\eta = y$

note: η is easy to measure, y is not !

Rapidity and invariant cross section

As a consequence of the above (dy being Lorentz-invariant w.r.t. boosts in z),

 $\frac{d\sigma}{dy}$, $\frac{d\sigma}{d\phi}$ and hence the double-differential cross section $\frac{d^2\sigma}{dy\,d\phi}$ are Lorentz-invariant w.r.t. boosts in z-direction $d\sigma$

 $\overline{d\eta}$ is invariant for high-energetic particles with negligible rest mass

Mandelstam Variables

• 2 \rightarrow 2 scattering process with 4-momenta p_i (i = 1, ..., 4) p_1 p_2 p_2 p_4 p_5 p_4 p_4 p_5 p_5 p_4 p_5 p_5 p_4 p_5 p_5 p_5 p_6 p_7 p_8 p_8 p

Mandelstam variables (4-momentum of intermediate particle)

$$\begin{aligned} s &= (p_1 + p_2)^2 = (p_3 + p_4)^2 \\ t &= (p_1 - p_3)^2 = (p_2 - p_4)^2 \\ u &= (p_1 - p_4)^2 = (p_2 - p_3)^2 \end{aligned}$$

s, t, u are Lorentz invariant, have unit [energy]²

Cross section measurement

Master formula:

Signal & Background

Cross Section measurement: uncertainties

by error propagation \rightarrow

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{cand}^2 + \delta N_{bkg}^2}{(N_{cand} - N_{bkg})^2}} + \left(\frac{\delta\epsilon}{\epsilon}\right)^2 + \left(\frac{\delta\int L}{\int L}\right)^2$$

This is the error you want to <u>minimize</u>

- with signal as large as possible
- background as small as possible
- nonetheless, want large efficiency
- luminosity error small (typically beyond your control, also has a "theoretical" component)

Reprise: the mother of all particle physics experiments

Rutherford scattering experiment: α -particles on gold foil

Cross section: relation to theoretical calculations

cross section:

transition rate initial \rightarrow final state

in theory

Fermi's golden rule

$$\lambda_{i \to f} = 2\pi |M_{fi}|^2 \rho$$

amplitude or "matrix element" of underlying process

phase space

Cross Section

 $\sigma_{i \to f} = \frac{|\mathcal{M}|^2 \cdot [\text{Phase space}]}{[\text{Colliding particle flux}]}$

experimentally

determined from

 N_{cand} : number of observed events N_{bkd} : number of expected background events ϵ : acceptance \cdot efficiency f: flux T: measurement time

$$\sigma_{i \to f} = \frac{N_{cand} - N_{bkg}}{\epsilon \cdot f} \frac{1}{T}$$

Matrix elements and Feynman Diagrams

 elements (external lines, vertices, internal lines) represent terms in Lagrange density of the underlying theory

Calculations of the phase space density in reactions involving many particles (and hence a high-dimensional phase space) require **Monte Carlo** techniques

Reprise: electron-nucleon scattering

Including the electron **spin** and **recoil of the nucleus**, the Rutherford cross section becomes the **Mott cross section**:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{point}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{(Z\alpha)^2 E^2}{4k^4 \sin^4 \frac{\theta}{2}} \left(1 - \frac{k^2}{E^2} \sin^2 \frac{\theta}{2}\right)$$

with the electron momentum k = | **k**_i| = | **k**_f | and electron energy E

Taking into account also the finite size of the nucleus, the cross section is multiplied by the form factor $F(q^2)$

$$\left(\frac{d\sigma}{d\Omega}\right) \,=\, \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left|F(\mathbf{q}^2)\right|$$

 $F(q^2)$ is the Fourier transform of the charge density $\rho(r)$, $Q q = k_i - k_f$ ist the momentum transfer

Reprise: the Proton

in fact, the proton is much more complicated:

composed of

- valence quarks
- sea quarks
- gluons (carry 50% of momentum)

Precision study of proton composition in electron-proton scattering HERA at DESY in Hamburg

Parton Density Distributions (PDFs) ...

... describe the contributions of qurks, anti-quarks and gluons to the proton momentum:

Parton Densitiy Functions (PDFs) have to be taken into account when calculating cross sections at hadron colliders.

pp → **final state** is a multi-step process

Calculation of Cross sections

Complicated process – use MC techniques to calculate cross sections, phenomenological modes to describe hadronization process (quarks \rightarrow jets)