

Vorlesung: Teilchenphysik I (Particle Physics I)

Particle Detectors

Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

WS 20/21

"Candidate events for Higgs-boson production in pp Collisions

Discoveries and precision Measurements are only possible with complex detectors, which enable the distinction of all (stable) particles and the precise reconstruction of physical quantities.

- 1. Interactions of particles in Matter
 - electromagnetic interaction of photons and charged particles
 - Cherenkov and transition radiation
 - hadronic interactions
- 2. Simulation of particle interactions
- 3. Detectors in Particle Physics
 - Detector systems
 - Track and vertex reconstruction
 - Calorimetry

Reminder: Interactions of photons with matter

Reminder: interactions of charged particles

1. charged particles lose energy via ionisation and excitation of atoms:

average number of ion-electron pairs is proportional to particle energy

Number N / I of elektron-ion pairs per unit lenght depends on mean energy loss per ionisation process, $W_i > I_0$ (ionisation potential)

2. charged particles emit bremsstrahlung in the electrical fields of nuclei

2. multiple scattering particles passing through matter

Particle Interactions in Matter

• *Hadrons* (neutral and charged)

- Nuclear interactions (strong interaction)
- Shower of secondary hadrons
- Ionisation, ... (cf. charged particles)

Strong interaction has a very short range \rightarrow

particle must come close to nucleus

Particle Interactions in Matter

Neutrinos

- Only weak interaction
- Detection via charged particles produced by neutrino
 - \rightarrow need large detectors for direct detection

 Indirect detection via "missing energy" (difficult if more than one neutrino in an event)

Overview: Interactions in Matter

- Effects well-understood but difficult to compute analytically
- In practice, Monte Carlo simulation used
 - In Particle Physics typically <u>GEANT</u> toolkit \rightarrow exercises 2 & 3!

Highly recommended reading: PDG review Passage of particles through matter

Literatur Teilchendetektoren

Teilchendetektoren

- H. Kolanoski, N. Wermes: Teilchendetektoren, Springer-Spektrum (2016)
- C. Grupen: Particle Detectors, Cambridge UP (2008)
- K. Kleinknecht: Detektoren f
 ür Teilchenstrahlung, Springer (2005)

https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-mat ter.pdf

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel .pdf

Mean ionization loss of charged particles

(Fast) charged particles lose energy by inelastic collisions with electrons in absorber \rightarrow ionization and atomic excitation

Mean energy loss given by

Bethe formula:

111

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = D\rho z^2 \frac{Z}{A} \beta^{-2} \left[0.5 \log \left(\frac{2m_{\mathrm{e}} c^2 \beta^2 \gamma^2 \Delta T_{\mathrm{max}}}{I_{\mathrm{eff}}^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

$$D = 4\pi N_{\rm A} r_{\rm e}^2 m_{\rm e} c^2 \approx 0.307 \frac{\rm MeV cm^2}{\rm g}$$

with	
Ζ	charge number of incident particle (in units <i>e</i>)
Ζ	atomic number of absorber
N _A	Avogadro's number
$T_{ m max}pprox 2m_eeta^2\gamma^2$	maximum energy transfer in single collision
$\delta(eta\gamma)$	density effect correction ("Fermi density correction")
1	ionisation energy
С	shell correction for small energies $\widehat{\mathfrak{Y}}$

valid for moderately-relativistic charged heavy particles not for electrons (small mass, identical particles in scattering)

Mean energy loss for different materials

charged particles: Photon Radiation (Bremsstrahlung)

Interaction with virtual photons from electrical field of nucleus:

$$\frac{dE}{dX} = 4\alpha N_{\rm A} \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \log \frac{183}{Z^{1/3}}$$

 $\frac{dE}{dX} \propto \frac{E}{m^2}$

Most important for electrons, but also for ultra-relativistic myons

Typical for electrons:

$$\frac{dE}{dX} = \frac{E}{X_0}$$

with radiation length [g/cm²]:

$$X_0 = \frac{A}{4\alpha N_{\rm A} Z^2 r_{\rm e}^2 \log \frac{183}{z^{1/3}}}$$

$$E(X) = E_0 e^{-X/X_0}$$

exponential !

Critical Energy

$$\left(\frac{dE}{dX}\right)_{\rm tot} = \left(\frac{dE}{dX}\right)_{\rm ion} + \left(\frac{dE}{dX}\right)_{\rm brems}$$

definition of "critcal energy"

$$\frac{dE}{dX} \left(E_{\rm c} \right) \Big|_{\rm brems} = \left. \frac{dE}{dX} \left(E_{\rm c} \right) \right|_{\rm ion}$$

$E < E_{\rm c}$	ionization dominates	
$E > E_{\rm c}$	photon radiation dominates \rightarrow showering	

Approximate values:

$$E_{\rm c}^{\rm gas} = \frac{[710]MeV}{Z+0.92}$$

$$E_{\rm c}^{\rm sol/liq} = \frac{[610]MeV}{Z+1.24}$$

Energy loss: the full picture

Energy loss of electrons

charged particles: Fluctuations of dE/dx

- Bethe equation: *mean* energy loss for given $\beta\gamma$
- In thin absorbers: sizeable statistical fluctuations in energy loss
 - Strongly asymmetric distribution around most probable value Δ_{ρ}
 - Empirical description: Landau-(Vavilov) distribution

Note: mean and standard deviation of Landau distribution not defined ! \rightarrow measurements of dE/dx require special attention in data analyis

dE/dx for particle identification

For small momenta,

measurements of ionisation loss (dE/dx) useful for particle identification

Measurements of ionization in the Time Projection Chamber (TPC, a large gas detector) of the ALICE experiment

charged particles: **b** electrons

- Close-to *maximum energy transfer T*_{max} to electrons in medium in single collision
 - " δ electrons" ("knock-on electrons")
 - Very rare (long tail of Landau distribution)
- Relevant for detectors: *degrade position resolution* in tracking detectors

electrons & positrons: interaction with matter

Energy loss of electrons in addition to ionisation by

Low energies

High energies

Karlsruher Institut für Technologie

charged particles: range in matter

Teilchen/Material	Luft	Wasser	Aluminium	Blei
Elektronen 1 MeV	3.8 m	4.3 mm	2.1 mm	6.7 mm
10 MeV	40 m	4.8 cm	2 cm	5.3 mm
Protonen 1 MeV	25 cm	0.02 mm	0.014 mm	8.8 μm
10 MeV	1.25 m	1.2 mm	0.63 mm	0.3 mm
Alpha 1 MeV	5 mm		3.3 µm	2.4 μm

Large peak ("Bragg peak") in energy depositon at end of range ...

... used in medical tumor therapy

charged particles: multiple (Coulomb) scattering

- Charged particle traversing medium: deflected by many small-angle scatters ("*multiple scattering*")
 - Mostly Coulomb scattering (Rutherford)
 - Hadrons also strong contributions
- Many scatters: net scattering-angle distribution $f(\theta)$ approximately *Gaussian* (central limit theorem)
 - Less frequent hard scatters produce non-Gaussian tails
- Standard deviation of f(θ) after distance x through medium:

$$heta_0 pprox 13.6 \, \mathrm{MeV} \cdot rac{Z}{eta} \sqrt{rac{x}{X_0}}$$

- Important *implications for position resolution* of tracking detectors
 - e.g. momentum resolution of CMS tracking detector ultimately limited by multiple scattering

charged particles: Cherenkov Radiation

Characteristic radiation emitted by charged particles when passing a medium at a *speed* β *greater than the phase velocity of light* in that medium (even for non-accelerated charge):

 $\beta > \frac{1}{n}$ (with refractive index *n* of medium)

Emission under Cherenkov angle

 $\cos\theta = \tfrac{1}{n\beta}$

 $\langle dipole \ moment \rangle = 0$

 \rightarrow no radiation

 Origin: asymmetric polarisation of medium

charged particles: Transition Radiation

- Radiation emitted when charged particle passes through inhomogeneous media, e.g. boundary between two media of *different permittivity* ϵ (Ginzburg, Frank 1945)
 - Classical model: radiation by a time dependent *dipole between charge* and image charge

• Intensity $I = \alpha z^2 \gamma \frac{\omega_p}{3}$ with plasma frequency $\omega_p^2 = \frac{n_e e^2}{\epsilon_r \epsilon_0 m_e}$ \rightarrow intensity proportional to γ

Application: measurement of relativistic *Lorentz factor* γ

• With known momentum p and $\gamma = E/m$: **mass** (particle identification)

Interactions of photons with Matter

- Low energies $E_{\gamma} \lesssim 1$ MeV: *photo effect*
 - Absorption of photon
- Low-to-medium energies $E_{\gamma} = O(1 \text{ MeV})$: Compton scattering
 - Decrease of photon energy (gets replaced by photon with lower energy)
- Energies ≥ 2m_e: pair production
 - Creation of electron-positron pair from photon

If photon transfers all its energy to electron(s) and does no longer exist after interaction

Reduction of intensity *I* of a photon beam beam along distance *x* due to absorption in matter: **Beer-Lambert law**

 $I(x) = I_0 e^{-\mu x}$ with absorption coefficient μ

- 1/µ ist mean free path
- µ is proportional to cross section of photon interaction in matter

Photoeffect

Cross section (approximation)

$$\sigma_{\text{p.e.}} = \frac{8\pi}{3} r_e^2 Z^5 \alpha^4 \left(\frac{1}{\epsilon}\right)^{\delta}$$

- Reduced photon energy \(\epsilon = \frac{E_{\gamma}}{m_e}\)
 \(\delta = \begin{bmatrix} 3.5 & \text{for } \epsilon < 1 \\ 1 & \text{for } \epsilon > 1 \end{bmatrix}\)
- $r_e \approx 2.8$ fm classical electron radius

•
$$\alpha \approx \frac{1}{137}$$
 fine-structure constant

- Decreasing with photon energy
- Strong dependence on Z⁵
- In addition: absorption edges due to atomic energy levels

Photons: Compton Effect

 Energy after scattering (relativistic kinematics)

$$E_{\gamma}' = rac{E_{\gamma}}{1+\epsilon(1-\cos heta)}$$

with reduced photon energy $\epsilon = {\it E}_{\gamma}/{\it m}_{\it e}$

Cross section (approximation for $\epsilon \gg 1$): *Klein-Nishina formula*

$$\sigma_{\rm C} = \pi r_e^2 \frac{1}{\epsilon} \left[\frac{1}{2} + \ln(2\epsilon) + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right]$$

Photons: Pair Production

$$\sigma_{\rm p} = 4\alpha r_e^2 Z^2 \left[\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54} \right]$$

Independent of energy
 Z² ln Z^{-1/3} dependence
 Absorption coefficient
 $\mu_{\rm p} = \sigma_{\rm p} \frac{N_A}{A}$

Radiation length X₀

Reminder: radiation length in bremsstrahlung processes:

$$X_0 = \frac{A}{4\alpha N_{\rm A} Z^2 r_{\rm e}^2 \log \frac{183}{z^{1/3}}}$$

Comparison to absorption coefficient in pair production:

$$\mu_p \simeq \frac{7}{9} X_0$$

Mean free path of a photon is 9/7 of X₀

→ after traversing one radiation length of material, the intensity of a photon beam is reduced to $exp(-7/9) \approx 46\%$

Electromagnetic showers

An avalanche of successive

bremsstrahlung and pair-production processes

(simple) Heitler Model

m	E_0	
$N_n = 2^n$ $X_n = n X_{1/2}$	$X_{1/2} = X_0 \ln 2$	n=0
$E_n = E_0 / N_n$ $E_n < E_{\rm crit}$		n=1
$n_{\rm max} = \ln \frac{E_0}{E_{\rm crit}} / \ln 2$		n=2
$X_{\max} = X_0 \ln \frac{E_0}{E_{\text{crit}}}$ $N_{\max} = \frac{E_0}{E_{\text{crit}}}$		n=3
	etc.	
X_{\max}	$\propto \ln E_0 \qquad N_{ m max} \propto E_0$	

Electromagnetic showering process

Longitudinal shower shape

Parametrization: [Longo 1975]

$$\frac{dE}{dt} = E_0 \ t^{\alpha} e^{-\beta t}$$

- α,β : free parameters
- t^α : at small depth number of secondaries increases ...
- e^{-βt} : at larger depth absorption dominates ...

Numbers for E = 2 GeV (approximate): α = 2, β = 0.5, t_{max} = α/β

Hadronic showers

Strong interactions of hadrons in matter

in addition to ionization, photon radiation etc.

Hadronic showers

Hadronic showers

- \approx 90 % pions, $\frac{1}{3}$ of them π^0
- Electromagnetic component (em shower induced by π⁰ → γγ decays): fraction f_{em} energy dependent (∝ ln E) and strongly fluctuating
- Complex nuclear interactions

- 20–40% 'invisible' energy: nuclear binding energy in spallation, 'delayed' photons (from de-excitation), neutrons
- **Undetectable** particles (ν , μ) and **strongly ionising** particles (α)
- Relatively few high-energetic particles, but strongly fluctuating
- Consequence: different detector response e to electrons and h to hadrons (e/h ≠ 1)
 - Measured hadron energy $E_{meas} = [f_{em}e + (1 f_{em})h] \cdot E_{in}$
 - Since $f_{em} = f_{em}(E)$: non-linear response to hadrons if $e/h \neq 1$

hadron showers: Neutral hadrons and nuclear fragments

- neutral, long-lived hadrons carry energy away from shower centre
 - \rightarrow hadronic showers have "satellites"
- Iosses of detectable energy
 - weak decays of (slow) hadrons in showers produce undetectable neutrinos
 - slow neutrons escape from detector volume
 - nuclear fragments absorbed in inactive media
- fission energy adds to detectable energy
 - exploited in uranium calorimeters

Absorption of hadrons in matter characterized by

hadronic interaction length λ

$$\langle E \rangle(x) = E_0 \exp\left[-\frac{x}{\lambda}\right]$$
 with $\lambda = \left(\sigma_{\text{inel}}\frac{N_A}{A}\rho\right)^{-1}$ (values tabulated)

 σ_{inel} : inelastic cross-section of nuclear reactions λ *larger by factor 20–30 than* X_0 *, large fluctuations around* $\langle \lambda \rangle$